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Abstract

Image Difference Captioning (IDC) aims at

generating sentences to describe differences

between two similar-looking images. Conven-

tional approaches learn an IDC model with a

pre-trained and usually frozen visual feature

extractor. Accordingly, two major issues may

arise: (1) a large domain gap usually exists

between the pre-training datasets used for train-

ing such a visual encoder and that of the down-

stream IDC task, and (2) the visual feature ex-

tractor, when separately encoding two images,

often does not effectively encode the visual

changes between two images. Due to the ex-

cellent zero-shot performance of the recently

proposed CLIP, we thus propose CLIP4IDC

to transfer a CLIP model for the IDC task to

address those issues. Different from directly

fine-tuning CLIP to generate sentences, we in-

troduce an adaptation training process to adapt

CLIP’s visual encoder to capture and align dif-

ferences in image pairs based on the textual

descriptions. Experiments on three IDC bench-

mark datasets, CLEVR-Change, Spot-the-Diff,

and Image-Editing-Request, demonstrate the

effectiveness of CLIP4IDC.

1 Introduction

Tasks involving understanding and expressing vi-

sual contents are hard for machines because mod-

elling relationships between the visual and tex-

tual domains requires sophisticated computational

reasoning. As one of the tasks, image Caption-

ing (IC) (Vinyals et al., 2015; Xu et al., 2015)

aims at generating a coherent description given

an image. Extended from image captioning, Image

Difference Captioning (IDC) (Jhamtani and Berg-

Kirkpatrick, 2018; Park et al., 2019) describes the

subtle changes that appear in a pair of two similar

images. It is more challenging as a machine is re-

quired to recognize both visual objects and nuances

in the pair.

A conventional approach to IDC is shown in Fig-

ure 1a. First, the visual features of an image pair are
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Figure 1: Different conventional fine-tuning (FT) strate-

gies may suffer from poor task accuracy due to: (1)

not accounting for gaps introduced by either different

objectives in pre-training (PT) and FT, and (2) domain

shift in datasets used in PT and FT.

extracted offline with pre-trained models (He et al.,

2016; Ren et al., 2015). Then a captioning network

generates sentence(s) to describe the changes in

the pair. Even though such approaches have made

great progress (Park et al., 2019; Kim et al., 2021;

Huang et al., 2021; Hosseinzadeh and Wang, 2021;

Sun et al., 2022), they suffer from the fact that the

visual features do not account for the domain gap

between the pre-training and IDC tasks. Lei et al.

(2021) demonstrated that the purpose of the feature

extractor trained on the original task introduces a

gap with that of the subsequent tasks. For example,

the features extracted by models trained on im-

age classification task focus on high-level context

and lose fine-grained information required for IDC.

Moreover, the extracted visual representations of

single modality are uncorrelated with the textual

ones.

As an effective approach to deal with the draw-

backs, fine-tuning models on the target dataset nar-

rows the gap between the tasks. Yao et al. (2022)
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showed that a Transformer (Vaswani et al., 2017)

model that was pre-trained and fine-tuned on the

same offline-extracted features achieves state-of-

the-art results in IDC. However, it does not yet fully

exploit the knowledge from the large-scale dataset

as in the recent advancements in vision-language

(VL) pre-training (Zhou et al., 2020; Li et al., 2021)

(VLP). In particular, CLIP (Radford et al., 2021), a

contrastive VLP model has demonstrated its zero-

shot superiority in numerous VL downstream tasks

(Luo et al., 2021; Tang et al., 2021).

We set out experimenting with a typical CLIP

fine-tuning strategy on the IDC task as shown in

Figure 1b, where CLIP’s visual encoder is learned

and fine-tuned on raw pixels. However, gaps still

exist not only between the objectives of CLIP pre-

training and IDC, but also between the collected

image-text pairs for pre-training and the image dif-

ference pairs in IDC. These gaps throttle the model

in adapting for the IDC task.

