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Abstract

Spell-checkers are core applications in lan-
guage learning and normalisation, which may
enormously contribute to language revitalisa-
tion and language teaching in the context of
indigenous communities. Spell-checking as a
generation task, however, requires large amount
of data, which is not feasible for endangered
languages, such as the languages spoken in Pe-
ruvian Amazonia. We propose here augmenta-
tion methods for various misspelling types as a
strategy to train neural spell-checking models
and we create an evaluation resource for four
indigenous languages of Peru: Shipibo-Konibo,
Asháninka, Yánesha, Yine. We focus on special
errors that are significant for learning these lan-
guages, such as phoneme-to-grapheme ambigu-
ity, grammatical errors (gender, tense, number,
among others), accentuation, punctuation and
normalisation in contexts where two or more
writing traditions co-exist. We found that an
ensemble model, trained with augmented data
from various types of error achieves overall
better scores in most of the error types and lan-
guages. Finally, we released our spell-checkers
as a web service to be used by indigenous com-
munities and organisations to develop future
language materials1.

1 Introduction

In Natural Language Processing (NLP), the nor-
malisation of a language is closely related to auto-
matic spell checking, a process in which a com-
puter program identifies a misspelling and sug-
gests correct or standardised alternatives to the
user. Spell-checking, an important step towards
grammar checking, can be addressed as a sequence-
to-sequence problem with deep neural networks

1Data and code are available in https://github.com/iapucp/
SchAman, and the code for the web interface and service is in
https://github.com/iapucp/SchAman-demo

Figure 1: SchAman as a web service.

(Junczys-Dowmunt et al., 2018). A common prob-
lem with this approach, however, is the large
amount of data required. One possible way to deal
with this is the generation of synthetic data (Etoori
et al., 2018; White and Rozovskaya, 2020), since
many of these errors are random, or typographical
errors due to close keys.

For low-resource and endangered languages, de-
veloping a speller or normalisation tool is an im-
portant step for supporting further language revi-
talisation and documentation efforts, as well as
indigenous education programs. This is particu-
larly important in regions like Amazonia, where
linguistic diversity is in serious risk (Zariquiey
et al., 2019). Although there are rule-based spell-
checkers for some languages spoken in Peruvian
Amazonia, such as Shipibo-Konibo (Alva and On-
cevay, 2017) and pan-Ashaninka (Ortega et al.,
2020), their vocabulary coverage is limited and
they are not context-sensitive. These are issues
that can be assessed by subword and neural-based
generation models for sequences of words.

In this study, we propose the implementation
of neural spell-checkers for four indigenous lan-
guages spoken in Peruvian Amazonia: one Pano
language, Shipibo-Konibo (shp), and three Arawak
languages, Ashaninka (cni), Yanesha (ame) and
Yine (pib). For this purpose, we introduce error
augmentation methods to take advantage of the

https://github.com/iapucp/SchAman
https://github.com/iapucp/SchAman
https://github.com/iapucp/SchAman-demo
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scarce monolingual corpus available (§4), and we
create an evaluation resource with a diverse typol-
ogy of errors: phoneme-to-grapheme ambiguity,
grammatical errors (gender, tense, number), accen-
tuation, punctuation and normalisation (§5). We
present an initial neural benchmark with a model
trained with different types of augmented data (§6),
and finally, we release our spell-checkers as a web
service (§7), which is ready to deploy and use.

2 Related work

Ghosh and Kristensson (2017) proposed the first
deep learning model for spelling and completing
text in keyboard decoding for English as a sequence
to sequence task. This inspires further work such
as in Sakaguchi et al. (2017). They presented a
word recognition model based on a semi-character
level recurrent neural network, which is inspired
in the robust word recognition mechanism known
as the “Cmabrigde Uinervtisy” effect. Regarding
augmentation methods for spelling, Etoori et al.
(2018) assessed a low-resource spell-checking case
for Indic languages, where they generated synthetic
data with random noise and linguistic information.
Also, Li et al. (2018) used a nested recurred neu-
ral network to detect spelling errors for English,
and augmented the dataset with misspelling words
with similar pronunciation. Likewise, grammar-
checking is addressed as a sequence to sequence
task by Junczys-Dowmunt et al. (2018) and Choe
et al. (2019). The latter generated erroneous ver-
sions of large corpus without annotations using a
real noise function, which are feed to a large model
and then fine-tuned (domain and style adaptation).

