CLASP: Few-Shot Cross-Lingual Data Augmentation for
Semantic Parsing

Andy Rosenbaum*
Amazon, Cambridge, USA
andros@amazon.com

Amir Saffari
Amazon, Cambridge, UK

Saleh Soltan
Amazon, New York, USA
ssoltan@amazon.com

Marco Damonte
Amazon, Cambridge, UK

Wael Hamza
Amazon, Dallas, USA
waelhamz@amazon.com

Isabel Groves
Amazon, Cambridge, UK

amsafari@amazon.co.uk dammarco@amazon.co.uk isabeg@amazon.co.uk

Abstract

A bottleneck to developing Semantic Pars-
ing (SP) models is the need for a large vol-
ume of human-labeled training data. Given
the complexity and cost of human annotation
for SP, labeled data is often scarce, partic-
ularly in multilingual settings. Large Lan-
guage Models (LLMs) excel at SP given only
a few examples, however LLMs are unsuit-
able for runtime systems which require low
latency. In this work, we propose CLASP, a
simple method to improve low-resource SP
for moderate-sized models: we generate syn-
thetic data from AlexaTM 20B to augment the
training set for a model 40x smaller (500M
parameters). We evaluate on two datasets in
low-resource settings: English P1zzA, contain-
ing either 348 or 16 real examples, and mTOP
cross-lingual zero-shot, where training data is
available only in English, and the model must
generalize to four new languages. On both
datasets, we show significant improvements
over strong baseline methods.

1 Introduction and Related Work

Semantic Parsing (SP) is the task of mapping a natu-
ral language sentence to a structured representation
of its meaning. SP enables conversational agents
to handle requests such as ordering pizza, creat-
ing reminders, and playing music. A bottleneck to
developing SP models is their reliance on a large
amount of human annotated training data, which
is difficult and expensive to curate (particularly for
multilingual settings) due to the complexity of the
annotation task (Section 2). While Large Language
Models (LLMs) perform well at SP given limited
data (Shin et al., 2021), they are unsuitable for
runtime systems which require low latency.

Data Augmentation (DA) is a common approach
to mitigating data scarcity, and recently LLMs are
shown to excel at in-context (Brown et al., 2020)
training data generation for sentence-level tasks

*Corresponding Author

Few-Shot Input Examples

Semantic Parse for English: [IN:.CREATE_REMINDER
[SL:PERSON_REMINDED me] [SL:TODO [IN:GET_TODO
[SL:TODO check the weather] [SL:DATE_TIME Friday]

[SL:TODO see if the cookout 's still on]]1]1]
=> Translation in English: Remind me to check the
weather Friday to see if the cookout 's still on .;

Semantic Parse for French: [IN:CREATE_REMINDER
[SL:PERSON_REMINDED moi] [SL:TODO [IN:GET_TODO
[SL:DATE_TIME de 10 h] [SL:TODO rendez - vous chez le
médecin 111]]
=> Translation in French: Fais - moi penser a mon rendez
- vous de 10 h chez le médecin;

Semantic Parse for English:

[IN:PLAY_MUSIC [SL:MUSIC_GENRE rock]
[SL:MUSIC_TYPE songs 1]

=> Translation in English: i want to hear rock songs;
Qantic Parse for {target_language}: /

AlexaTM 20B Model

Cross-lingual Output Examples

([IN:PLAYfMUSIC [SL:MUSIC_GENRE rock]
[SL:MUSIC_TYPE chansons]]

=> Translation in French:

j'aimerais écouter des chansons de rock

French

([IN:PLAY_MUSIC [SL:MUSIC_GENRE Rock |
[SL:MUSIC_TYPE Songs]]

German => Translation in German:
\ich méchte Rock Songs héren
([IN:PLAY_MUSIC [SL:MUSIC_GENRE 3 |
Hingl [SL:MUSIC_TYPE st |]

=> :rranslation in Hindi: .
\ # T T G e §

Figure 1: Cross-lingual Data Augmentation: AlexaTM
20B sees only a few examples of mTOP Semantic Pars-
ing and can generate data in multiple languages.

(Sahu et al., 2022; Schick and Schiitze, 2021; Wang
et al., 2021). Fine-tuned LLMs can also generate
data for English slot tagging (Lee et al., 2021) and
multilingual intent classification and slot tagging
(Rosenbaum et al., 2022). As we discuss in Section
2, SP poses unique challenges for DA, and remains
relatively under-explored in the field. Prior work
is either limited to heuristic re-combination of the
training data (Andreas 2020; Jia and Liang 2016) or
else assumes the availability of large-scale unanno-
tated natural data (Yang et al., 2022). Furthermore,
there is a gap in the literature on multilingual DA

444

Proceedings of the 2nd Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the
12th International Joint Conference on Natural Language Processing (Volume 2: Short Papers), pages 444-462
November 20-23, 2022. ©2022 Association for Computational Linguistics

Input: large pizza with extra
0 Quantity Topping O
DrinkOrder

Slot Tags: Size O
Intent Classes: PizzaOrder ,

cheese and pineapple hold the ham

Topping

Semantic Parse: (Order (Pizzaorder (Number 1) (Size large) (Complex_topping (Quantity extra) (Topping cheese))
(Topping pineapple) (Not (Topping ham))) (Drinkorder (Number 2) (Drinktype sprite)))

and two sprites please

Not O Topping O Number DrinkType O

Figure 2: Comparing “flat” semantics (Slot Tagging and Intent Classification, upper) to Semantic Parsing (lower).

for SP, as most existing work covers only English.

In this work, we extend the general example of
DA via LLM prompting to the SP task. Using
AlexaTM 20B (Soltan et al., 2022), we generate
synthetic training examples for SP, to augment low-
resource settings for moderate-sized models.

We evaluate on two datasets: English P1zzA
(Arkoudas et al., 2021) and cross-lingual mTOP
(Lietal., 2021). On P1ZZA, we first establish a new
SOTA baseline by improving upon the Canonical
Form targets of Rongali et al. (2022) and tuning the
amount of grammar-generated training data, then
show that our method improves by 4.79 points
(from 80.40 to 85.19) on the few-shot n=16 set-
ting on Unordered Exact Match (Arkoudas et al.,
2021). On mTOP, we demonstrate 6.1 points im-
provement (from 60.3 to 66.4) on Exact Match
in the cross-lingual one-shot setting, compared to
machine translation with slot alignment.

2 Motivation

2.1 Why Semantic Parsing?

Consider an example from P1zZA (Arkoudas et al.,
2021): “large pizza with extra cheese and pineap-
ple hold the ham and two sprites please”. As shown
in Figure 2, SP evolves beyond “flat” semantics to
exctract complex information such as the implicit
Number slot, the scope of modifiers Quantity and
Not, and the association between slots and intents.

2.2 Data Augmentation Challenges for SP

The core of many standard DA methods is to mod-
ify the text from an existing annotated sample, as-
sume the same label applies, and accept the novel
text-label pair as training data. For example, a
model might paraphrase “order a pizza with basil”
to “order a pizza with extra basil”, which would no
longer match the original Semantic Parse.
Similarly, in cross-lingual settings (i.e., data is
available in one language and the model must per-
form the task on other languages), a standard ap-
proach for sentence-level tasks is to translate the
text and keep the label. For SP however, the target
parse must also be updated with the translated slot

values. Li et al. (2021) translate the text then align
words to recover the parse. However, this second
alignment step may introduce errors (Appendix I).

3 CLASP Methods

To address the challenge of maintaining text-label
agreement when generating SP training data, we
propose CLASP (Cross-Lingual data Augmentation
for Semantic Parsing). CLASP consists of four
methods for prompting LLMs to generate training
data, either in the Same Language [SL] or Cross-
Lingually [CL]: (1) RS: Replace Slots, Generate
Text [SL]; (2) TS: Translate Slots, Generate Text
[CL]; (3) GB: Generate Both Parse and Text [SL];
and (4) TB: Translate Both Parse and Text [CL].

3.1 RS: Replace Slots, Generate Text [SL]

As shown in Figure 3 (Appendix A.1), we start
with a real training example, e; = (z;,y;) such as
with input text x; = “i need to get five small mush-
room and bacon pizzas with a pepsi”’, and target
ground-truth parse y; = “(Pizzaorder ... (Topping
mushroom) ...)”. To create a novel training ex-
ample e, = (z,y) we apply a modification F'(-)
on the parse y; to obtain y, = F(y;), then prompt
a LLM to generate a corresponding text .

Specifically, F'(-) randomly selects one slot (leaf
nodes in the parse tree) of y;, and replaces the slot
value in the parse with a different value from a
catalog. In this instance, we replace the Topping
“mushroom” with “spinach”, giving y, = “(Pizza-
order ... (Topping spinach) ...)’. To help the
model understand how to generate the text 1:;, we
include in the prompt 4 other context examples
{¢; = (xj, yj)}?:1 followed by the original ex-
ample e;, each verbalized as Semantic Parse:
1Y; Translation in English: z;.

3.2 TS: Translate Slots, Generate Text [CL]

This method extends the idea of CLASP-RS to
cross-lingual data generation: we translate each
slot value into the target language [and prompt the
LLM to generate the corresponding text in /. See
an example in Figure 4 (Appendix A.2).