To tackle these problems, we study how to ef-

ficiently transfer a pre-trained CLIP for IDC. The

overview of the proposed CLIP4IDC model is

shown in Figure 2. Compared to directly fine-

tuning CLIP for the IDC task, CLIP4IDC employs

"adapt-and-fine-tune" strategy. To adapt, the CLIP

encoder learns to capture the fine-grained differ-

ences in the image pair rather than to produce

only high-level semantic information separately

for these two images. The visual and textual repre-

sentations for the image pairs and the sentences are

learned to be aligned with a retrieval loss in this

stage. To fine-tune, the learned vision encoder is

followed by a captioning Transformer trained from

scratch.

Extensive experiments are conducted on syn-

thetic and real benchmark datasets CLEVR-

Change (Park et al., 2019) and Spot-the-Diff (Jham-

tani and Berg-Kirkpatrick, 2018), respectively. In

addition, results on Image-Editing-Request (Tan

et al., 2019), a mixed real–synthetic dataset, are

also reported. CLIP4IDC outperforms the strong

baselines on all the metrics on these three datasets.

The main contributions of this work are:

1) Compared with the conventional approaches

that are trained on pre-extracted features, we fine-

tune CLIP for IDC on raw pixels. This retains the

expressiveness of the pre-trained features as well

as adapting them to the new task domain.

2) We propose CLIP4IDC, which consists of

adaptation and fine-tuning stages, to narrow the gap

between the objectives and data domains during

pre-training CLIP and fine-tuning it for IDC. The

adaptation is learned by mutually retrieving the

visual differences and the descriptions.

3) Extensive experiments show that CLIP4IDC

outperforms multiple strong baselines in the IDC

task on three datasets on all the metrics.1

2 CLIP4IDC

As shown in Figure 1a, the canonical IDC approach

generates sentences on pre-extracted features. The

bottleneck lies in three aspects: 1) the stopped

gradient flow in the feature extraction, 2) the mis-

matched objectives and data domains between the

pre-training and IDC fine-tuning, and 3) the visual

features being "purely visual", i.e. they reside in the

visual domain, far apart from the textual domain. In

the following sections, we introduce CLIP4IDC, a

CLIP-based approach to address these bottlenecks.

2.1 CLIP Fine-tuning Approach

An end-to-end approach of fine-tuning CLIP for

IDC is shown in Figure 1b. Specifically, the image

representations are generated by the vision encoder

initialized with CLIP (Dosovitskiy et al., 2020) and

are fed into a Transformer encoder to focus on

accounting for the differences in the image pair.

A Transformer decoder is applied to describe the

changes given the visual context.

2.2 Model Architecture

Figure 2 sketches the CLIP4IDC model, containing

the vision and language encoders.

Language Encoder. Given a textual caption T , the

language encoder G consisting of NG Transformer

layers is used, denoted as:

G(T ) = G({Ebos, Et1 , ..., Etm , Eeos}+ pT), (1)

where E∗ ∈ R
dT is a linear projection of each to-

ken and pT ∈ R
(m+2)×dT is a learned positional

embedding to retain the positional information.

Ebos and Eeos are token embeddings to represent

the start and end of the text, respectively. The lan-

guage encoder’s output g ∈ R
dT is generated by

collecting the output of the token embedding Eeos.

Vision Encoder. Each image in the image pair

(X1, X2) is patchified with the CLIP’s initial con-

volutional layer into n image patches with dimen-

1https://github.com/sushizixin/CLIP4I

DC

https://github.com/sushizixin/CLIP4IDC
https://github.com/sushizixin/CLIP4IDC
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Figure 2: The detailed architecture of CLIP4IDC.

sionality dI as:

X1 = {xcls, x
1
1, ..., x

1
n}+ pI, (2)

X2 = {xcls, x
2
1, ..., x

2
n}+ pI, (3)

where xcls is a learned class embedding to repre-

sent the global context of the images and the po-

sitional embedding pI ∈ R
(n+1)×dI . {· · · } is the

sequence of the embeddings. The vision encoder F
is constructed to capture the subtle changes in the

image pair. F is initialized by CLIP’s weights and

composed of a intra and inter Transformer mod-

ules. Specifically, the intra module Fintra contain-

ing Nintra Transformer layers learns the uni-modal

context from the image pairs. The inter module

Finter with Ninter layers is constructed to focus on

the subtle difference between the contexts in each

pair. These procedures are formulated as:

F (X1, X2) = Finter({Fintra(X
1) + e1, (4)

Fintra(X
2) + e2}+ p),

where p ∈ R
2(n+1)×dI . e1 and e2 ∈ R

dI are spe-

cial token embeddings to represent the first and

second images. Afterwards, a learnable linear pro-

jection W ∈ R
dI×dT is applied to the visual rep-

resentation F (X1, X2), on which the final visual

representation F ′(X1, X2) is generated.