Finally, for the languages spoken in Amazonia,
there are only spell-checkers for Shipibo-Konibo
(Alva and Oncevay, 2017) and Ashaninka (Ortega
et al., 2020). The former is a rule-driven approach
with graphs and syllabic information, whereas the
latter is a finite-state-transducer or FST. However,
they work at word-level, meaning that they lack
context and are at disadvantage when words are
joined or split by mistake.

3 Languages and Data

The four languages in the focus of this paper are
highly agglutinating and synthetic, meaning that
they can compress a large amount of information
in a single word composed of several bound mor-
phemes, often with more or less clear-cut morpho-
logical boundaries. In addition, they do not have

Language # sentences |V|
Shipibo-Konibo (shp) 22,032 22,904
Asháninka (cni) 12,629 23,721
Yanesha (ame) 13,241 23,626
Yine (pib) 7,658 14,142

Table 1: Number of sentences and vocabulary size of the
monolingual corpora used for augmentation, extracted
from Bustamante et al. (2020).

Approach Lang. original modified
RANDOM shp jaweratorin jaweratroin
PROXKEY cni kitaiteri kktaiteri
P2GAMB ame sewayanon sehuayanon
SYLSIM pib katuyma katulyma
DENORM ame phokwe’ p̃hokwe’

Table 2: Examples of the error augmentation approaches
at word-level (a sentence is given as input).

a long writing tradition, but they include more
than one competing orthographic tradition, one
promoted by the Summer Institute of Linguistics
(SIL)2 and another one promoted by the Ministry of
Education of Peru and considered official. Official
orthographies do not have more than 20 years in
any case. The context opens a real world challenge
for normalisation. More details are included in the
Appendix.

Monolingual texts There is almost no web data
available for these languages, but we make use
of the monolingual corpora extracted from edu-
cational and language learning PDF material by
Bustamante et al. (2020), which is already parsed
and cleaned. Table 1 shows the data used, where
we only considered sentences with fewer than 50
characters. The decision is pragmatic: to assess the
impact of the augmentation type for spelling, and
not to stress long-term dependencies in the model.

4 Error augmentation approaches

We create different augmented training sets (same
size) with each type of error described as follows.

Noisy baseline (RANDOM) We generate errors
at character-level with insertion, replacement and
deletion operations. We also consider the whites-
pace into these random operations, as it is a com-
mon error for speakers with poor background of
the standard writing.

2SIL International (https://www.sil.org/)

https://www.sil.org/
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General errors Normalisation

Lang. # sentences
Vocabulary size

# sentences
Vocabulary size

w/o errors w/ errors w/o errors w/ errors
Shipibo-Konibo 2,936 10,710 13,336 916 3,931 4,279

Asháninka 3,544 11,385 13,209 796 3,124 3,291
Yanesha 3,490 10,146 12,793 754 1,781 1,825

Yine 2,078 6,131 6,710 702 1,667 1,710

Table 3: Corpora size and vocabulary of General errors and Normalisation

Proximity keys (PROXKEY) It is based on the
keyboard layout, when a user misstypes a neigh-
bour key. We consider the QWERTY layout of
Spanish Latinamerican, which is the predominant
layout used for the speakers of the target languages.

Phoneme-to-grapheme ambiguity (P2GAMB)
Similar to Li et al. (2018), we consider the cor-
respondence between graphemes and phonemes
as a source for augmenting more linguistically-
informed errors. The difference with English, is
that the Amazonian languages have stronger cor-
respondence of phonemes-graphemes (known as a
transparent orthography (Borgwaldt et al., 2005)),
given their recent writing standardisation. Never-
theless, there are still phonemes that have a very
similar pronunciation, and can confuse the listener
at spelling time (e.g. w→hu).

Syllable similarity (SYLSIM) Given the regu-
lar and transparent orthography of the languages,
we focus on syllables. For instance, for Shipibo-
Konibo, Alva and Oncevay (2017) used a syllable-
based graph to identify a misspelled word: if you
cannot split the word in syllables, there could be
a misspelling or it could be a loanword. We use
the syllabification method for Shipibo-Konibo and
developed the rules for the other three languages.
To apply the syllabile similarity error, we split a
word into their syllables, and then look for a similar
syllable (edit distance) to replace one or more.