445

3.3 GB: Generate Both Parse and Text [SL]

CLASP-RS provides control over the slot values,
but cannot add or remove slot or intents. Instead,
CLASP-GB generates both the parse and text to-
gether, giving the model flexibility to generate
more diverse outputs (Figure 5 in Appendix A.3).

3.4 TB: Translate Both Parse and Text [CL]

Given the difficulty of translating a slot value out
of context, which may lead to cascading errors, we
propose to apply the LLM to translate both the
parse and the corresponding text (Figure 1).

4 Experimental Setup

4.1 Datasets

We evaluate CLASP on two datasets: PIZzZA (Ark-
oudas et al., 2021) and mTOP (Li et al., 2021).
P127A is a challenging English dataset of SP for
the food ordering domain. We follow the setting
of Rongali et al. (2022), namely converting the
parse targets to a Canonical Form (CF) closer to
natural language; training on the annotated “dev’
portion, either full (n=348) or few-shot (n=16); and
reporting on the “test” portion of 1,357 utterances.
We use 10% of the test set for checkpoint selection.
We iterate upon the CF targets used for training,
by naturalizing from TOP-style parse to CF while
preserving the order of sibling slots and intents
from the original text. (Appendix B.1). Note that
this applies only at training time."
P1zzA also provides 2.5M grammar-generated
“train” samples, and catalogs of values for each slot.
mTOP (Li et al., 2021) is a larger-scale multi-
lingual SP dataset covering 11 domains and 6 lan-
guages. The splits are “train” (15,667 English, 10k-
11k others), “validation” (2,235 English, 1k-2k oth-
ers), and “test” (4,386 English, 2k-3k others). We
follow a cross-lingual one-shot setting: full training
and validation data is available for English only, we
use one training example from each other language
for in-context prompts (Appendix G), and we test
on all languages, however excluding Thai which is
not supported by our pre-trained LMs. The mTOP
dataset provides two options for the input text, ei-
ther “Utterance”, or “tokens”. We use space-joined
“tokens” which resolves many (although not all)
string matching anomalies (Appendix B.2).

’

'We release the alternate P1zzA dataset used in this
paper at https://github.com/amazon-research/pizza-semantic-
parsing-dataset/tree/main/data/alternate-canonical.

4.2 Baselines

For P127ZA, we cite Rongali et al. (2022), who fine-
tune BART (Lewis et al., 2020), including joint
training with auxiliary tasks and constrained decod-
ing. We also explore using various amounts m of
(grammar-generated) train data, both in isolation
and mixed with the (annotated) dev set. Selecting
the best-performing m from values between 348
and 174,000 (Appendix E) we use m=69,600 for
train in isolation. For combining with dev n=348
/ n=16, we use train m=3,480 / m=104,400. For
combining with dev and CLASP, we always use
train m=348.

For mTOP, we implement machine translation
of the text, via Opus MT (Tiedemann and Thottin-
gal, 2020) and via the 20B model (using a one-shot
in-context prompt, Figure 6 in Appendix A.4). We
use Sim-Align (Jalili Sabet et al., 2020) (Appendix
J) to align the translated sentence to the original
English, to recover the target-language parse.

4.3 CLASP Settings

For P1ZZA, we apply two CLASP methods: CLASP-
RS (Sec. 3.1) and CLASP-GB (Sec. 3.3) to gen-
erate novel training data based on the dev set. For
each method, we generate £=3,480 samples We
also try including the union of data from the two
CLASP methods, referred to as CLASP-{RS,GB}.
For mTOP, we use CLASP-TS (Sec. 3.2) and
CLASP-TB (Sec. 3.4) to generate training data
in other languages from the English source. We
select a single example from each of the four target
languages (de, es, fr, and hi; shown in Appendix
G) to use in one-shot prompts for generation. We
filter the outputs as described in Appendix H.
Regardless of which and how much data we add,
we always up-sample the non-synthetic data source
(dev for P12z A, English data for mTOP) to account
for 50% of the mass of utterances seen during train-
ing, and scale down the number of epochs to fix the
total number of model updates across experiments.

4.4 Metrics

We use the form of Exact Match (EM) standard for
each dataset: Unordered Exact Match (UEM) (Ark-
oudas et al., 2021) for P1zzA, which is invariant
to different order of sibling nodes in parses; and
Space- and Case-Insensitive Exact Match (SCIEM)
(Appendix C) for mTOP, which is invariant to dif-
ferent spacing and casing of slot values.

446

https://github.com/amazon-research/pizza-semantic-parsing-dataset/tree/main/data/alternate-canonical
https://github.com/amazon-research/pizza-semantic-parsing-dataset/tree/main/data/alternate-canonical

4.5 Models

For CLASP data generation, we leverage in-context
learning with AlexaTM 20B (Soltan et al., 2022).

For Semantic Parsing fine-tuning (Rongali
et al. (2020), details in Appendix F), we use
AlexaTM-Large 500M, a 500-million-parameter
seq2seq Transformer (Vaswani et al., 2017) pre-
trained similarly to AlexaTM 20B (Soltan et al.,
2022), however with denoising objective only (no
Causal Language Modeling). This model has 12
encoder, 12 decoder layers, and 1024 hidden size
(same as (m)BART (Liu et al., 2020)). For mTOP
we use sentinel words (Raman et al., 2022) which
function similarly to pointers (Appendix B.2.2). At
test-time inference, we use the top-1 hypothesis
from beam search 4 (Appendix D).

5 Results

5.1 Pi1zzA Results

Results are presented in Table 1. We first note that
applying our Fixed Canonical Form to dev-only
provides a very large boost in performance, from
82.54/21.00 for n=348/n=16 to 90.05/58.00, an im-
provement of 7.51 and 37.00 points, respectively.
For n=16, dev-only with Fixed CF already outper-
forms the best system reported by Rongali et al..
We show that training data (which is grammar-
generated) on its own under-performs at 59.84,
however it can help a lot when combined with the
dev set, providing 92.70/80.40.

Both CLASP methods improve significantly over
dev-only: CLASP-RS provides 92.04/60.65 and
CLASP-GB provides 93.52/77.75. Combining
data from the CLASP methods (CLASP-{RS,GB})
shows a slight improvement on n=348, however
is 2.14 points behind CLASP-GB alone on n=16.
Finally, our best performing system uses the fixed
Canonincal Form with data from dev, train, and
both CLASP methods together, obtaining a new
SOTA by a wide margin: 95.06 for n=348 setting,
and 85.19 for n=16 setting.

5.2 mTOP Results

Results are presented in Table 2, where the main
focus is on “avg-0s” (“average-zero-shot”), the av-
erage across the non-English languages. Training
on English data only (“en-only”) is a lower bound
of 45.3, and training on all languages together
(“ALL”) is an upper bound of 73.5, i.e. a gap of
28.2 points. The baseline MT with Slot-Alignment
(“MT-Opus”) provides 15.0 points improvement

Data Unordered EM

Original CF n=348 n=16
dev-only (ours) 82.54 21.00
dev-only (Rongali et al.) 87.25 1695
Rongali et al. best - 49.89

Fixed CF (all ours)

dev-only 90.05 58.00
train-only 59.84 59.84
dev-+train 9270 80.40
dev+CLASP-RS 92.04 60.65
dev+CLASP-GB 93.52 77.75
dev+CLASP-{RS,GB} 93.81 75.61
dev+train+CLASP-{RS,GB} 95.06 85.19

Table 1: Results on P1zzA dataset with Unordered Ex-
act Match (UEM) metric. The best and second-best
numbers are bolded and underlined, respectively. Origi-
nal CF is the Canonical Form of Rongali et al. (2022).
Fixed CF is our fixed Canonical Form (Sec. 4.1), and n
is the number of samples available from the dev set.

over “en-only”, from 45.3 to 60.3. Scaling up the
MT model size (“MT-20B”) does not provide im-
provement, matching “MT-Opus” at 60.3.

Non-en . avg
data en de es fr hi 0s

Lower/Upper Bounds and Baseline

en-only 83.1 | 473 51.0 548 282 | 453

ALL 833|703 773 759 705 | 735

MT-Opus 83.0 | 63.8 65.0 65.1 474 | 60.3
Single Methods

MT-20B 833 | 63.8 643 652 478 | 60.3

CLASP-TS | 829 | 62.8 62.6 672 579 | 62.6

CLASP-TB | 833 | 654 644 663 547 | 627
Combination of Methods

CLASP-

{TS.TB) 834|642 637 684 592 | 639
CLASP-

{TS,TB} | 83.8 | 663 659 69.0 59.7| 65.2
+MT-20B

CLASP-

{TS,TB}

+MT-20B 84.4 | 66.7 68.1 72.6 58.1 66.4
+MT-Opus

CRISS with Pointers (Li et al., 2021) (for reference only)
en-only 842 1 36.1 48.6 46.6 312 | 40.6
ALL 84.1 | 744 79.1 777 747 | 765
MT 842|628 733 717 632 | 67.8

Table 2: Our mTOP results, where ‘avg-0s’ is averaged
across the non-en languages. Li et al. (2021) is cited for
reference only, and are not directly comparable due to
using a stronger backbone model (CRISS, (Tran et al.,
2020)) with a higher upper bound (“ALL"). Our best
result is bolded, and our second best is underlined.