2.3 IDC-specific Adaptation

Next, we propose two novel IDC-specific pretext

tasks, which are image-pair-to-text (IP-T) and text-

to-image-pair (T-IP) retrieval, for better adapting

the visual representations for captioning.

Prior to fine-tuning CLIP for the actual IDC task,

we adapt the visual features to the domain of the

IDC task via IP-T and T-IP retrieval. Our adapta-

tion methodology follows the contrastive approach,

where the encoded image pairs are drawn closer to

the encoded difference captions. Although other

kinds of adaptation strategies exist, such as the

one focusing more on matching the domain dis-

tributions (Tzeng et al., 2014), we only focus on

testifying if adding such an adaptation step is use-

ful. We aggregate a combined visual representation

v ∈ R
dT of the image pair from their xcls embed-

dings, denoted as:

v = f({F ′(X1, X2)1, F
′(X1, X2)n+2}), (5)

where f is the mean-pooling operation. The sub-

script is the position (1-indexed) of the embeddings

in the representation. Given B image pairs and dif-

ference captions in a batch, the target is to match

B × B similarities between the difference repre-

sentations of the image pairs and the descriptions

to the differences. The loss function is defined as:

Li2t =
−1

B

B∑

i

log
exp(s(vi, gi)/τ)∑B
j=1 exp(s(vi, gj)/τ)

, (6)

Lt2i =
−1

B

B∑

i

log
exp(s(vi, gi)/τ))∑B
j=1 exp(s(vj , gi)/τ)

, (7)

L = Li2t + Lt2i, (8)

where Li2t and Lt2i are the loss functions of IP-

T and T-IP retrieval, respectively. s(·, ·) denotes

the cosine similarity function and τ is a learnable

temperature parameter to smooth the gradients.

2.4 Captioning

In the actual captioning stage, the vision encoder is

initialized with the weights obtained from the pre-

vious adaptation stage and the output F ′(X1, X2)
of the vision encoder is fed into the captioning

model. As shown in Figure 2, the captioning model

contains multi-layer Transformer encoders and de-
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Model Input PT B M C R

Capt-Dual-Att (2019) ResNet – 43.5 32.7 108.5 –

DUDA (2019) ResNet – 47.3 33.9 112.0 –

VAM (2020) ResNet – 50.3 37.0 114.9 69.7

VAM+ (2020) ResNet – 51.3 37.8 115.8 70.4

IFDC (2021) F-RCNN – 49.2 32.5 118.7 69.1

DUDA+Aux (2021) ResNet – 51.2 37.7 115.4 70.5

VACC (2021) ResNet – 52.4 37.5 114.2 –

BiDiff (2022) ResNet – 54.2 38.3 118.1 –

IDC-PCL (2022) ResNet ✓ 51.2 36.2 128.9 71.7

CLIP4IDC Raw ✓ 56.9 38.4 150.7 76.4

CC-Full (2022) Raw,ResNet ✓ 64.3 36.4 151.4 77.1

Table 1: Results of IDC on CLEVR-Change test split.

The main metric CIDer is highlighted. CC-Full is in a

separate group as it adopts the policy gradient method

directly optimized for the target metrics.

coders for the visual and textual representations,

respectively. The decoder is trained to predict the

next token given the previous ground truth words

and the visual differences. A word-level cross en-

tropy (XE) loss as in Park et al. (2019) is utilized.