De-normalisation (DENORM) We map an old
and the most recent writing standard in all lan-
guages, and develop a method to apply a de-
normalisation noise given a sentence.

We present examples of each augmented-error
approach in Table 2. For the language-dependent
methods (SYLSIM, P2GAMB, DENORM), which
require more specialised knowledge about the writ-
ing and speech systems, we collected the informa-
tion needed in collaboration with field linguists,

shp cni ame pib
Phonetic 2,132 1,354 5,540 1,347
Gender 142 282 - 1
Tense 96 66 - -

Number 51 111 9 2
Punctuation 47 43 327 -

Accentuation 39 - 238 -
Syntactic 3,622 1,272 330 3,916
Semantic 517 93 - -

Table 4: Number of errors per type in the General errors
dataset per language.

language grammars and standardisation norms.

5 Evaluation corpora

With the support of language teachers, we defined
an error typology of the most common mistakes
of their students: phoneme ambiguity, grammar
mistakes (gender, tense, number), punctuation, ac-
centuation, syntactic, semantic and normalisation.
After that, we provide an annotation protocol to cre-
ate a parallel corpus of corrected written sentences
aligned with misspelled ones, with an annotation
of the type of errors included in each sentence (it
could be more than one):

• Two teachers per language receive a word list.
• For each word, they first write a sentence that

includes that word (or a similar one, e.g. in-
flected) without any misspelling.

• From the created sentence, they inject one or
more of the errors from the defined typology,
and label the error type.

We define two corpora: General errors and Nor-
malisation. We consider that normalisation requires
a differentiated corpus, given its relevance in the
standardisation of their writing systems. Table 3
shows the amount of sentences and the vocabu-
lary of the new corpora, while Table 4 shows more
details about the General dataset.
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General Normalisation
shp cni ame pib shp cni ame pib

RANDOM 85.3 (5.4) 88.5 (0.2) 75.2 (4.0) 85.6 (6.6) 88.9 (2.1) 75.7 (1.9) 64.6 (3.4) 72.6 (1.0)
PROXKEY 85.8 (5.9) 89.2 (0.8) 76.5 (5.4) 85.2 (6.2) 88.4 (1.6) 74.0 (0.1) 64.8 (2.7) 73.4 (1.8)
P2GAMB 88.4 (8.5) 89.1 (0.8) 77.0 (5.9) - 91.3 (4.5) 78.9 (5.1) 71.0 (8.9) -
SIMSYL 84.1 (4.2) 87.8 (-0.5) 75.2 (4.0) 84.8 (5.9) 87.9 (1.2) 75.4 (1.6) 63.6 (1.4) 70.9 (-0.7)
DENORM 88.5 (8.6) 89.6 (1.3) 76.9 (5.7) 86.4 (7.5) 92.4 (5.6) 80.4 (6.6) 72.3 (10.2) 80.4 (8.7)
All 84.7 (4.9) 86.6 (-1.7) 74.7 (3.6) 83.9 (4.9) 88.6 (1.9) 76.8 (3.0) 68.2 (6.1) 75.7 (4.0)
Ensemble 88.7 (8.8) 89.8 (1.4) 77.4 (6.3) 86.2 (7.3) 91.7 (5.0) 78.0 (4.2) 67.9 (5.8) 76.6 (5.0)

Table 5: chrF (and ∆chrF) scores on the General and Normalisation test set for all languages.

Shipibo-Konibo Asháninka Yanesha Yine
DENORM Ensemble DENORM Ensemble DENORM Ensemble DENORM Ensemble

Phonetic 97.3 (2.5) 97.6 (2.8) 97.4 (0.7) 97.1 (0.5) 95.8 (1.7) 96.1 (1.9) 94.8 (1.8) 94.8 (1.8)
Gender 97.7 (3.5) 97.7 (3.6) 95.8 (1.3) 95.2 (0.6) - - 100.0 (2.1) 100.0 (2.1)
Tense 97.5 (3.4) 97.5 (3.5) 97.0 (1.6) 96.3 (1.0) - - - -
Number 97.2 (3.3) 97.0 (3.0) 96.9 (1.2) 96.2 (0.4) 93.7 (3.6) 92.4 (2.3) 100.0 (7.6) 100.0 (7.6)
Punctuation 96.6 (2.8) 97.0 (3.2) 96.9 (0.7) 95.9 (-0.3) 89.9 (3.5) 90.4 (3.9) - -
Accentuation 96.7 (2.6) 96.9 (2.8) - - 89.7 (3.2) 90.9 (4.3) - -
Syntactic 97.0 (2.3) 97.2 (2.5) 97.8 (0.7) 97.6 (0.5) 90.4 (3.3) 91.3 (4.3) 96.3 (3.0) 96.3 (3.0)
Semantic 96.7 (2.5) 96.8 (2.6) 97.1 (1.2) 96.5 (0.6) - - - -