CLASP-TS and CLASP-TB provide 62.6
and 62.7, respectively, while their combina-
tion (CLASP-{TS,TB}) improves further to 63.9.
Adding data from “MT-20B” increases to 65.2, and
finally by combining data from both CLASP meth-

447

ods and both MT models, our best result is 66.4, i.e.
6.1 points improvement over the baseline. The
gain is particularly large for Hindi: 12.3 points im-
provement over the baseline (from 47.4 to 59.7).

6 Conclusion and Future Work

We have demonstrated CLASP, a simple method to
generate synthetic training data for multi-lingual
Semantic Parsing by prompting a frozen Large Lan-
guage Model. In very low-resource (n=16 and
n=1) settings, on two datasets covering five lan-
guages, we show significant improvements over
strong baseline methods. In future work, we would
like to evaluate on more languages and datasets,
combine our method with CRISS style pre-training,
and extend our method to more tasks such as Text-
to-SQL and Code Generation.

References

Jacob Andreas. 2020. Good-enough compositional data
augmentation. In Proceedings of the 58th Annual
Meeting of the Association for Computational Lin-
guistics, pages 7556-7566, Online. Association for
Computational Linguistics.

Konstantine Arkoudas, Nicolas Guenon des Mesnards,
Melanie Rubino, Sandesh Swamy, Saarthak Khanna,
and Weiqi Sun. 2021. Pizza: a task-oriented semantic
parsing dataset.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish,
Alec Radford, Ilya Sutskever, and Dario Amodei.
2020. Language models are few-shot learners.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal,
Vishrav Chaudhary, Guillaume Wenzek, Francisco
Guzman, Edouard Grave, Myle Ott, Luke Zettle-
moyer, and Veselin Stoyanov. 2020. Unsupervised
cross-lingual representation learning at scale. In Pro-
ceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 8440—
8451, Online. Association for Computational Lin-
guistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages

4171-4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Angela Fan, Mike Lewis, and Yann Dauphin. 2018.
Hierarchical neural story generation. In Proceedings
of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 889-898, Melbourne, Australia. Association
for Computational Linguistics.

Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and
Yejin Choi. 2020. The curious case of neural text de-
generation. In International Conference on Learning
Representations.

Masoud Jalili Sabet, Philipp Dufter, Francois Yvon,
and Hinrich Schiitze. 2020. SimAlign: High qual-
ity word alignments without parallel training data
using static and contextualized embeddings. In Find-
ings of the Association for Computational Linguistics:
EMNLP 2020, pages 1627-1643, Online. Association
for Computational Linguistics.

Robin Jia and Percy Liang. 2016. Data recombination
for neural semantic parsing. In Proceedings of the
54th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
12-22, Berlin, Germany. Association for Computa-
tional Linguistics.

Adam:
CoRR,

Diederik P. Kingma and Jimmy Ba. 2015.
A method for stochastic optimization.
abs/1412.6980.

Taku Kudo and John Richardson. 2018. SentencePiece:
A simple and language independent subword tok-
enizer and detokenizer for neural text processing. In
Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 66—71, Brussels, Belgium.
Association for Computational Linguistics.

Kenton Lee, Kelvin Guu, Luheng He, Timothy Dozat,
and Hyung Won Chung. 2021. Neural data
augmentation via example extrapolation. ArXiv,
abs/2102.01335.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. 2020.
BART: Denoising sequence-to-sequence pre-training
for natural language generation, translation, and com-
prehension. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 7871-7880, Online. Association for Computa-
tional Linguistics.

Haoran Li, Abhinav Arora, Shuohui Chen, Anchit
Gupta, Sonal Gupta, and Yashar Mehdad. 2021.
MTOP: A comprehensive multilingual task-oriented
semantic parsing benchmark. In Proceedings of the
16th Conference of the European Chapter of the Asso-
ciation for Computational Linguistics: Main Volume,
pages 2950-2962, Online. Association for Computa-
tional Linguistics.

448

https://doi.org/10.18653/v1/2020.acl-main.676
https://doi.org/10.18653/v1/2020.acl-main.676
https://github.com/amazon-research/pizza-semantic-parsing-dataset
https://github.com/amazon-research/pizza-semantic-parsing-dataset
https://doi.org/10.48550/ARXIV.2005.14165
https://doi.org/10.18653/v1/2020.acl-main.747
https://doi.org/10.18653/v1/2020.acl-main.747
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/P18-1082
https://openreview.net/forum?id=rygGQyrFvH
https://openreview.net/forum?id=rygGQyrFvH
https://doi.org/10.18653/v1/2020.findings-emnlp.147
https://doi.org/10.18653/v1/2020.findings-emnlp.147
https://doi.org/10.18653/v1/2020.findings-emnlp.147
https://doi.org/10.18653/v1/P16-1002
https://doi.org/10.18653/v1/P16-1002
https://doi.org/10.18653/v1/D18-2012
https://doi.org/10.18653/v1/D18-2012
https://doi.org/10.18653/v1/D18-2012
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2021.eacl-main.257
https://doi.org/10.18653/v1/2021.eacl-main.257

Yinhan Liu, Jiatao Gu, Naman Goyal, Xian Li, Sergey
Edunov, Marjan Ghazvininejad, Mike Lewis, and
Luke Zettlemoyer. 2020. Multilingual denoising pre-
training for neural machine translation. Transac-
tions of the Association for Computational Linguis-
tics, 8:726-742.

Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase,
and Yuxiong He. 2019. Zero: Memory optimizations
toward training trillion parameter models.

Karthik Raman, Iftekhar Naim, Jiecao Chen, Kazuma
Hashimoto, Kiran Yalasangi, and Krishna Srinivasan.
2022. Transforming sequence tagging into a seq2seq
task.

Subendhu Rongali, Konstantine Arkoudas, Melanie Ru-
bino, and Wael Hamza. 2022. Training naturalized
semantic parsers with very little data. arXiv preprint
arXiv:2204.14243.

Subendhu Rongali, Luca Soldaini, Emilio Monti, and
Wael Hamza. 2020. Don’t parse, generate! a se-
quence to sequence architecture for task-oriented se-
mantic parsing. Proceedings of The Web Conference
2020.

Andy Rosenbaum, Saleh Soltan, Wael Hamza, Yannick
Versley, and Markus Boese. 2022. Linguist: Lan-
guage model instruction tuning to generate annotated
utterances for intent classification and slot tagging.

Gaurav Sahu, Pau Rodriguez, Issam Laradji, Parmida
Atighehchian, David Vazquez, and Dzmitry Bah-
danau. 2022. Data augmentation for intent classi-
fication with off-the-shelf large language models. In
Proceedings of the 4th Workshop on NLP for Conver-
sational Al, pages 47-57, Dublin, Ireland. Associa-
tion for Computational Linguistics.

Timo Schick and Hinrich Schiitze. 2021. Generating
datasets with pretrained language models. In Pro-
ceedings of the 2021 Conference on Empirical Meth-
ods in Natural Language Processing, pages 6943—
6951, Online and Punta Cana, Dominican Republic.
Association for Computational Linguistics.

Richard Shin, Christopher Lin, Sam Thomson, Charles
Chen, Subhro Roy, Emmanouil Antonios Platanios,
Adam Pauls, Dan Klein, Jason Eisner, and Benjamin
Van Durme. 2021. Constrained language models
yield few-shot semantic parsers. In Proceedings of
the 2021 Conference on Empirical Methods in Natu-
ral Language Processing, pages 7699-7715, Online
and Punta Cana, Dominican Republic. Association
for Computational Linguistics.

Saleh Soltan, Shankar Ananthakrishnan, Jack G. M.
FitzGerald, Rahul Gupta, Wael Hamza, Haidar Khan,
Charith S. Peris, Stephen Rawls, Andrew Rosen-
baum, Anna Rumshisky, Chandan Prakash, Mukund
Sridhar, Fabian Triefenbach, Apurv Verma, Gokhan
Tur, and Premkumar Natarajan. 2022. Alexatm 20b:
Few-shot learning using a large-scale multilingual
seq2seq model. ArXiv, abs/2208.01448.

Jorg Tiedemann and Santhosh Thottingal. 2020. OPUS-
MT - building open translation services for the world.
In Proceedings of the 22nd Annual Conference of
the European Association for Machine Translation,
pages 479-480, Lisboa, Portugal. European Associa-
tion for Machine Translation.

Chau Tran, Yuqing Tang, Xian Li, and Jiatao Gu. 2020.
Cross-lingual retrieval for iterative self-supervised
training.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, L. ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, volume 30. Curran Associates, Inc.

Zirui Wang, Adams Wei Yu, Orhan Firat, and Yuan Cao.
2021. Towards zero-label language learning. ArXiv,
abs/2109.09193.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander Rush. 2020. Trans-
formers: State-of-the-art natural language processing.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 38—45, Online. Association
for Computational Linguistics.