3 Experiments

3.1 Benchmark Datasets and Metrics

We conduct experiments on CLEVR-Change (Park

et al., 2019), Spot-the-Diff (Jhamtani and

Berg-Kirkpatrick, 2018) and Image-Editing-

Request (Tan et al., 2019) datasets. Following

previous works, e.g. (Huang et al., 2021; Hos-

seinzadeh and Wang, 2021), captioning models

are evaluated on BLEU (B) (Papineni et al.,

2002), METEOR (M) (Banerjee and Lavie,

2005), CIDEr-D (C) (Vedantam et al., 2015) and

ROUGE-L (R) (Lin, 2004) on the test split. IDC

adaptation is done via image-pair-to-text (IP-T)

and text-to-image-pair (T-IP) retrieval tasks. The

standard retrieval metrics are reported: recall at

rank K (R@K), median rank (MdR) and mean

rank (MnR).

3.2 Captioning Results

We compare CLIP4IDC against the direct CLIP

fine-tuning method and the state of the arts which

employ the pre-extracted features in Tables 1– 4.

Results on CLEVR-Change. Table 1 shows that

CLIP4IDC outperforms all the baselines except

CC-Full (Ak et al., 2022) on CIDEr. Note that

CC-Full employs the policy gradient method and

is directly optimized for generating the target cap-

tions, while our proposed CLIP4IDC only relies on

standard XE captioning loss. As such, we do not

think their results are comparable, however, our re-

sults are still rather competitive. As we will see in a

later section, CLIP4IDC significantly outperforms

CC-Full on a real-world dataset.

Model C T M A D DI

DUDA (2019) 120.4 86.7 56.4 108.2 103.4 110.8

VAM+ (2020) 122.1 98.7 82.0 126.3 115.8 122.6

IFDC (2021) 133.2 99.1 82.1 128.2 118.5 114.2

DUDA+Aux (2021) 120.8 89.9 62.1 119.8 123.4 116.3

BiDiff (2022) 115.9 106.8 71.8 121.3 124.9 116.1

IDC-PCL (2022) 131.2 101.1 81.7 133.3 116.5 145.0

CLIP4IDC 149.1 135.3 91.0 132.4 135.5 133.4

Table 2: The breakdown of CIDEr score on different

types of changes on CLEVR-Change test split. The

columns C, T, M, A, D, DI stand for change types of

Color, Texture, Move, Add, Drop and Distractor, i.e. no

changes in the image pairs.

Model Input PT B M C R

DDLA (2018) ResNet – 8.5 12.0 32.8 28.6

DUDA (2019) ResNet – 8.1 11.5 34.0 28.3

VAM (2020) ResNet – 10.1 12.4 38.1 31.3

IFDC (2021) F-RCNN – 8.7 11.7 37.0 30.2

DUDA+Aux (2021) ResNet – 8.1 12.5 34.5 29.9

VACC (2021) ResNet – 9.7 12.6 41.5 32.1

CLIP4IDC Raw ✓ 11.6 14.2 47.4 35.0

CC-Full (2022) Raw,ResNet ✓ 8.3 13.0 33.0 30.0

Table 3: Results of IDC on Spot-the-Diff test split.

Model Input PT B M C R

Rel-Att (2019) ResNet – 6.7 12.8 26.4 37.4

DUDA (2019) ResNet – 6.5 12.4 22.8 37.3

BiDiff (2022) ResNet – 6.9 14.6 27.7 38.5

CLIP4IDC Raw ✓ 8.2 14.6 32.2 40.4

Table 4: Results on Image-Editing-Request test split.

CLEVR-Change Spot-the-Diff

Model L Params B M C R B M C R

CLIP-FT – 135.57M 49.9 34.8 133.9 70.8 11.0 12.8 43.3 33.5

CLIP4IDC – 135.65M 54.2 37.9 147.5 75.4 11.0 12.9 43.0 33.4

CLIP4IDC ✓ 135.65M 56.9 38.4 150.7 76.4 11.6 14.2 47.4 35.0

Table 5: Ablation results of IDC on the two datasets.

We also assess the models by different types of

changes on CLEVR-Change, as seen in Table 2.

CLIP4IDC outperforms IDC-PCL on Color, Tex-

ture, Move and Drop types.

Results on Spot-the-Diff and Image-Editing-

Request. Tables 3 and 4 show that CLIP4IDC

achieves higher accuracy than the baselines on all

the metrics on the two real datasets.

