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Abstract
Automatic readability assessment (ARA) aims
at classifying the readability level of a passage
automatically. In the past, manually selected
linguistic features are used to classify the pas-
sages. However, as the use of deep neural net-
work surges, there is less work focusing on
these linguistic features. Recently, many works
integrate linguistic features with pre-trained
language model (PLM) to make up for the in-
formation that PLMs are not good at capturing.
Despite their initial success, insufficient anal-
ysis of the long passage characteristic of ARA
has been done before. To further investigate
the promotion of linguistic features on PLMs
in ARA from the perspective of passage length,
with commonly used linguistic features and
abundant experiments, we find that: (1) Lin-
guistic features promote PLMs in ARA mainly
on long passages. (2) The promotion of the fea-
tures on PLMs becomes less significant when
the dataset size exceeds ∼ 750 passages. (3)
Our results suggest that Newsela is possibly
not suitable for ARA. Our code is available
at https://github.com/recorderhou/linguistic-
features-in-ARA.

1 Introduction

Readability is proved to be an objective and consis-
tent (Fry, 2002) criterion to level reading materials
for language learners. Leveled reading materials
are extensively needed, since language learners at
different stages of language acquisition need read-
ings at different readability levels to build up their
reading skills (Kasule, 2011; Alowais and Ogdol,
2021; Pitcher and Fang, 2007). However, judg-
ing and selecting the readability levels of materials
need time and professional knowledge, which is
quite inefficient compared to the ever-increasing
demand. To address the need for automatically
assessing the readability level of a given text, Auto-
matic Readability Assessment (ARA) is proposed.

In the early time, experts design formulas
(Lennon and Burdick, 2004; Chall and Dale, 1995;

Mc Laughlin, 1969; Flesch, 1948) based on the
statistics from text such as word length and sen-
tence length. Later, researchers (Feng et al., 2010;
McCarthy and Jarvis, 2010; Kate et al., 2010; Vaj-
jala and Meurers, 2012) mine useful morphologi-
cal, lexical, syntactic and discourse features from
text and use them with traditional machine learning
models.

Deep learning models such as RNN-based mod-
els (Azpiazu and Pera, 2019; Yang et al., 2016)
automatically learn dense word embeddings re-
lated to the readability of the texts. Recently, the
popular pre-trained language models (PLMs) like
BERT (Devlin et al., 2019) with their representative
dense embeddings are also reported effective (Mar-
tinc et al., 2021) on ARA . However, researchers
also find handicaps of these deep learning models.
Since organizing large-scaled ARA dataset is diffi-
cult due to the time and expertise required, datasets
used in ARA are relatively small. The insufficiency
of data makes it difficult to train a reliable deep
learning model (Lee et al., 2021). What’s more, as
the materials are designed to guide learners step
by step, while describing the same thing, the word
use, the structure of sentences and the manner of
writing the full passages are made stratified inten-
tionally, which is hard to detect for PLMs inclined
to semantic information (Martinc et al., 2021; Qiu
et al., 2021). For these reasons, some of them in-
corporate linguistic features with PLMs (Lee et al.,
2021; Qiu et al., 2021) and achieve improvements.

Despite their initial success, insufficient analysis
of the long passage characteristic of ARA has been
done before. We notice that the length of passages
in ARA datasets consisting of reading materials
can easily go beyond the capacity of PLMs (usually
510 tokens). Specifically, as shown in Fig 1, most
ARA datasets have more than 50% passages longer
than 510 tokens. Through preliminary experiments
(Table 2 last row), we find that such a small dataset
is not sufficient to train long-document transform-
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Figure 1: Passage length distribution of 4 datasets.

ers such as CogLTX (Ding et al., 2020) since they
usually have more parameters. Besides, splitting
passages into shorter pieces and directly congre-
gating them will lose their inner relation, which
is sub-optimal for ARA, since characteristics such
as the number of theme and the intertextual depen-
dence1 are important for deciding the readability
level. From this point of view, linguistic features ex-
tracted from the whole passage actually provide us
information from a holistic view, and it can be eas-
ily integrated into the models we are using. In this
paper, we integrate linguistic features with PLMs
and conduct abundant experiments to analyze the
effect of linguistic features on ARA from the per-
spective of passage length. We find that:

• Even with simple linguistic features, the accuracy
of PLMs on those small-scaled datasets (OneStop
and RAZ) greatly improves by 9% and 22% re-
spectively. Error analysis shows that all of the
improvements are on long passages more than
510 tokens.

• The promotion of the features on PLMs becomes
less significant when the dataset size exceeds ∼
750 passages.

• Our results suggest that Newsela is possibly not
suitable for ARA.

Also, we construct an up-to-date and high-quality
dataset called RAZ from RAZ-Kid2’s printed lev-
eled books. Though small-scaled, texts from this
popular website make our research more practical.