Kevin Yang, Olivia Deng, Charles Chen, Richard Shin,
Subhro Roy, and Benjamin Van Durme. 2022. Ad-
dressing resource and privacy constraints in semantic
parsing through data augmentation. In Findings of
the Association for Computational Linguistics: ACL
2022, pages 3685-3695, Dublin, Ireland. Association
for Computational Linguistics.

449

https://doi.org/10.1162/tacl_a_00343
https://doi.org/10.1162/tacl_a_00343
https://doi.org/10.48550/ARXIV.1910.02054
https://doi.org/10.48550/ARXIV.1910.02054
https://doi.org/10.48550/ARXIV.2203.08378
https://doi.org/10.48550/ARXIV.2203.08378
https://doi.org/10.48550/ARXIV.2209.09900
https://doi.org/10.48550/ARXIV.2209.09900
https://doi.org/10.48550/ARXIV.2209.09900
https://doi.org/10.18653/v1/2022.nlp4convai-1.5
https://doi.org/10.18653/v1/2022.nlp4convai-1.5
https://doi.org/10.18653/v1/2021.emnlp-main.555
https://doi.org/10.18653/v1/2021.emnlp-main.555
https://doi.org/10.18653/v1/2021.emnlp-main.608
https://doi.org/10.18653/v1/2021.emnlp-main.608
https://aclanthology.org/2020.eamt-1.61
https://aclanthology.org/2020.eamt-1.61
https://doi.org/10.48550/ARXIV.2006.09526
https://doi.org/10.48550/ARXIV.2006.09526
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2022.findings-acl.291
https://doi.org/10.18653/v1/2022.findings-acl.291
https://doi.org/10.18653/v1/2022.findings-acl.291

A Sample Model outputs

A.1 Example of CLASP-RS: Replace Slots and Generate Text
We show an example of CLASP-RS (Replace Slots and Generate Text) in Figure 3.

INPUT:

[CLM] Semantic Parse: (Order
(Pizzaorder (Number a) (Size medium) (Style supreme))
(Drinkorder (Number a) (Drinktype sprite)));

Translation in English:
order me a medium supreme pizza and a sprite;

Semantic Parse: (Order
(Pizzaorder (Number two) (Topping bacon) (Topping onion))
(Drinkorder (Number a) (Size large) (Drinktype mountain dew)));

Translation in English:
put in my order for two bacon and onion pizzas and include a large mountain dew;

Semantic Parse: (Order
(Pizzaorder (Number two) (Size large) (Topping pepperoni) (Topping mushrooms))
(Drinkorder (Number four) (Size large) (Drinktype cherry cokes)));

Translation in English:
two large pizzas with pepperoni and mushrooms and four large cherry cokes;

Semantic Parse: (Order
(Pizzaorder (Number one) (Size small) (Topping yellow peppers) (Topping olives))
(Drinkorder (Number two) (Containertype cans) (Drinktype coke)));

Translation in English:
place an order for one small pizza with yellow peppers and olives
and also include two cans of coke with it;
Semantic Parse: (Order
(Pizzaorder (Number five) (Size small) (Topping mushroom) (Topping bacon))
(Drinkorder (Number a) (Drinktype pepsi)));
Translation in English:
i need to get five small mushroom and bacon pizzas with a pepsi;
Semantic Parse: (Order
(Pizzaorder (Number five) (Size small) (Topping spinach) (Topping bacon))
(Drinkorder (Number a) (Drinktype pepsi)));
Translation in English:

OUTPUTS:

0: five small spinach and bacon pizzas with a pepsi

1: put in my order for five small spinach and bacon pizzas and include a pepsi
2: five small spinach and bacon pizzas and a pepsi

3: please place my order for five small spinach and bacon pizzas with a pepsi

4: put my order in for five small spinach and bacon pizzas with a pepsi

Figure 3: CLASP-RS: Replace Slots and Generate Text. In this example from the P1ZZA dataset, we have replaced
the value of Topping mushroom with Topping spinach. The model sees c=5 context examples, the last of which
is the original utterance, and is prompted to generate text matching the parse with the replaced slot. The model
generates reasonable paraphrases, including the requested slots. In particular, the model can both mix and match
carrier phrase components from the prompted examples (e.g. “include a pepsi”’) and generate novel carrier phrases,
(e.g. “please place my order”) presumably relying on general language knowledge acquired during unsupervised
pre-training. Note that “[CLM]” is a special token which the model expects during in-context learning.

450

A.2 Example of CLASP-TS: Translate Slots and Generate Text
We show an example of CLASP-TS (Translate Slots and Generate Text) in Figure 4.

INPUT:
[CLM] Semantic Parse: [IN:CREATE_REMINDER
[SL:PERSON_REMINDED me]

[SL:TODO [IN:GET_TODO [SL:DATE_TIME 10 : 00 am] [SL:TODO doctor ’s appointment 1 1] 1;
Translation in English:
Remind me of my 10 : 00 am doctor ’'s appointment;

Semantic Parse: [IN:CREATE_REMINDER
[SL:PERSON_REMINDED moi]

[SL:TODO [IN:GET_TODO [SL:DATE_TIME de 10 h] [SL:TODO rendez - vous chez le médecin]]]];
Translation in French:
Fais - moi penser a mon rendez - vous de 10 h chez le médecin;
Semantic Parse: [IN:SEND_MESSAGE
[SL:RECIPIENT [IN:GET_CONTACT [SL:CONTACT_RELATED my] [SL:TYPE_RELATION husband]]]

[SL:CONTENT_EXACT pick up bread 1;
Translation in English:
Send a message to my husband reminding him to pick up bread;
Semantic Parse: [IN:SEND_MESSAGE
[SL:RECIPIENT [IN:GET_CONTACT [SL:CONTACT_RELATED mon] [SL:TYPE_RELATION mari]]]
[SL:CONTENT_EXACT prendre du pain]];
Translation in French:

OUTPUTs :
0: Envoie un message a mon mari pour lui rappeler de prendre du pain
1: Envoie un message a mon mari lui demandant de prendre du pain

2: Envoie un message a mon mari lui rappelant de prendre du pain

Figure 4: CLASP-TS (Translate Slots and Generate Text). We first translate the slots replacing them in the parse,
then use a one-shot in-context prompt to instruct the 20B model to generate a matching sentence in the target
language.

451

A.3 Example of CLASP-GB: Generate Both Parse and Text

An example is shown in Figure 5

INPUT:
[CLM] Semantic Parse: (Order
(Pizzaorder (Number a) (Size small) (Topping peppers) (Topping sausage) (Topping pineapple)))

=> Translation in English:
can you get me a small pizza with peppers and sausage and pineapple please;

Semantic Parse: (Order
(Pizzaorder (Number a) (Size large) (Topping olives
(Complex_topping (Quantity extra) (Topping cheese)) (Topping chicken)))

=> Translation in English:

i need a large pizza and i want olives and extra cheese as well as chicken on it thanks a lot;
Semantic Parse: (Order

(Pizzaorder (Number a) (Size medium) (Topping onions) (Topping tuna) (Topping ham)))
=> Translation in English:

i’d like a medium pizza with onions tuna and ham;
Semantic Parse: (Order

(Pizzaorder (Number two) (Topping olive) (Topping pineapple) (Topping mushroom)))
=> Translation in English:

i want two olive pineapple and mushroom pies;
Semantic Parse: (Order

(Pizzaorder (Number a) (Size large) (Topping ham) (Topping peppers) (Not (Style thin crust))))
=> Translation in English:

good evening how are you do me a favor and get me a large pizza with ham and peppers

i definitely do not want thin crust thanks;

Semantic Parse:

OUTPUTS:

0: (Order (Pizzaorder (Number two) (Topping olive) (Topping pineapple) (Topping mushroom)
(Not (Style thin crust))) =>
Translation in English:
can you get me two olive pineapple and mushroom pies please no thin crust;

1: (Order (Pizzaorder (Number a) (Size medium) (Topping tuna) (Topping chicken))) =>
Translation in English:
hello how are you i want a medium pizza with tuna and chicken on it thanks;

2: (Order (Pizzaorder (Number a) (Size small) (Topping chicken) (Topping bacon))) =>
Translation in English:
can you please bring me a small pizza with chicken and bacon on it thanks;

3: (Order (Pizzaorder (Number a) (Size large) (Topping mushroom)
(Topping pepperoni) (Topping green pepper))) =>
Translation in English:
how are you today i want a large pizza with mushrooms pepperoni green peppers and cheese thanks;

Figure 5: CLASP-GB: AlexaTM 20B generates both the parse and matching text remarkably well given that it has
only seen five examples in the prompt. Intuitively this is this most ambiguous of the tasks, as the model has freedom
to generate both a new parse and a new text. Therefore, we see a bit noisier generation in this mode, as shown in the
example where an extra slot value “cheese” appears in the text but not in the parse. We filter out such examples with
a heuristic string match check.

A.4 Example of In-Context Sentence Translation

An example is shown in Figure 6.

INPUT:

[CLM] Sentence: remind me to call tim after work tomorrow at_6 pm; . .
Translation in Hindi: & HH F 3 & §1G AH 6 &1 A FI Fid A & fAv AP RAGs Hare;
Sentence: What are the most popular recipes on Food Network;

Translation in Hindi:

OUTPUTS:

0: [T Fcadm W AW Ak AT = §;

Figure 6: An example of in-context Sentence text translation from English to Hindi.