Ablations. We conduct ablation studies on dif-

ferent CLIP architectures and adaptation strate-

gies. Table 5 shows that CLIP4IDC without the

adaptation stage (without L in Eq. 8) outper-

forms the direct CLIP finetuning ("CLIP-FT") on

CLEVR-Change. On the more challenging real-

world dataset, Spot-the-Diff, we observe the same

trend. Having the adaptation stage with L thus

further enhances the performances. This confirms

that learning to capture more fine-grained visual

differences in the adaptation stage is beneficial.
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CLEVR-Change Spot-the-Diff Editing-Request

Image Pair ⇔ Text Text ⇔ Image Pair Image Pair ⇔ Text Text ⇔ Image Pair Image Pair ⇔ Text Text ⇔ Image Pair

Model R@1 R@5 R@10 R@1 R@5 R@10 R@10R@20R@50 R@10R@20R@50 R@1 R@5 R@10 R@1 R@5 R@10

CLIP4IDC 46.4 83.0 86.6 26.8 58.7 70.0 3.7 7.3 16.8 6.2 10.5 20.0 17.1 28.4 33.8 17.3 33.7 41.9

Table 6: Results of IP-T and T-IP retrieval on the three datasets.

Image Pair ⇒ Text Text ⇒ Image Pair Captioning

Model Nintra Ninter R@1 R@5 R@10 MdR↓ MnR↓ R@1 R@5 R@10 MdR↓ MnR↓ B M C R

CLIP4IDC

6 6 46.1 79.8 83.9 2.0 49.6 26.4 57.1 68.4 4.0 29.4 54.0 37.4 146.5 75.2

7 5 46.1 80.8 84.5 2.0 45.5 27.0 57.8 69.0 4.0 28.2 54.5 37.5 148.4 75.5

8 4 47.2 80.7 84.4 2.0 46.3 27.7 58.7 69.7 4.0 29.9 54.1 37.4 147.3 75.4

9 3 46.4 83.0 86.6 2.0 39.2 26.8 58.6 70.0 4.0 25.6 54.8 37.8 148.6 75.8

10 2 37.5 68.5 73.9 2.0 88.8 22.9 52.3 63.9 5.0 54.4 51.5 35.4 134.6 71.5

11 1 24.7 47.2 53.3 7.0 143.6 17.8 40.2 50.9 10.0 84.8 45.0 32.7 122.8 67.9

12 0 2.3 7.0 11.8 182.0 459.9 1.1 3.9 5.9 419.0 716.5 38.8 29.5 90.9 60.6

Table 7: Results of setting different number of layers in CLIP4IDC on the IP-T, T-IP retrieval and IDC tasks on

CLEVR-Change test split.

3.3 Adaptation Results

We report the results in the retrieval tasks used for

adaptation in Table 6 on the test splits of the three

datasets. These results from the image-pair and

text retrieval tasks are simply to testify the model’s

capability of capturing details in the image pairs.

The effects brought by the retrieval tasks on the

captioning accuracy are assessed in the following.

4 Assessments of IDC Adaptation

We study how the retrieval accuracy is affected

by different architectural options in CLIP4IDC on

CLEVR-Change test split. Table 7 shows the effect

of setting different numbers of layers in the intra

and inter modules. It can be seen that the improve-

ment is achieved by allocating a large number of

layers to the intra module. However, it does not

mean that inter layers are not required, as shown in

the decreased accuracy when cutting the number of

inter layers. In addition, when the inter layers are

removed, i.e. Ninter = 0, the architecture is simi-

lar to Luo et al. (2021) and its accuracy is greatly

reduced. We owe it to the fact that the global infor-

mation represented by two separate image embed-

dings fails to localize the changes between them.

To further study the relationships between the

retrieval-based adaptation and the captioning accu-

racy, we fine-tune the models from the adaptation

stage on the captioning task with the frozen image

encoder. It can be observed in Table 7 that, in gen-

eral, better adaptation with higher recall values on

the retrieval tasks translates to better captioning.

The observation suggests that the introduced re-

trieval tasks and the metrics used for retrieval serve

as a strong indicator of the IDC performance.