Table 6: chrF (and ∆chrF) scores for each error type in the General test set, using DENORM and Ensemble.

6 Benchmark

Model architecture and training We use Pruthi
et al. (2019)’s model for word recognition to deal
with adversarial misspellings. This is a semi-
character recurrent neural network based on Sak-
aguchi et al. (2017). The model receives as input
a sentence with misspellings, and generates a cor-
rected one. The hyper-parameters are included in
the Appendix. Besides, we train the model using a
single Tesla T4 GPU from Google Colab.

Evaluation metric As we are dealing with
a sequence-to-sequence problem, we use chrF
(Popović, 2015) as our metric. This is important
to assess whether our model is modifying the in-
put more than expected. We also include a ∆chrF
value, which is the difference between the chrF
score of original correct-error reference pair, minus
the score obtained by the correct-output one.

Models and evaluation The goal of the bench-
mark is to determine which augmentation approach
can generalise better to real errors annotated by the
language teachers (General, Normalisation). For
the experiment, we double the original corpus us-
ing each augmentation approach3. We also train

3Further experiments with 3x, 4x or more augmented data
did not provide significant difference in the overall results.

a model using all the augmented data (All), and
set up an ensemble model by majority vote. To
aid the training process, we split the General set
in 500-500 sentences for test and validation, and
the rest as complement for training in all settings.
We did not do the same for the Normalisation set,
which is smaller.

6.1 Results and Discussion

Table 5 shows the results for all the models in both
General and Normalisation test sets, where ∆chrF
is positive in most cases, indicating that the output
sentences are closer to the reference than the mis-
spelled ones. We clearly observe that DENORM

and Ensemble models achieved the first and second
best scores consistently in most scenarios. Besides,
P2GAMB has a robust performance in the Normali-
sation dataset, despite not being trained on the same
data distribution (as in DENORM for instance).
However, this is consistent with the standardisa-
tion efforts of the writing system, as they try to
make the orthography more transparent (e.g. avoid-
ing characters with similar correspondent sounds,
as with c and k).

To analyse the performance per error type, we
simplified the test set entries and kept only one



415

error per sentence4. Table 6 shows the results for
DENORM and Ensemble in all languages, where
we observe that ∆chrF is positive in almost all
settings, indicating a consistent improvement over
the misspelled sentences. We also observe that
Asháninka is the language that obtains the smallest
improvements (measured in ∆charF). One poten-
tial reason is the different but very close dialects
that are merged in the initial monolingual corpus
of Asháninka. Besides that, we do not observe a
signicant advantage of the Ensemble model over
DENORM in almost any type. We recall that both
models are fed with part of the annotated corpus
for training, indicating that DENORM is a robust
approach for generalisation.

7 Web service

We implement an API and a web service that in-
cludes all the models presented in the previous
section. The web interface includes the follow-
ing features: (1) the user can select the language
and model of preference, (2) the system high-
lights which words are updated, and what is the
modification, (3) the user can modify the output
and provide feedback. Figure 1 shows an exam-
ple. Finally, we open-source our demo code in:
https://github.com/iapucp/SchAman-demo.

8 How to scale up to new languages

For new languages from Amazonia, the first step
is to obtain a monolingual corpus as seed text.
According to the results, it is more significant
to augment training data with the DENORM and
P2GAMB approaches, which require a short in-
volvement of an expert or the study of language
grammars. This is less expensive than to develop an
FST-based tool for spell-checking5. The creation
of the evaluation resource is the most costly (in
terms of expert hours), however, our methodology
can be reproduced easily.

9 Conclusions and Future Work

We develop spell-checking resources (for training
and evaluation) and define an initial benchmark for

4This process makes the input and output sentence very
similar, resulting in higher chrF scores than in Table 5.