B Data Preprocessing

We discuss preprocessing for each of our datasets.
452

B.1 Data Preprocessing for Pizza

We provide more details about our modified Canonical Form (CF) training data, as introduced in Section
4.1. We compare the Canonical Forms released by Rongali et al. (2022) 2 with the original pizza text,
TOP, and EXR released by Arkoudas et al. (2021).> An example is shown in Figure 7, where we see that
in the original data release, EXR does not preserve the sibling order of nodes in the tree. It appears that
the CF of Rongali et al. (2022) follows the EXR, so it inherits this mismatch.

We hypothesize that this mismatch in sibling order creates an extra challenge for the model to learn at
training time, and limits the power of the naturalization approach proposed by Rongali et al. (2022). In
particular, in the 16-shot setting, we find that 12 out of the 16 utterances have a canonical form that does
not match the original sibling order.

Observing that the sibling order is still faithfully represented in the “TOP” field of the corresponding
utterances in the Pizza dataset (Arkoudas et al., 2021), we re-produce the CF from TOP directly, using
the same codebase as Rongali et al. (2022).* Note, we only perform this change during training time. At
testing time, we follow (Rongali et al., 2022) and use the standard grammar to parse the model output and
compare using Unordered Exact Match (UEM) against the ground-truth EXR (entity resolved) format.

As shown in Section 5.1, our fixed Canonical Form provides a very large improvement across all
runs, in particular increasing UEM from 82.54/21.00 to 90.05/58.00 on n=348/n=16, respectively. This
represents 7.51/37.00 points absolute improvement, respectively.

Text in Arkoudas et al. (2021):
can you get me a pizza with peppers and sausage and pineapple please

TOP in Arkoudas et al. (2021):
(ORDER can you get me (PIZZAORDER (NUMBER a) (SIZE small) pizza with
(TOPPING peppers) and (TOPPING sausage) and (TOPPING pineapple)) please

TOP-Decoupled we produced using code at Arkoudas et al. (2021):
(ORDER (PIZZAORDER (NUMBER a) (SIZE small)
(TOPPING peppers) (TOPPING sausage) (TOPPING pineapple)))

EXR in Arkoudas et al. (2021):
(ORDER (PIZZAORDER (NUMBER 1) (SIZE SMALL)
(TOPPING PEPPERS) (TOPPING PINEAPPLE) (TOPPING SAUSAGE)))

Rongali et al. (2022) CF for this utterance:

i want one small pizza with peppers , pineapple , and sausage
Our CF:
i want one small pizza with peppers , sausage , and pineapple

Figure 7: Comparing our “Fixed” Canonical Form (“Our CF”) to the original provided by Rongali et al. (2022).
We use the same code to resolve, we just start with the TOP and TOP-Decoupled versions provided in the dataset,
which maintain the ordering of slots in the original.

*https://github.com/amazon-research/resource-constrained-naturalized-semantic-parsing
3https://github.com/amazon-research/pizza-semantic-parsing-dataset
“We thank the authors of Arkoudas et al. (2021) and Rongali et al. (2022) for providing support on the P1zZA dataset.

453

B.2 Data Preprocessing for mTOP

We describe two data pre-processing steps for mTOP: (1) Space-joined Tokens, and (2) Sentinel Words.
As shown in Table 3, these steps have minimal impact on non-English languages when training on ALL
data (from 73.4 to 73.5), however improve lower bound cross-lingual zero-shot by 17.0 points (from
28.3 to 45.3). Furthermore, our data pre-processing provides a moderate improvement on English, of 0.8
points (from 82.3 to 83.1) when training on en-only data, and 0.9 points (from 82.4 to 83.3) when training
on ALL data.

Data Input Source Word Sentinels en de es fr hi avg-0s
Utterance no 823 | 31.8 285 327 203 28.3
en-only Space-joined Tokens no 829 | 346 366 398 228 334
Space-joined Tokens yes 83.1 | 473 510 548 282 45.3
Utterance no 824 | 713 774 749 70.1 73.4
ALL Space-joined Tokens no 82.0 | 71.7 7677 751 68.7 73.0
Space-joined Tokens yes 833 | 703 773 759 70.5 73.5

Table 3: Results for cross-lingual zero-shot and ALL languages training on mTOP, comparing using Utterance or
space-joined tokens as input text. In each case, the same format is used at both train and test time.

B.2.1 Space-joined Tokens for mTOP

As noted in section 4.1, the mTOP dataset® provides two options for the input: raw “Utterance”, as well
as “tokens”, which according to the README file: “This is a JSON string representing the tokenization
used for all experiments in the paper.” We opt for using the provided tokens JSON, and joining the tokens
on spaces. This fixes many (although not all) spacing and other anomolies with exact match and token
copying which occur in as much as 30% of utterances the non-English datasets. An example for French is
shown in Figure 8.

We encourage the community to continue a deep dive into anomalies in the mTOP dataset, and develop
a standard setting, perhaps even releasing a standardized / cleaned mTOP-v2. As it stands, we still
consider mTOP a highgly useful dataset to evaluate experiments within the same publication or research
team, however comparisons across publications and groups should be taken with a grain of salt.

Utterance field in mTOP French:
Donne-moi la liste des salons de 1l’automobile prévus a Atlanta le week-end prochain

Ground-truth parse:
[IN:GET_EVENT [SL:CATEGORY_EVENT salons de 1’ automobile] [SL:LOCATION Atlanta]
[SL:DATE_TIME le week - end prochain]]

Space-joined tokens field (our models use this version):
Donne - moi la liste des salons de 1’ automobile prévus a Atlanta le week - end prochain

Figure 8: Comparing “space-joined tokens” input versus “Utterance” input format for mTOP. As shown, the
“space-joined-tokens” resolves various spacing anomalies which improves cross-lingual zero-shot performance.

B.2.2 Sentinel Words for mTOP

Following Raman et al. (2022), we use “sentinel words” which we show greatly improves the cross-lingual
zero-shot performance. An example is shown in Figure 9.

As noted in section B.2, we use Space-joined Tokens as input, which resolves many spacing anomalies
occurring in the ground-truth annotation for a large portion (up to 30% of non-English) of the data.
Still, approximately 3% of the non-English data has unresolved spacing and casing anomalies (see also,
Appendix C). In those cases, we simply discard the original training utterances which cannot be converted
into sentinel form. When an unresolved spacing or casing anomaly occurs in a test utterance, we do not
discard the the utterance, but rather use a metric which makes it possible for the model to recover the
correct answer (see Appendix C).

Shttps://fb.me/mtop_dataset
454

https://fb.me/mtop_dataset

We do not add these sentinel words to the vocabulary, but rather simply allow the sentencepiece
(Kudo and Richardson, 2018) tokenizer to split them into subwords, such as [’ _word’, "07]. We
hypothesize that this could allow the model to generalize at inference time to inputs longer than those
seen during training. However, this choice makes the input and output sequences longer than necessary,
which could impact latency. In future work, we would like to explore adding the sentinel words to the
vocabulary and measure this trade-off explicitly.

English example
Original Text:
are there thunder storms on the forecast this weekend

Original Parse:
[IN:GET_WEATHER [SL:WEATHER_ATTRIBUTE thunder storms] [SL:DATE_TIME this weekend]]
Sentinel Words Text:
word0 are wordl there word2 thunder word3 storms word4 on word5 the
wordé forecast word7 this word8 weekend

Sentinel Words Parse:
[IN:GET_WEATHER [SL:WEATHER_ATTRIBUTE word2 word3 | [SL:DATE_TIME word7 word8]]

German example
Original Text:
Sind fiir dieses Wochenende Gewitter vorhergesagt ?

Original Parse:

[IN:GET_WEATHER [SL:WEATHER_ATTRIBUTE Gewitter] [SL:DATE_TIME fiir dieses Wochenende]]
Sentinel Words Text:

word0 Sind wordl fiir word2 dieses word3 Wochenende word4 Gewitter word5 vorhergesagt word6 2

Sentinel Words Parse:
[IN:GET_WEATHER [SL:WEATHER_ATTRIBUTE word4] [SL:DATE_TIME wordl word2 word3]

Figure 9: An example of the input and output formats when using sentinel words.

C Space- and Case-Insensitive Exact Match (SCIEM) Metric for mTOP

We define the variant of Exact Match we use for mTOP, which we call Space- and Case-Insensitive Exact
Match (SCIEM). SCIEM is insensitive to spacing and casing of text words in the parse (excluding the
parse elements such as the intent and slot names). Python code is provided in Figure 10 and an example
is shown in Figure 11. We encourage the research community to adopt these standard settings for
mTOP: Space-joined Tokens as Input, and SCIEM metric.

We compare results using Verbatim Exact Match vs. SCIEM, with greedy decoding (“Greedy”), in
Table 4. As show in the table, SCIEM provides a small boost in performance on the non-English languages,
of 0.5 points on the lower bound “en-only” (from 44.5 to 45.0), 0.9 points on the upper bound “ALL”
(from 72.4 to 73.3), 0.7 points on our baseline method “MT-Opus” (from 59.5 to 60.2), and 0.8 points on
our best-performing combination of methods “Our Best” (from 65.4 to 66.2).