5 Conclusion and Future Work

In this work, we studied how to fine-tune CLIP

for image difference captioning. Retrieval-based

adaptation was introduced to improve the visual

representations for captioning and to narrow the

gap between the purposes and data domains of

CLIP pre-training and IDC. Experimental results

demonstrated the effectiveness of the CLIP4IDC

model and the applied domain adaptation.

In the future work, we will further explore en-

hancing the relationships between the vision and

language domains. Specifically, CLIP4IDC adapts

CLIP which does not involve cross-modal interac-

tions as early as other pre-trained VL models (Lu

et al., 2019; Su et al., 2019; Li et al., 2019) that al-

low the interactions from the ground up. Adapting

other VL models for IDC is naturally one inter-

esting future direction. Moreover, exploring other

means than our contrastive approach, such as do-

main confusion (Tzeng et al., 2014), to bridge vi-

sion and language domains is another plausible

direction.
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A Dataset

CLEVR-Change (Park et al., 2019) is a synthetic

dataset generated by CLEVR engine. Geometric

differences between the objects in the images are

annotated. It is divided into the training, validation

and test splits which have 67,660, 3,976 and 7,970

image pairs, respectively. Spot-the-Diff (Jhamtani

and Berg-Kirkpatrick, 2018) describes multiple

scene changes in the real 13,192 image pairs sam-

pled from the VIRAT Ground Video Dataset with

human-annotated captions. On an average, there

are 1.86 sentences to describe the differences for

each image pair. Two decoding strategies contain-

ing single-sentence decoding and multi-sentence

decoding are set for captioning. Following Jham-

tani and Berg-Kirkpatrick (2018), we evaluate mod-

els in the single-sentence decoding by setting the

ground truth description as multiple reference cap-

tions. Image-Editing-Request (Tan et al., 2019)

is a dataset consisted of camera shots, paintings

and animations, and most of the images are realis-

tic. It contains 3,939 image pairs with instructions

written by human annotators.

B Implementation Details

IDC Adaptation Settings. The vision and lan-

guage encoders are initialized with CLIP ViT-

B/32 (Dosovitskiy et al., 2020). The sentence

length is 32 and the number of layers in the lan-

guage encoder NG = 12. The dimension of the

text embedding dT = 512. The size of an im-

age is 224 × 224 and each image is processed

by a 2D convolution network with kernel size 32,

stride 32 and 768 channels. The number of image

patches n = 49 and the dimension of image patches

dI = 768. The number of layers in the intra- and

inter-Transformer modules are Nintra = 9 and

Ninter = 3, respectively. Adam optimizer is ap-

plied with initial learning rate 10−7. The models

are trained for 12 epochs by fixing all the random

seeds to 42 on two NVIDIA Tesla V100 GPUs.

IDC Fine-tuning Settings. We initialize the vi-

sion encoder with the model from IDC adaptation

and set the dimensionality of the word embedding

dT = 512. The captioning model is learned from

scratch. The number of Transformer layers in both

captioning encoder and decoder is 3 on all the

datasets. The attention layer in the Transformer

has 8 heads and 10% dropout probability, and its

hidden size is 512.

For the direct CLIP fine-tuning, the parameters

of its vision encoder are initialized with CLIP ViT-

B/32. The settings of its captioning model are the

same as those in CLIP4IDC.

Adam is used with initial learning rate 10−7 for

the vision encoder and 10−4 for the captioning

model. The model is trained for at most 50 epochs

and the batch size is 16. Greedy decoding with

maximum 32 steps is applied for generating sen-

tences in inference. The experiments are carried

out on a NVIDIA Tesla V100 GPU.

C Qualitative Results

To understand the effect of IDC adaptation,

some cases on CLEVR-Change, Spot-the-Diff and

Image-Editting-Request datasets are visualized in

Figures 3, 4 and 5, respectively.
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GT: the blue ball changed to yellow
CLIP4IDC: the blue ball became yellow

GT: the big purple metal block behind the green thing
changed to rubber

CLIP4IDC: the large purple metal block that is behind the
big purple metal sphere became rubber

GT: there is no difference
CLIP4IDC: there is no change

GT: there is no change
CLIP4IDC: there is no change

Figure 3: Visualization of the vision encoder’s output in CLIP4IDC on CLEVR-Change. Figures are arranged in

three columns. The first column shows the first and the second raw images. The second column shows their attention

maps in the intra-encoder’s output. The last column shows their attention maps in the inter-encoder’s output.