5Moreover, in preliminary experiments, we compared the
performance of our baseline models with the FST-based tools
of Alva and Oncevay (2017) and Ortega et al. (2020) for
Shipibo-Konibo and Ashaninka, respectively, and we found
that the rule-based systems could not overcome the data-driven
ones for synthetically generated errors in input sentences.

four endangered languages of the Amazonia region
of Peru. Experiments showed that DENORM and
Ensemble models achieve overall better results in
most error types and languages, and they have a
positive impact when dealing with new vocabulary.

The spell-checking models are available as an
API and web service, and it was made available to
language teachers and students. As future work, we
plan to develop multilingual models (three of the
four targeted languages are from the same language
family), and to deploy a more explainable spelling
application (e.g. indicating which type of error has
been corrected).
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A Languages

Asháninka (cni) is an Arawak language variety that
takes part in the so-called Asháninka-Ashéninka
dialect complex, spoken by more than 77,000 peo-
ple in Central and Eastern Peru and in the state
of Acre in Eastern Brazil. Ashaninka, which be-
longs to the Nihagantsi subgroup of the Arawak
family, is spoken along the Tambo, Ene, Apurí-
mac, Urubamba and Bajo Perené rivers in Central
Peruvian Amazon. Asháninka has 16 consonants
(including a nonspecified nasal consonant) and four
vowels. Ashaninka has an official alphabet recog-
nised by the Ministry of Education of Peru since
2015. Previous to that, the Summer Institute of
Linguistics published some materials in the lan-
guage using an early orthographic proposal. Both
traditions are only slightly different. Asháninka
is an agglutinating, polysynthetic and verb-initial
language. It is also strongly head-marking and thus
the verbal word is often highly morphologically
complex, with several positional slots and a large
inventory of aspectual and modal categories. Gram-
matical relations (subject and object) are indexed
as affixes on the verb itself.

Yanesha’ (ame) is an Peruvian Arawak language
that belongs to the Pre-Andine branch. It is spoken
in the Amazonian highlands of Central Peruvian by
approximately 5,000 people. Yanesha’ exhibits a
saliently large phonological inventory with 12 vow-
els (including long, aspirated and glottalised seg-
ments) and 23 consonants, some of which is typo-
logically unusual. Yanesha’ exhibits two currently
competing orthographic traditions, one early pro-
posed by the Summer Institute of Linguistics and a
full revision of it conducted in 2011 and recognized
as the official alphabet of the language. Yanesha’
is an agglutinating, polysynthetic language with a
VSO constituent order. Yanesha’ is strongly head-
marking and therefore the verbal word is highly
morphologically complex.

Yine (pib) is a Peruvian language of the Arawak
family spoken by approximately 3,000 people
along the the Ucayali and Madre de Dios rivers.
Yine has five vowels and 16 consonants. There are
two currently competing orthographic traditions
for Yine, one proposed by the Summer Institute of
Linguistics in 1965 and an official alphabet recog-
nized by the Ministry of Education of Peru since
2015. Yine is highly polysynthetic and aggluti-
nating. Since it is a predominantly head marking
langauge, most of the morphological complexity
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of the language is related to verbs.
Shipibo-Konibo (shp) is a Pano language spoken

by approximately 35,000 native speakers in cen-
tral Peruvian Amazon. Shipibo-Konibo exhibits
15 consonants and four vowels. As is the case
with other Peruvian Amazonian languages, the lan-
guage exhibits two competing orthographic tradi-
tions, one early proposed by the Summer Institute
of Linguistics and another official one, promoted
by the Ministry of Education of Peru. These or-
thographies are sometimes randomly used by the
speakers, creating salient amount of cross-speaker
variation. Shipibo-Konibo is mainly agglutinating,
synthetic and almost exclusively suffixing (with
only a closed set of prefixes related to body-part
concepts) Word order is pragmatically oriented, but
there is some tendency towards SOV constructions.
Verbs lack subject and object crossreference, but
exhibit a large set of TAME markers.

B Hyperparameters

• Architecture: Bi-directional LSTM
• Hidden layer: 50
• Vocabulary size: 5,000 for Shipibo-Konibo,

Asháninka y Yanesha; and 3,000 for Yine
• Epochs: 100
• Batch size: 32
• Optimiser: Adam
• Learning rate: 0.001
• Loss function: categorial cross-entropy