Note, however, that the difference is unequal across languages, e.g. in the “en-only” setting, switching
from Verbatim Exact Match to SCIEM improves French (“fr””) by 1.1 points (from 53.1 to 54.2) however
does not impact Hindi (“hi”) at all. Finally, SCIEM has minimal impact on “en” results, with “ALL”
improving by 0.2 points (from 83.1 to 83.3) and the other settings matching exactly.

These trends match with our observations in Appendices B.2.1 and B.2.2, that even after using space-
joined tokens and sentinel words for the input, there remain a small number of spacing and casing
anomalies, some of which are resolved by using the SCIEM metric.

D Impact of Test-Time Decoding Strategy

In Table 4 (Appendix C), we also compare the impact of our choice of Decoding Strategy. As show in
the Table, across settings Beam4 provides only a small boost over Greedy decoding, between 0.1 and 0.3
points on “avg-0s”, and either exactly the same or 0.1 points improvement on “en”.

455

def get_sciem_key (model_output) :
pieces = model_output.strip().split ()
new_pieces = []
for piece in pieces:
if piece.startswith(’ [IN:’) or piece.startswith(’ [SL:’) or piece == "]’:
new_pieces.append (piece)
else:
new_pieces.append (piece.lower())
return ’’.Jjoin(new_pieces)

>>> model_output = "[IN:GET_WEATHER [SL:DATE_TIME para el Domingo de Pascua a las 14 : 00] 1"
>>> get_sciem_key (model_output)
’ [IN:GET_WEATHER[SL:DATE_TIMEparaeldomingodepascuaalasl14:00]]

Figure 10: Python code for SCIEM metric.

Example from mTOP Spanish
Utterance Input:
Dime el prondéstico para el Domingo de Pascua a las 14:00.

Space-joined Tokens Input:
Di me el prondéstico para el Domingo de Pascua a las 14 : 00 .
Model hypothesis when using Utterance:
[IN:GET_WEATHER [SL:DATE_TIME para el Domingo de Pascua a las 14:00]]

Model hypothesis when using Space-joined Tokens:
[IN:GET_WEATHER [SL:DATE_TIME para el Domingo de Pascua a las 14 : 00]]

Ground-truth Parse Original:
[IN:GET_WEATHER [SL:DATE_TIME para el domingo de Pascua a las 14 : 00]]

Model Hypothesis (in both cases) For Space- and Case-Insensitive Exact Match (SCIEM):
[IN:GET_WEATHER[SL:DATE_TIMEparaeldomingodepascuaalasl14:00]]

Ground-truth Parse For Space- and Case-Insensitive Exact Match (SCIEM) :
[IN:GET_WEATHER[SL:DATE_TIMEparaeldomingodepascuaalasl14:00]]

Verbatim Exact Match? NO

SCIEM Exact Match? YES

Figure 11: An example of Space- and Case-Insensitive Exact Match (SCIEM). The original Utterance input has both
a spacing (“14:00” vs. “14 : 00”) and a casing (“Domingo” vs. “domingo”) anomaly compared to the Ground-truth
Parse. While using Space-joined Tokens as input solves the spacing issue, the casing issue remains. In both cases,
SCIEM corrects for the anomalies in the test set by counting the model’s hypothesis as correct.

Data Decoding Exact Match Type en de es fr hi avg-Os
Greedy Verbatim 83.1 | 469 500 53.1 279 | 445

en-only Greedy SCIEM 83.1 | 472 508 542 279 45.0
Beam4 SCIEM 83.1 | 473 510 548 282 | 453

Greedy Verbatim 83.1 | 69.7 757 73.8 70.5 72.4

ALL Greedy SCIEM 833 | 702 770 756 705 733
Beam4 SCIEM 833 | 703 773 758 705 | 73.5

Greedy Verbatim 829 | 632 639 635 473 | 595

MT-Opus Greedy SCIEM 829 | 635 649 649 473 | 60.2
Beam4 SCIEM 83.0 | 63.8 650 651 474 | 603

Greedy Verbatim 844 | 66.1 667 70.8 579 654
(O“r+]i§;‘)zg§iﬁ¥gs’TB} Greedy SCIEM 844 | 665 619 724 579 | 662
) ~-Pus Beam4 SCIEM 844 | 667 681 726 58.1 | 66.4

Table 4: The impact of SCIEM (vs. Verbatim Exact Match) and Beam4 decoding (vs. Greedy decoding) on
lower bound (“en-only’), upper bound (“ALL”), baseline (“MT-Opus”), and our best-performing (“Our Best”)
combination of methods.

E Impact of Adding Grammar-Generated Train Data for P12zZA

For P12z A, we show the impact on tuning the amount of grammar-generated training data, as described in

Section 4.2. As show in Figure 12, the best-performing option for train (m) in isolation is m=69,600, and

when mixed with dev (n=16) + train (m), m=104,400 is best. These correspond to the rows “train-only”
456

and “dev-+train”, respectively, in table 1. Note, as described in Section 4.1, to avoid overfitting on the
test set which contains only 1,357 utterances, we extract a 10% subset of the test set, referred to as the
“validation” set to use for hyperparameter tuning and early stopping.

PIZZA: using grammar-generated training data only PIZZA: adding grammar-generated training data to dev n=16

136)

80

75 A

70 A

65

60 q

Unordered Exact Match (UEM) on validation set (v
Unordered Exact Match (UEM) on validation set (v=136)

551
0 25000 50000 75000 100000 125000 150000 175000 0 25000 50000 75000 100000 125000 150000 175000
Number of grammar-generated train examples Number of grammar-generated train examples added to dev n=16
—e— train-only —o— dev (n=16) + train
----- dev-only (n=16) ----- dev-only (n=16)
—-=- dev (n=16) + train (m=348) + CLASP-RS (3,480) + CLASP-GB (3,480) —=- dev (n=16) + train (m=348) + CLASP-RS (3,480) + CLASP-GB (3,480)
(a) Training data in isolation. (b) Training data mixed with human dev (n=16) data.

Figure 12: Learning Curve of increasing amount of (grammar-generated) training data for P1zzA. Left (a) in
isolation; Right (b) mixed with (human-curated) dev n=16.

F Hyperparameters

We fine-tune with Adam (Kingma and Ba, 2015) using a learning rate 1e — 5, dropout 0.1, and batch size
128. We fix the number of update steps to ©=2,500 (1,000 epochs for dev n=348 or 20,000 epochs for dev
n=16) for P1zzA, and u=12,000 (100 epochs) for mTOP. Fine-tuning takes takes one hour for P1ZZA and
four hours for mTOP on an AWS p3.24xlarge instance, using DeepSpeed ZeRO (Rajbhandari et al., 2019)
Stage 1 to save GPU memory and speed up training. Our models are built on top of HuggingFace (Wolf
et al., 2020).

When generating data with AlexaTM 20B, we use either sampling or greedy decoding, described in
Appendix H.

G mTOP Utterances Used for Prompting

The utterances we use for all mMTOP in-context generation prompts are shown in Figure 13.

German
Text: Erinnere mich am Freitag das Wetter zu iberpriifen um zu sehen ob
die Grillparty noch stattfindet .

Parse: [IN:CREATE_REMINDER [SL:PERSON_REMINDED mich] [SL:TODO
[IN:GET_TODO [SL:TODO das Wetter Uberprifen] [SL:DATE_TIME am Freitag]
[SL:TODO sehen ob die Grillparty noch stattfindet]]]]

Spanish
Text: Seria genial que me recordaras 30 minutos antes de mi cita de las 14 : 00 .

Parse: [IN:CREATE_REMINDER [SL:PERSON_REMINDED me] [SL:DATE_TIME 3@ minutos antes]
[SL:TODO [IN:GET_TODO [SL:DATE_TIME 14 : @@] [SL:TODO cita 11 1 1]

French
Text: Fais - moi penser a mon rendez - vous de 10 h chez le médecin

Parse: [IN:CREATE_REMINDER [SL:PERSON_REMINDED moi]
[SL:TODO [IN:GET_TODO [SL:DATE_TIME de 10 h]
[SL:TODO rendez - vous chez le médecin]]]]

Hindi
Text: Fdl HH F 3 & a5 AH 6 9o F F Fid It & AT A Rogs awand
Parse: [IN:CREATE_REMINDER [SL:PERSON_REMINDED H3¥] [SL:TODO [IN:GET_TODO
[SL:TODO [IN:CREATE_CALL [SL:CONTACT f&H] T]
[SL:TODO &TH & 3Tel & a1&]]] [SL:DATE_TIME &el eMH 6 &of]]

Figure 13: The one-shot examples from mTOP which we use for all in-context prompts.

457

H Filtering CLASP Outputs

Our filtering logic starts from the following two Validation Principles: VPI (Valid Parse): the parse must
be valid according to the task format and the specific instructions contained in the generation prompt
(e.g. including a particular slot); VP2 (All Slots Present): each slot value in the parse must appear in the
sentence text.