GT: the person walking is no longer there
CLIP4IDC: the person walking in the parking lot is gone

GT: there is a smaller group of people in the lot
CLIP4IDC: there are two people in the right image

GT1: the car is gone
GT2: there is a car entering from the entrance at the top

right of the image
CLIP4IDC: the car is gone

GT1: the white car in the left corner is gone
GT2: there are now people waiting to cross the

intersection
CLIP4IDC: there are people walking on the sidewalk

Figure 4: Visualization of the vision encoder’s output in CLIP4IDC on Spot-the-Diff.
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GT: color the sky blue
CLIP4IDC: make the image more blue

GT: brighten the entire photo
CLIP4IDC: brighten the photo

GT: remove girl in background
CLIP4IDC: remove the people from the background

GT: remove the background
CLIP4IDC: remove the background

Figure 5: Visualization of the vision encoder’s output in CLIP4IDC on Image-Editting-Request.

Synthetic Dataset The four cases in Figure 3 are

from CLEVR-Change. In the second column of

each case, it can be seen that CLIP4IDC’s intra

encoder attends to regions where information is

more likely to be needed for capturing the fine-

grained difference in the second images. While

in the third column of them, inter encoder filters

the information uncorrelated to the difference and

pay attention to the changes in the second image.

However, the condition is different for the cases,

shown in the bottom two sets of figures, without

changes. The inter encoder appears to attend more

uniformly across regions to seek for any change

instead of getting fixated on one specific region.

Real-world Dataset Figures 4 and 5 show

the cases from Spot-the-Diff and Image-Editing-

Request, respectively. It can be seen that our

CLIP4IDC capture the fine-grained differences in

the real-world and complicated cases.

D Descriptions of the Baseline Methods

Some recent works have made great progress in

the IDC task by devising a language model that

describes the changes, given the visual features pre-

extracted by the CNN backbones (He et al., 2016;

Ren et al., 2015). We describe the baselines we

compare against in the experiments as follows:

• DUDA (2019): A dual attention module is pro-

posed to distinguish distractors from semantic

changes and localize the changes. A dynamic

attention module is then used to describe the

changes.

• VAM (2020): A novel visual encoder is pro-

posed to distinguish viewpoint changes from

semantic changes. Moreover, it fine-tunes the

model directly with reinforcement learning in

which the rewards coming from evaluating the

generated captions.

• IFDC (2021): A language generator, which

consists of a feature fusion module, a

similarity-based difference finding module,

and a difference captioning module, is intro-

duced.

• VACC (2021): A difference encoder is de-

vised to encode viewpoint information and

model the difference.

• BiDiff (2022): A change captioning pipeline

is introduced to localize the changes in the

image pair and a decoder with spatial-channel

attention to generate descriptions.

These methods consistently improve the model

accuracy by refining or improving the visual fea-

tures to better capture the fine-grained changes in

the image pair. In addition, inspired by the suc-

cess of multi-task learning, the following training

schemes were also introduced.
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• VACC (2021) and DUDA+Aux (2021): Both

work proposed auxiliary modules to match

the composite feature of the generated caption

and before image with the after image feature.

• IDC-PCL (2022): A "pretrain-and-finetune"

paradigm is proposed and contains three

pretraining tasks as follows. Given visual-

linguistic contexts, the Masked Language

Modelling (MLM) and Masked Visual Con-

trastive Learning (MVCL) tasks were applied

to map the visual context to language and

to reconstruct the masked image features, re-

spectively. Fine-grained Difference Aligning

(FDA) was introduced to rewrite the captions

as the hard samples to maximize the connec-

tions in the joint representation of the text and

the image pair.

• CC-Full (2022): The work proposed to co-

train text-based image manipulation (TIM)

with change captioning (CC) modules. The

CC module generates captions evaluated with

the TIM module with a reinforcement learn-

ing framework. The TIM module generates

images that are evaluated with the CC module

with a generative adversarial network.
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