1https://www.raz-kids.com/main/ViewPage/name/text-
leveling-system/

2https://www.raz-kids.com/

Dataset Long Rephrase? #Class #PassagePassages
Newsela 95.6% Yes 5 9522
Weebit 10.5% No 5 3125
OneStop 95.8% Yes 3 560
RAZ 78.9% No 3 370

Table 1: Characteristics of 4 datasets. Long passages
denote passages with more than 510 tokens.

2 Data Analysis

To analyze the effect of linguistic features as
precisely as we could, we select four different
datasets namely Weebit (Vajjala and Meurers,
2012), Newsela (Xu et al., 2015), OneStopEnglish
(Vajjala and Lučić, 2018) and RAZ. The character-
istics of the 4 datasets are listed in Table 1.

Newsela is a text simplification dataset divided
into 5 simplification levels. Texts from the hardest
level are rephrased 4 times to create other 4 easier
levels. Following previous works, we consider each
simplification level a readability level.

Weebit is an ARA dataset. Texts from different
readability levels focus on different topic. We sam-
ple 625 instances each level to construct a balanced
dataset.

OneStopEnglish is a relatively small text simpli-
fication dataset containing 560 passages. Similar
to Newsela, it is also constructed by rephrasing.

RAZ is an ARA dataset constructed by us. We
select 370 passages from the RAZ-Kid2, an on-
line education platform providing lots of leveled
eBooks. We manually annotate them with 3 differ-
ent readability levels according to the readability
level criterion1. Compared to the above datasets,
RAZ contains more text genres, topics and up-to-
date vocabulary. More importantly, the average
length of RAZ is much longer than the other three
datasets, indicating that it is suitable for exploring
the effect of linguistic features on long passages.

3 Method

Task Description Given a dataset D =
{p1, p2, . . . , p|D|} with d readability levels C =
{c1, c2, . . . , cd} . Each passage pi in dataset D is
mapped to one label in C. It can be regarded as
a classification task, a ranking task or an ordinal
regression task. We take this task as a classification
task for its simplicity.
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Newsela Weebit OneStop RAZ
whole long short whole long short whole long short whole long short

w/ ffull 0.856 0.849 0.965 0.913 0.947 0.908 0.946 0.941 1.0 0.937 0.911 1.0
w/ fpartial 0.853 0.851 0.877 0.914 0.957 0.908 0.881 0.847 1.0 0.883 0.847 1.0
w/o feature 0.876 0.868 0.982 0.919 0.965 0.924 0.863 0.859 1.0 0.766 0.696 1.0

Statistic Model

SVM 0.425 0.561 0.433 0.472 0.482 0.471 0.308 0.309 0.286 0.784 0.8 0.75
LR 0.711 0.696 0.930 0.599 0.805 0.572 0.75 0.731 1.0 0.784 0.68 1.0
RF 0.663 0.645 0.930 0.564 0.778 0.536 0.696 0.673 1.0 0.865 0.8 1.0
NB 0.627 0.607 0.930 0.400 0.638 0.370 0.643 0.615 1.0 0.865 0.8 1.0

Long-Document Model CogLTX 0.821 0.806 0.975 0.883 0.980 0.870 0.754 0.741 0.936 0.783 0.72 0.91

Table 2: Acc on Newsela, Weebit, OneStopEnglish and RAZ. Results are averaged after three runs for reliability.
ffull and fpartial are defined in Section 3. Long/short denotes the passages longer/shorter than 510 tokens.

Model For each passage p = [xp1, x
p
2, .., x

p
L]

which has L tokens, we concatenate our extracted
linguistic features fp (see Table 4 for details) and
the final hidden state of PLM hp to form vector
Hp = [hp, fp]. We feed Hp into the classification
head of PLM to get the predicted readability level
of passage p. Depending on the range of the ex-
tracted passage, there are two kinds of features fp:
(1) ffull is extracted from the whole passage, which
provides a holistic view of the passage; (2) fpartial
is extracted from the first 510 tokens of p when its
length L is greater than 510, which provides the
corresponding part of features w.r.t. the segment
fed into the PLM. We also report the performance
of statistic models using the same linguistic fea-
tures for comparison.

Implementation Details In our experiments, we
use Roberta-base (Liu et al., 2019) as the PLM.
While training, we use early stopping based on the
accuracy on the dev set. We set the batch size as 8,
the max sentence length as 512. We evaluate the
model each 50 steps for 100 times. We use AdamW
as our optimizer with the learning rate 1e-5 for the
PLM encoder and learning rate 1e-3 for the PLM’s
classification head. The size of train/dev/test set is
listed in Tab 3. The linguistic features used in our
work are listed in Table 4. We adopt the lexical and
syntactic features from (Vajjala and Meurers, 2012)
and add some common features from shallow, part-
of-speech and discourse aspects. Please refer to
our code for more details.