H.1 Filtering CLASP Outputs for P12zA

For P1ZZA, we generate 4 outputs with sampling® (settings: top_k = 50 (Fan et al., 2018), top_p = 0.9
(Holtzman et al., 2020), and temperature = 0.9), discard any which are invalid according to certain
heuristic Failure Modes (described below), then select the remaining one with lowest perplexity. In cases
where there is no acceptable output utterance, we duplicate an utterance from the prompt back into the
training set to maintain the per-class distribution.

We define the Success Rate (Inputs) as the percentage of input prompts which result in at least
one valid output. In early experiments, we used the Success Rate (Inputs) metric to iterate on settings
such as the the number of input examples, the prompt format, and the sampling hyperparameters. Our
final settings produce a Success Rate (Inputs) of 81.1% for CLASP-RS (Replace Slots then Generate
Text; Section 3.1) and 77.6% for CLASP-GB (Generate Both Parse and Text; Section 3.3) (Table 5).

The lower Success Rate (Inputs) for CLASP-GB reflects the greater degree of ambiguity for this CLASP
method, as the model must generate both the the parse and text. We also measure the Success Rate
(Outputs) as the percentage of all outputs which are valid, and see a similar trend.

We identify a total of seven common Failure Modes, which are (non-mutually exclusive) criteria for
discarding a generated utterance. The occurrence rate for each is shown in Table 5, where the denominator
is the total number of outputs produced.

The most common Failure Mode is “Missing Slot”, where the output is missing one of the requested
slot values, occurring 25.8%/30.0% of the time for CLASP-RS/CLASP-GB. “Untagged Slot” occurs when
a slot word from the catalog, such as “pepperoni” appears in the outputs, but is not tagged in any slot,
occurring for 1.6%/7.1% of outputs. Invalid Separators (semicolon or arrow “=>" is missing from or
mis-placed or duplicated in the output) occurs for 0.1%/2.1% of outputs. 3.4%/0.8% of the outputs are
discarded due to copying an input example.

We discard Duplicate Outputs, occurring for 39.3% of the CLASP-RS and 3.6% of the CLASP-GB
outputs, respectively. The higher (lower) portion of duplicates for CLASP-RS (CLASP-GB) reflects how
the method is more (less) constrained, resulting the model’s ability to produce less (more) diverse outputs.

Finally, for CLASP-GB, we discard outputs which have an Invalid Parse or Unk. (Unknown) Entity
according to the catalog. The Invalid Parse percentage is remarkably low, just 0.9 %, suggesting that
the CLASP-GB method is effective at teaching the LL.M to produce valid Semantic Parsing training
data from very few examples.

The Unknown Entity portion of 6.3% may represent an opportunity to expand the catalog, either
automatically or via a human annotation pipeline. For example, in one case the model produced “lemonade”
as a Drinktype, which is reasonable, however was discarded since it does not appear in the slot catalogs.

Future work can discover more failure modes to filter out, and explore methods to improve the quality
of outputs so that less filtering is required.

CLASP Success Success - . Failure Modes . .
Method Rate Rate Missing Untagged Invalid Copy Duplicate | Invalid Unk.
(Inputs) (Outputs) Slot Slot Separators Example Output Parse Entity
CLASP-RS 81.1 66.2 25.8 1.6 0.1 34 39.3 - -
CLAsP-GB 77.6 349 30.0 7.1 2.1 0.8 3.6 0.9 6.3

Table 5: Success rate (percentage) and occurrence of Failure Modes (percentage) when generating data for P1zzA
using the CLASP methods, CLASP-RS and CLASP-GB. The Success rate (Inputs) for each line is bolded.

We refer the reader to this guide: https://huggingface.co/blog/how-to-generate .
458

H.2 Filtering CLASP Outputs for mTOP

For mTOP, we use greedy search which returns only one output per input prompt. Then, similar to our
setup for P1zzA, we discard outputs which exhibit one or more Failure Modes (described below), and
when there is no acceptable output utterance, we duplicate an utterance from the prompt back into the
training set to maintain the per-class distribution.

We define Success Rate as the percentage of inputs which result in a valid output after filtering.
As show in Table 6, the overall Success Rate (averaged across the four non-English languages) is 87.9 %
for CLASP-TS (Translate Slots then Generate Parse, Section 3.2) and 76.3% for CLASP-TB (Translate
both Parse and Text, Section 3.4). We further analyze the Success Rate by three Success Modes: “Clean”
(77.3%/64.4% for CLASP-TS/CLASP-TB) where no post-processing is needed, and two heuristic recovery
methods, “Slot n-best” and “Fix Casing”, described in the next section.

Given that CLASP-TB is more challenging (the model must generate not only the text but also the
parse), it is not surprising to find that the Success Rate is lower for this method compared to the CLASP-
TS. However, as show in Section 5.2, the two methods provide similar downstream performance. This
suggests that although CLASP-TB provides a smaller volume of viable data than CLASP-TS, the data
from CLASP-TB is of higher quality (perhaps due to avoiding the noise of translating slots a priori).

The most common Failure Mode is “Missing Slot”, described above for P1ZzZA in Appendix H.1. While
the model rarely copies an input example verbatim, Invalid Separators (=> and semicolon) occur for
12.4% of for Hindi outputs, discussed in more detail in Appendix 1.

Finally, while the model rarely outputs invalid parses, we observe a high rate of the “Mismatch Parse’
failure mode, where the output parse does not match the input example structure.” We find the majority
of these occur when the model copies part of one of the input examples, as show in Figure 14. In early
experiments, we found that adding more examples to the prompt exacerbated this problem, so we decided
to always use just one example.

Future work can explore how to reduce the occurrence of these failure modes to extract even more
performance boost from CLASP.

bl

CLASP Success Success Modes . - Failure Modes . . .
Moethod Language Rate Clean Slot F{x Missing Copy Invalid Invalid Mismatch
n-best Casing Slot Example | Separators Parse Parse
de 84.4 72.8 8.7 2.9 15.4 0.2 - - -
es 86.5 76.0 6.7 3.7 13.0 0.5 - - -
TS fr 90.4 78.8 7.2 4.4 9.4 0.2 - - -
hi 90.3 81.6 8.7 0.0 9.7 0.0 - - -
avg 87.9 77.3 7.8 2.8 - - - - -
de 78.8 70.9 1.8 6.2 11.7 0.6 0.6 0.9 73
es 82.2 61.5 18.3 24 14.3 1.6 0.7 0.0 1.1
TB fr 76.7 62.6 13.0 1.2 8.0 1.1 1.0 0.5 12.6
hi 67.5 62.8 4.6 0.1 6.0 0 12.4 1.6 12.4
avg 76.3 64.4 94 2.5 - - - - -

Table 6: Success Rate and occurrence of various Success Modes and Failure Modes when generating data for mTOP
using the CLASP methods, CLASP-TS and CLASP-TB. All numbers represent percentage of occurrence. The
average across the four languages for each CLASP method is bolded.

H.2.1 Slot N-Best and Casing Recovery for mTOP

There is inherent ambiguity of word choice in cross-lingual data generation. When a slot has a different
form in the parse vs. in the text, the example is considered invalid (VP2, above), and would need to
be discarded. However, we identify two modes, “Slot n-best” and “Fix Casing”, where it is possible
to recover from this mismatch by simply replacing the slot value in the parse with a readily available
alternative.

For “Slot n-best”, we a priori create an n-best list of all slot translations, using an in-context prompt
with AlexaTM 20B (see Figure 15) and beam search 4 outputs. Then, as show in Figure 16, if we find that

"Note for mTOP, our goal is not to generate novel parse structures, but rather to create a parallel dataset from English to the
other languages.

459

INPUT:
[CLM] Semantic Parse for English:

[IN:CREATE_REMINDER [SL:PERSON_REMINDED me] [SL:TODO
[IN:GET_TODO [SL:DATE_TIME 10 : 00 am] [SL:TODO doctor ’s appointment]]]]
=> Translation in English:
Remind me of my 10 : 00 am doctor ’s appointment;
Semantic Parse for French:
[IN:CREATE_REMINDER [SL:PERSON_REMINDED moi] [SL:TODO
[IN:GET_TODO [SL:DATE_TIME de 10 h] [SL:TODO rendez - vous chez le médecin]]]]
=> Translation in French:
Fais - moi penser a mon rendez - vous de 10 h chez le médecin;

Semantic Parse for English:
[IN:SET_RSVP_NO]

=> Translation in English:
RSVP no to this event;

Semantic Parse for French:

OUTPUT:
[IN:SET_RSVP_NO
[SL:PERSON_REMINDED moi] [SL:TODO [IN:GET_TODO [SL:DATE_TIME de 10 h]
[SL:TODO rendez - vous chez le médecin]]]]
=> Translation in French: Fais - moi penser a mon rendez - vous de 10 h chez le médecin;

Figure 14: Example of Failure Mode Mismatch Parse for CLASP-TB. While the output parse is technically valid
according to the mTOP specification, it does not match the requested parse format. In particular, in this case, it
copies part of the other example’s prompt verbatim.

a slot is missing from the text, we check for the presence of another version of the slot from the n-best list,
and if found, update the parse with the new value, and accept the generated training example. As show in
Table 6, this allows us to recover 7.8%/9.4% of Success Rate for CLASP-TS/CLASP-TB.

