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Abstract
Role-oriented dialogue summarization gener-
ates summaries for different roles in dialogue
(e.g. doctor and patient). Existing methods con-
sider roles separately where interactions among
different roles are not fully explored. In this
paper, we propose a novel Role-Aware Central-
ity (RAC) model to capture role interactions,
which can be easily applied to any seq2seq
models. The RAC assigns each role a specific
sentence-level centrality score by involving role
prompts to control what kind of summary to
generate. The RAC measures both the impor-
tance of utterances and the relevance between
roles and utterances. Then we use RAC to re-
weight context representations, which are used
by the decoder to generate role summaries. We
verify RAC on two public benchmark datasets,
CSDS and MC. Experimental results show that
the proposed method achieves new state-of-
the-art results on the two datasets. Extensive
analyses have demonstrated that the role-aware
centrality helps generate summaries more pre-
cisely.

1 Introduction

The last few years have seen a land rush in research
of generating summaries for dialogue such as meet-
ing text and daily chatting due to the ever grow-
ing dialogue corpus from online conversation tools
(Zhu et al., 2020; Feng et al., 2021a; Zhong et al.,
2021; Chen and Yang, 2021; Liu and Chen, 2021).
Typically, Dialogue summarization aims at com-
pressing the main content of a long conversation
into a short text (Qi et al., 2021; Zou et al., 2021;
Feng et al., 2021b; Zhang et al., 2022). Different
from traditional summarization tasks on document
text, the main challenge of dialogue summarization
is to summarize from utterances of multiple roles,
who may have different opinions and interact with
some of the other roles (Lin et al., 2021, 2022).
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Figure 1: A dialogue summarization example.

Recently, Lin et al. (2021) pointed out that it
is equally important to summarize the main con-
tent of each role in addition to the whole dialogue.
Thus, they proposed a more practical task: The
role-oriented dialogue summarization, which aims
at generating summaries for specified roles, e.g.
user summary and agent summary. Figure 1 shows
an example of customer service and user dialogue
about changing order delivery address. The role-
oriented dialogue summarization generates sum-
mary for both user (e.g. User Summary) and agent
(e.g. Agent Summary). The two summaries are dif-
ferent in content and opinion. Additionally, there
is also an overall summary to summarize the whole
dialogue.

There are several methods focused on the role-
oriented summarization task. Lin et al. (2021)
trains different models for different role-oriented
summaries by splitting their utterances, however,
they ignore interactions between roles. Lin et al.
(2022) proposed a role-interaction attention model.
They modeled role-wise interactions through cross-
attention and self-attention in the decoder. How-
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ever, their method has to assign each role a specific
decoder. In addition, the role-interaction has to be
conducted between every two roles. That means
both the model parameter and complexity increase
with the number of roles.

In this paper, we propose a novel Role-Aware
Centrality (RAC) model for the role-oriented di-
alogue summarization task. Centrality is widely
used to measure the salience of sentences in a given
document (Zheng and Lapata, 2019; Liang et al.,
2021, 2022). The RAC assigns each role a spe-
cific Centrality. Specifically, we first propose a
role prompt that is attached to the start of the dia-
logue. The role prompt is used to guide what kind
of summary to generate (i.e. user summary or agent
summary). Then we compute the centrality scores
of each utterance. The final Role-Aware Central-
ity is calculated by an interaction of role prompt
and centrality scores. During decoding, we use
the RAC to reweight the dialogue context, which
is used by the decoder to generate the summaries.
We propose role prompts for each role together
with the overall summary. In this way, different
summaries can be modeled in a unified seq2seq
framework. In addition, the RAC can be easily
applied to any sequence-to-sequence model with
any number of roles. To evaluate the effectiveness
of the RAC, we apply the RAC to three types of
seq2seq structure: PGN, BERTAbs, and BART, and
verify the models on two public Chinese dialogue
summarization datasets: CSDS and MC. Experi-
mental results show that our RAC can improve all
of their performance while accelerating the con-
vergence of training. Additionally, the RAC based
BART achieves new state-of-the-art performance
on the two datasets.

We summarize our contributions as follows:

• We propose a novel Role-Aware Centrality
(RAC) model for the role-oriented dialogue
summarization task to model both role-aware
salient context and role interactions.

• The RAC models different kinds of summaries
in a unified seq2seq framework without com-
putational complexity increasing as roles in-
crease.

• Our model can be applied to different
seq2seq models, where the RAC-based BART
achieves new state-of-the-art results.

Figure 2: The main structure of our RAC model.

2 Methodology

In this section, we will introduce our proposed
Role-Aware Centrality (RAC) model and the com-
bination with the seq2seq structure. The main
framework is shown in Figure 2. It consists of three
components: bidirectional encoder, role-aware cen-
trality model, and auto-regression decoder.

2.1 Task Formalization
Given a dialogue D with n utterances {u1, . . . , un}
and m roles {r1, . . . , rm}. Each utterance ui con-
tains a role rk ∈ R and text content si. We sim-
ply concatenate them by “:” and get utterance
ui = rk : si. For different roles rk, the data have
different summary yrk . In this paper, we employ
yuser and yagent to represent summaries of two
roles and yfinal to represent the summary of the
whole dialogue. Our method can also be applied
for datasets with multiroles.