Dataset train dev test
Newsela 7619 952 951
Weebit 2500 313 312
OneStop 448 56 56
RAZ 296 37 37

Table 3: The size of train/dev/test set.

Category Feature

Shallow Features

Number of Sentences
Average Sentence Length
Average Word Difficulty
Average Word Length
Number of Uncommon Words
Number of Unique Words
Words with 1 to 3 syllables
Words with 4 syllables
Words with 5 syllables
Words with 6 syllables
Words with more than 7 syllables
Average number of syllables

POS Features Number of each POS tags
POS Divergence

Lexical Features

TTR
Corrected TTR
Bi TTR
Root TTR
Uber TTR
Verb Variation-1
Noun Variation
Adjective Variation
Adverb Variation
Mean Textual Lexical Density

Syntactic Features

Avg Parse Tree Height
Max Parse Tree Height
Max Clause Num
Mean Clause Num
Max SBAR Num
Mean SBAR Num
Max ratio of Dependency Clause
Mean Ratio of Dependency Clause

Discourse Features Number of Co-conjection

Table 4: Linguistic features used in our work. The
meaning of each feature is detailed in Appendix A.

4 Results and Discussion

4.1 Effect of Linguistic Features: An
Overview

In this section, we investigate how linguistic fea-
tures affect PLMs’ performance on ARA. We as-
sume that linguistic features promote PLM in two
ways: First, they provide linguistic information
that PLM is not good at capturing. Second, they
provide information about the segment dropped by
PLM, i.e. tokens longer than 510.
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To verify our first assumption, we choose fpartial
as fp to get H since fpartial are the exact corre-
sponding part of features w.r.t. the segment fed
into the PLM. Comparing the first and the second
row of Table 2, we can see that PLM’s performance
on RAZ and OneStop improves after adding the
features. In Section 4.2, through error analysis,
we find that the improvements are all on long pas-
sages. The results on Weebit remain almost the
same, there are two possible reasons: (1) (Lee et al.,
2021) claim that "the max performance (91%) is
already achieved on Weebit"; (2) Weebit is 5 to
8 times larger than RAZ and OneStop, such an
amount of data is enough for the model to fit well.
In Section 4.3, we further investigate the effect of
features on different sizes of Weebit and find that
features work when we decrease the size of Weebit.
The results on Newsela are not as we expected, and
we will discuss it in Section 4.4.

To verify our second assumption, we choose
ffull as fp to get H since ffull provide information
about the segment dropped by PLM. Adding these
features further improves the PLM’s performance
on RAZ and OneStop as expected. Specifically, the
accuracy of PLMs on these small-scaled datasets
greatly improves by 9% and 22% respectively.

4.2 Effect on Long and Short Passages
In order to further analyze on which passages do lin-
guistic features promote PLM, we divide the whole
dataset into long and short passages according to
whether the passage exceeds 510 tokens. From
Fig 2 (right) we can see that the PLM makes no mis-
take on short passages of RAZ and OneStop. This
indicates that the information captured by PLM is
enough to classify the short passages even when the
dataset is small. From Fig 2 (middle) we can see
that fpartial reduce the mistakes on long passages
without degrading the performance on short pas-
sages, and ffull further improve the performance
greatly, which supports our assumptions. The re-
sults on Weebit and Newsela do not match our
expections, but they do not conflict with our as-
sumptions. We will discuss them in the following
sections.

4.3 Analysis of Dataset Size
As discussed in Section 4.1, the features do not
work on Weebit and Newsela. We guess it might
be related to the size of dataset since Newsela
and Weebit are much larger than RAZ and On-
eStop (Fig. 1). To analyze the effect of dataset

size, we randomly sample 1%, 3%, 5%, 10%, 30%,
50%, 70% of the whole training set of Weebit and
Newsela.

Fig. 3 shows that linguistic features signifi-
cantly improve the PLM’s performance on long
passages when the dataset size is small (less than
10%). However, as the size exceeds 30% (750 pas-
sages)/10% (761 passages) for Weebit/Newsela ,
the promotion of the linguistic features on PLMs
becomes less significant. Although the effect of
linguistic features is less significant, we also find
out that when the dataset size is between 10% and
50%, the results of PLM with features on both short
passages and whole dataset are slightly better than
PLM without features. This finding reveals that
PLMs cannot learn how to deal with long passages
without enough training data, and integrating lin-
guistic features promotes PLMs on long passages.
Different from what Lee et al. (2021) find, their
simple PLM performs better than our model in the
large dataset setting, this is because the features
we use are relatively simple. Also, to analyze the
effect of features, we do not ensemble traditional
statistic models with PLMs, which further restricts
the power of features. We think that simple fea-
tures can already prove our assumptions, so we
remain optimistic about the results when more so-
phisticated features are used and better integration
method is applied.