Similarly, for “Fix Casing” (see Figure 17) if we find that a slot is missing from the text, we check for
a case-insensitive match in the text, and if found, replace the slot in the parse. This allows us to recover
2.8%/2.5% of Success Rate for CLASP-TS/CLASP-TB (Table 6).

INPUT:

[CLM] Slot: me; Translation in Spanish: me;

Slot: 3@ minutes before; Translation in Spanish: 3@ minutos antes;
Slot: 2 : @0; Translation in Spanish: 14 : @0;

Slot: appointment; Translation in Spanish: cita;

Slot: all; Translation in Spanish:

OUTPUTS:

0: todo;
1: todos;
2: todas;
3: todos los;

Figure 15: An example of in-context Slot text translation from English to Spanish.

I Filtering Machine Translation Outputs

For mTOP Machine Translation experiments (either using Opus or the 20B LLLM, described in Section
4.2), we filter the outputs using heuristics to avoid noisy alignments.®

We first apply Sim-Align (Jalili Sabet et al., 2020) to align the translated sentence back to the original
English source, in order to compute the parse in the target language. We discard outputs which exhibit
any of four Failure Modes. The first two Failure Modes are related to slots: (i) Missing Slot Value (Figure
18); or (ii) Discontiguous Target (Figure 19). We also discard outputs which: (iii) Copy the Original input
text verbatim, and in the case of translation with the 20B model, (iv) contain the word "Sentence", i.e. fail
to end with a semicolon as prompted (Figure 20).

We define the “Success Rate” as the percentage of remaining outputs after filtering. As show in
Table 7, the success rate is far from 100%, e.g. for Opus MT varying from 86.7 for German (“de”’) down
to 62.2 for Hindi (“hi”). This reflects the difficulty of the alignment task, a fundamental limitation of the

8Early experiments showed these filtering mechanisms to provide significant improvement over using the alignment as-is.
Future work can continue to explore cleaning and filtering methods for MT alignment.

460

INPUT:
[CLM] Semantic Parse:

[IN:CREATE_REMINDER [SL:PERSON_REMINDED me] [SL:DATE_TIME 30 minutes before
[SL:TODO [IN:GET_TODO [SL:DATE_TIME 2 : 00] [SL:TODO appointment]]]];
Translation in English:
It would be great if you could remind me 30 minutes before my 2 : 00 appointment .;
Semantic Parse:
[IN:CREATE_REMINDER [SL:PERSON_REMINDED me] [SL:DATE_TIME 30 minutos antes
[SL:TODO [IN:GET_TODO [SL:DATE_TIME 14 : 00] [SL:TODO cita 1 1 1 1;
Translation in Spanish:
Seria genial que me recordaras 30 minutos antes de mi cita de las 14 : 00 .;
Semantic Parse:
[IN:GET_ALARM [SL:AMOUNT all] [SL:DATE_TIME for Friday] 1;

Translation in English:
I want to see all alarms for Friday;
Semantic Parse:

[IN:GET_ALARM [SL:AMOUNT todo] [SL:DATE_TIME viernes] 1;
Translation in Spanish:
OUTPUT:

Quiero ver todas las alarmas para el viernes.;

SLOT N-BEST RECOVERY:

INFO: Recovered parse for slot n-best match: ’"all’: [’todo’, ’todos’, 'todas’, ’'todos los’
INFO: src_parse: [IN:GET_ALARM [SL:AMOUNT all] [SL:DATE_TIME for Friday] |

INFO: old_parse: [IN:GET_ALARM [SL:AMOUNT todo] [SL:DATE_TIME viernes]]

INFO: new_parse: [IN:GET_ALARM [SL:AMOUNT todas] [SL:DATE_TIME viernes]]

Figure 16: Example of Success Mode “Slot n-best” for CLASP-TS. The sentence generated by the model uses a
different word for the slot “all” than was set during a priori slot translation. (Here, the feminine plural form “todas”
instead of the masculine singular form “todo”.) Instead of discarding this example with Missing Slot failure mode,
we can use our pre-computed n-best slot mapping to recover a version of the target-language parse which matches
the words in the model’s output.

INPUT:
[CLM] Semantic Parse for English:
[IN:CREATE_REMINDER [SL:PERSON_REMINDED me] [SL:TODO
[IN:GET_TODO [SL:TODO check the weather] [SL:DATE_TIME Friday]

[SL:TODO see if the cookout ’s still on] 1]]
=> Translation in English:
Remind me to check the weather Friday to see if the cookout ’s still on .;
Semantic Parse for German:
[IN:CREATE_REMINDER [SL:PERSON_REMINDED mich] [SL:TODO
[IN:GET_TODO [SL:TODO das Wetter liberpriifen] [SL:DATE_TIME am Freitag
[SL:TODO sehen ob die Grillparty noch stattfindet]]]]
=> Translation in German:
Erinnere mich am Freitag das Wetter zu Uberpriifen um zu sehen ob die Grillparty noch stattfindet
Semantic Parse for English:
[IN:UPDATE_CALL [SL:CONTACT_ADDED nicole]]
=> Translation in English:
join nicole to this call;
Semantic Parse for German:

.7

OUTPUT:
[IN:UPDATE_CALL [SL:CONTACT_ADDED nicole]]
=> Translation in German: Nicole zu diesem Anruf hinzufiligen;

FIX CASING RECOVERY:

INFO: Recovered parse via Fix Casing: changed 'nicole’ to ’Nicole’
INFO: old_parse: [IN:UPDATE_CALL [SL:CONTACT_ADDED nicole]]
INFO: new_parse: [IN:UPDATE_CALL [SL:CONTACT_ADDED Nicole]]

Figure 17: Example of Success Mode “Fix Casing” for CLASP-TB. The model generates both the parse and text,
however the casing for the slot ‘Nicole’ does not match. Instead of discarding this example as Missing Slot failure
mode, we recover the correct parse by finding a case-insensitive match for the slot in the text, and updating the parse
to match.

baseline approach of Machine Translation with slot alignment, particularly between distant language pairs
such as English and Hindi.

Also of note, when using the 20B model for translation, 13.4% of the prompts for Hindi were discarded
due to producing the word "Sentence", i.e. not ending with a semicolon as instructed. (See an example
in Figure 20, compared to Figure 6.) We hypothesize this could be caused by using a semicolon as the

461

separator, which might be less common in Hindi than the other languages which use the Latin alphabet.
Future work could explore using language-agnostic separators such as
.

MT Success — - nglure Modes -
Model Language Rate Missing Discontiguous Cppy Contains
Slot Value Target Original | “Sentence”
de 86.7 4.6 8.6 0.1 -
es 74.2 49 20.8 0.2 -
Opus fr 82.3 39 13.7 0.1 -
hi 62.2 194 18.4 0.0 -
avg 76.4 - - - -
de 85.5 42 9.8 0.3 0.1
es 70.9 6.6 21.5 0.6 0.3
20B fr 774 4.7 17.2 0.1 0.5
hi 58.3 12.2 16.0 0.1 134
avg 73.0 - - - -

Table 7: Success Rate (percentage) and occurrence of failure cases (percentage) of Machine Translation (MT) with
with alignment across MT models and languages. The average across the four languages is bolded, and the language
with lowest (i.e., worst) Success Rate for each model is underlined.

Play Panic ! At The Disco please
Joue Panic! au disco s' il te plait

Figure 18: Example of a translation alignment discarded due to “Missing Slot Value”, where a source-side slot
word (“The”) is not aligned to any output word. The parse for the English utterance is [IN:PLAY_MUSIC
[SL:MUSIC_ARTIST_NAME Panic ! At The Disco]].(Viahttps://simalign.cis.Imu.de/)

delete playlist

\ N

Supprime la Iistelecture

Figure 19: Example of a translation alignment discarded due to “Discontiguous Target”, where a source-side slot
(“playlist™) aligns to a discontiguous set of words in the target (“liste” and “lecture”, missing “de”). The parse
for the English utterance is [IN:DELETE_PLAYLIST_MUSIC [SL:MUSIC_TYPE playlist] 1. (Via
https://simalign.cis.lmu.de/)

INPUT:

[CLM] Sentence: remind me to call tim after work tomorrow at 6 pm;

Translation in Hindi: %ol $1H & 3 & 91 AH 6 g &I Y maﬂ;‘ra:ﬁ-rtrﬂs-‘rﬂmsgmtr,
Sentence: anyone call ?;

Translation in Hindi:

OUTPUT: .
FT Rl F Fier fHAT §? Sentence: call me at 9

Figure 20: Example of a translation output from the 20B model, discarded due to Contains “Sentence”.

J Sim-Align Settings

We explore four settings for Sim-Align, using either (multilingual) “bert” (Devlin et al., 2019) or “xIm-
roberta-base” (Conneau et al., 2020) each with either “ArgMax” or “IterMax” as the alignment method.
We choose “bert” with with “IterMax” as we find it has the highest Success Rate (defined in Appendix I).

462