2.2 Role Prompts
Previous models always trained different models
for different role-oriented summary generation. Lin
et al. (2022) pointed out that it hurts the perfor-
mance of the model. We employ role prompts to
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control the generation of different summaries and
this ensures we only train a single model. Specifi-
cally, we attach “[User Summary]”, “[Agent Sum-
mary]”, and “[Final Summary]” to the start of each
dialogue for summaries generation. The input con-
text is reformalized as “[Prompt] Dialogue Con-
texts” and then tokenized as T tokens {ti}Ti=1.

2.3 Bi-directional Encoder

The bi-directional encoder gets the re-formalized
text as input and outputs the token-level vector
representations.

{hi}Ti=1 = Encoder({ti}Ti=1) (1)

After the encoder, we employ the mean of token
vectors as the semantic representations of role-
related prompts and dialogue utterances, as shown
in Figure 2. We define the role-related prompt rep-
resentation is hr and the utterance representation
is {hui}ni=1.

2.4 Role-Aware Centrality

In this section, we will introduce the core contribu-
tion of this paper: the role-aware centrality model,
which can be divided into two parts: utterance cen-
trality weights and role-aware centrality weights.
The utterance centrality weights aims to measure
the importance of each utterance by computing de-
gree centrality of each utterance. Each utterance
can be seen as one node on the graph, and the edge
value between nodes i and j is hui · huj . Then,
the centrality of each utterance can be computed as
follows:

Cui =
∑
j

hui · huj (2)

Then we normalize the relevance score and get the
weight wc

i with Cui
||Cu||2 .

The role-aware centrality weight consider the rel-
evance between role prompt and utterances, which
is computed as follows:

Rui = hr · hui (3)

Then we normalize the relevance score and get
the weight wr

i with Rui
||Ru||2 . Finally, the role-aware

centrality weights wrcj can be obtained by wr
j ·wc

j

and the token-level representations for the decoder
is re-weighted as follows:

ĥi = λ · hi + (1− λ) · (wrcj · hi), ti ∈ uj (4)

where λ is a hyperparameter to control the influ-
ence of RAC. The auto-regression decoder gener-
ates the final summary based on the re-weighted
context representations {ĥi}Ti=1.

P (ŷ) = Decoder({ĥi}Ti=1) (5)

In the training stage, the model learns the opti-
mal parameters θ by minimizing the negative log-
likelihood.

3 Experiments and Analysis

3.1 Basic Settings
We evaluate our method on two public datasets:
CSDS (Lin et al., 2021) and MC (Song et al.,
2020)1. The comparison baselines are PGN (See
et al., 2017), BERTAbs (Liu and Lapata, 2019),
PGN/BERTAbs-both (Lin et al., 2022) and our im-
plemented BART-both. The comparison metrics
are ROUGE-2 / L (Lin, 2004)2, BLEU (Papineni
et al., 2002)3, BERTScore (Zhang* et al., 2020)4,
and MoverScore (Zhao et al., 2019)5. For Mover-
Score, we use Chinese-bert-wwm-ext6 to provide
the embeddings of summaries. The results of
ROUGE-1 and more details of experiments are
shown in the appendix.

3.2 Main Results
We show the main results in Table 1 and Table 2.
All reported results of [model]+RAC are the av-
erage of three checkpoints. The bold number rep-
resents the best result for each block, and the un-
derlined represents the best global result. BERT
model in the table means BERTAbs. We can see
that BART+RAC outperforms all comparison mod-
els and achieve state-of-the-art results on CSDS
and MC datasets. In addition, different types of
seq2seq models can all have an appreciable im-
provement with our RAC and the gain of the BART
model is extremely obvious. It is worth mention-
ing that the performance of the PGN-based models
is better than BERTAbs-based models, while the
BART-based models, which are also pre-trained
models, achieve the best results. This proves that
the knowledge learned in the pre-training phase of

1https://github.com/cuhksz-nlp/HET-MC. We use the offi-
cial crawling script to acquire the dataset and follow the data
split in RODS.

2https://pypi.org/project/rouge-score/
3https://github.com/mjpost/sacreBLEU
4https://github.com/Tiiiger/bert_score
5https://github.com/AIPHES/emnlp19-moverscore
6https://huggingface.co/hfl/chinese-bert-wwm-ext
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CSDS ROUGE-2 ROUGE-L BLEU BERTScore MoverScore

PGN 39.19/37.06/35.12 53.46/51.05/47.59 30.03/29.64/28.25 77.96/78.68/76.13 59.00/58.68/58.23
PGN-both 40.37/39.10/36.50 55.14/53.85/49.12 32.58/33.54/29.78 78.69/79.52/76.74 59.48/59.32/58.64
PGN+RAC 40.86/40.74/36.92 55.98/54.56/50.04 32.94/33.86/30.46 78.87/79.90/77.03 59.64/59.72/58.61