4.4 Text Simplification = ARA?

In this section, we claim that Newsela is possibly
not suitable for ARA and consider it an explana-
tion for why the results on Newsela do not meet our
expectations. It should be pointed out that ARA fo-
cuses on the absolute difficulty of a passage, while
text simplification focuses on the relative ranking
between different simplified versions of the origi-
nal passage, which does not ensure one-to-one cor-
respondence between the simplification level and
readability level. Measuring the readability level by
the Lexile grade just like prior work (Deutsch et al.,
2020), we find there is overlap between classes.
Specifically, Fig. 4 shows the confusion matrix be-
tween the simplification level (SL) and the read-
ability level (RL) on the train set. In order to study
to what extent do the overlap affects the perfor-
mance, we compare the test set accuracy between
a non-overlapped set containing 118 passages and
a same-sized overlapped set. The results averaged
over three runs are 0.646 and 0.453. This indicates
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Figure 2: Acc on (left) the whole dataset, (middle) long passages, (right) short passages.
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Figure 3: Acc on subsets of Weebit (upper) and Newsela
(lower). Blue and red line denotes PLM with ffull and
without features respectively.

that the overlap between classes does confuse the
model. Although OneStop is also a text simpli-
fication dataset, the three classes are designed to
be strictly non-overlapping, thus making OneStop
a clean dataset. The insignificant result also indi-
cates that, while integrating linguistic features with
PLMs in ARA is effective, it might not be effective
for text simplification.

5 Conclusion

In this paper, we investigate how linguistic fea-
tures promote PLMs on ARA from the perspective
of passage length. Firstly, two self-proposed hy-
potheses are proved: 1. Linguistic features provide
linguistic information that PLM is not good at cap-
turing; 2. Linguistic features provide information
about the segment dropped by PLM. Secondly, we
observe that the promotion of the features on PLMs
becomes less significant when the dataset size ex-
ceeds ∼750 passages. Thirdly, our results suggest
that Newsela dataset is possibly not suitable for
ARA.
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Category Features How to Extract
Shallow Features Total Number Of Sentences Count the total number of sentences in a passage

Average Sentence Length Average the length of all the sentences in a passage

Average Word Difficulty
Use IZscore(Balota et al., 2007) to rate the difficulty of a word. If a word’s IZscore is bigger than 0, then mark
it as a difficult word and we rate this word 1. Otherwise, the word’s rate is 0.
After rating each word’s difficulty, calculate the average of those difficulties.

Average Word Length Average the length of all the words in a passage
Number of Uncommon Words Count the total number of words that are not in the Dale Chall List
Number of Unique Words Count the total number of words that occur in a passage
Words with 1 to 3 syllables Count the total number of words with 1-3 syllables
Words with 4 syllables Count the total number of words with 4 syllables
Words with 5 syllables Count the total number of words with 5 syllables
Words with 6 syllables Count the total number of words with 6 syllables
Words with more than 7 syllables Count the total number of words with more than 7 syllables
Average number of syllables Average each word’s syllable number

POS Features Number of each POS tags Count the total number of all the POS tags
POS Divergence Calculate the KL divergence between sentence POS count distribution and document(Deutsch et al., 2020)

Lexical Features TTR(Type-Token Ratio) TTR is the ratio of the number of word types (T) to total number word tokens in a text (N).
Corrected TTR T/

√
2N

Log TTR logT/logN

Root TTR T/
√
N

Uber TTR log2T/logN/T
Verb Variation-1 Tverb/Nverb

Noun Variation Tnoun/Nlex

Adjective Variation Tadj/Nlex

Adverb Variation Tadv/Nlex

Mean Textual Lexical Density The mean length of sequential word strings in a passage that maintain a given TTR value.(McCarthy and Jarvis, 2010)
Syntactic Features Avg Parse Tree Height Calculate the average height of all the constituent trees in a passage.

Max Parse Tree Height Calculate the average height of all the constituent trees in a passage
Max Clause Num Calculate the max number of clauses in one sentence
Mean Clause Num Calculate the average number of clauses in one sentence.
Max SBAR Num Calculate the max number of clauses tagged SBAR in one sentence
Mean SBAR Num Calculate the average number of clauses tagged SBAR in one sentence.
Max ratio of Dependency Clause Calculate the max ratio of dependency clause to all the clause in one sentence
Mean Ratio of Dependency Clause Calculate the mean ratio of dependency clause to all the clause in one sentence

Discourse Feature Number of Co-conjection Calculate the total number of a co-ordinating conjunction in a passage.

Table 5: The details of linguistic features used in
our work. The Dale Chall List could be found
at https://readabilityformulas.com/articles/dale-chall-
readability-word-list.php

A Linguistic Features Used in Our Work

The meanings of linguistic features are listed in
Table 5.