BERT 37.59/36.39/33.82 52.40/50.44/46.83 29.90/30.17/26.99 78.52/79.23/76.39 58.23/58.10/57.79
BERT-both 40.12/40.70/36.37 54.87/55.17/49.52 32.13/32.04/29.23 79.85/80.70/77.23 59.52/59.55/58.46
BERT+RAC 40.34/41.05/36.75 55.12/55.53/49.89 32.24/32.19/29.91 79.89/80.69/77.27 59.86/59.58/58.66

BART 43.72/43.59/40.24 57.11/56.86/50.85 34.33/34.26/31.88 79.74/80.67/77.31 60.11/59.86/58.75
BART-both 43.88/43.69/40.32 57.32/57.28/51.10 34.75/34.49/32.30 79.72/80.64/77.30 60.12/59.86/58.73
BART+RAC 44.31/44.25/40.51 57.73/58.64/52.64 35.20/35.09/32.95 79.99/80.92/77.35 60.26/60.29/59.04

Table 1: Results on the CSDS dataset test set.

MC ROUGE-2 ROUGE-L BLEU BERTScore MoverScore

PGN 81.25/94.32/77.91 84.34/94.77/81.47 71.50/87.66/68.10 92.90/97.60/91.74 80.90/93.84/79.69
PGN-both 81.93/94.59/78.78 84.94/95.06/82.20 72.77/87.82/69.63 93.23/97.71/92.15 81.67/94.04/80.52
PGN+RAC 82.45/94.72/79.11 85.33/96.41/82.76 72.98/88.00/69.99 93.45/97.92/92.32 81.88/94.35/80.83

BERT 79.90/94.48/76.78 83.04/95.06/80.30 68.19/87.20/64.09 92.68/97.86/91.71 81.28/93.90/80.48
BERT-both 80.76/94.62/77.54 83.68/95.14/80.84 69.33/87.40/65.40 93.02/97.90/91.91 82.26/94.20/81.02
BERT+RAC 81.30/94.80/77.91 84.07/95.72/81.36 69.73/87.80/65.91 93.11/97.89/92.29 82.56/94.41/81.42

BART 84.75/94.99/82.33 87.38/95.37/85.30 73.68/90.29/68.93 93.65/97.94/92.63 82.35/94.17/81.27
BART-both 85.22/95.42/82.89 87.75/95.91/85.78 73.87/90.70/69.31 93.69/97.88/92.69 82.32/94.02/81.40
BART+RAC 86.29/95.86/84.58 88.47/96.12/86.56 74.18/91.22/70.08 94.01/98.13/92.84 82.88/95.10/81.95

Table 2: Results on the MC dataset test set.

ROUGE-1

BART 59.07/58.78/53.89

BART+Prompt 59.42/58.96/54.03
BART+CW 59.61/59.13/54.11
BART+RW 59.64/59.22/54.26

BART+RAC 59.77/59.54/54.41

Table 3: Ablation study on the CSDS dataset.

BERTAbs has a limited gain on generative tasks.
Overall, our proposed RAC is effective for role-
oriented dialogue summarization tasks.

3.3 Ablation Study

We do an ablation study to evaluate the contribution
from different components of our proposed RAC
mechanism. The improvement of each component
for the BART model is shown in Table 3. Prompt
represents prompt-based joint training. CW repre-
sents utterance centrality weights. RW represents
the role-aware relevance weight. From the results,
we can see that RW contributes the most perfor-
mance and all components are vital for the final re-
sults of BART+RAC. This result demonstrates the
effectiveness of our proposed RAC components.

Figure 3: The change of ROUGE-1 score on test set
with the training epochs.

3.4 Convergence Analysis

Our RAC can be seen as prior knowledge to guide
the training of the summarization model. To in-
vestigate the impact of our RAC, we compare the
convergence speed of three models and show it in
Figure 3. We can see that BART+RAC can con-
verge to a better result with fewer epochs, proving
that RAC provides useful information for the model
to summarize the dialogue. Compared with our
RAC, BART-both (Lin et al., 2022) makes limited
improvement for the BART model.
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4 Conclusion

In this paper, we bring the degree centrality into
dialogue summarization and proposed a role-aware
centrality (RAC) model to capture role-interaction
information. Experiments on two datasets demon-
strated that our proposed RAC model is effective
and achieved new state-of-the-art results. Further-
more, our RAC can models different kinds of sum-
maries in a unified seq2seq framework without
computational complexity increasing as roles in-
crease.
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our model still achieves the expected good results,
which are consistent with the results in the main
table.

D Case Study

We sample an example from the data set to show
the final summary of the dialogue generated in
the CSDS. We can see that BART tends to copy
a large amount of tokens from the input contexts.
Our BART+RAC can condense the input text and
generate high quality summary.
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Figure 4: An example from the CSDS dataset.


	Introduction
	Methodology
	Task Formalization
	Role Prompts
	Bi-directional Encoder
	Role-Aware Centrality

	Experiments and Analysis
	Basic Settings
	Main Results
	Ablation Study
	Convergence Analysis

	Conclusion
	Datasets
	Implementation Details
	ROUGE-1 Score on Two Datasets
	Case Study

