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Abstract

The Transformer Language Model is a power-
ful tool that has been shown to excel at various
NLP tasks and has become the de-facto stan-
dard solution thanks to its versatility. In this
study, we employ pre-trained transformer doc-
ument embeddings in an Active Learning task
to group samples with the same labels in the
embedding space on domain-specific corpora.
We find that the calculated class embeddings
are not close to the respective samples and con-
sequently do not partition the embedding space
in a meaningful way. In addition, using the
class embeddings as an Active Learning strat-
egy yields reduced results compared to all base-
lines.

1 Introduction

While text classification models have become more
and more powerful, the need for sufficient data to
train ever growing neural networks is also increas-
ing massively. When dealing with domain-specifc
data, such as legal or medical in particular, find-
ing a fitting dataset with detailed annotations can
be exceedingly difficult. Creating such a dataset
is likely to be a massive undertaking due to the
difficult annotation process which often requires
domain experts to work through enormous amounts
of data. Active Learning serves as a way to speed
up this process by selecting informative samples to
be annotated. However, Active Learning strategies
are often very specific to target domains (Wertz
et al., 2022) and strategies tailored specifically for
pre-trained transformer language models are often
experimental and not thoroughly explored (Zhan
et al., 2022).
In this work, we present an Active Learning strat-
egy that employs class embeddings which are gen-
erated from pre-trained sentence embeddings to
predict the classes of unlabeled samples. While
the intuition of the approach is sound, we find
that the class embeddings do not generalize from

the samples they were calculated on. Our experi-
ment focuses on powerful pre-trained, transformer
sentence-embeddings which are prevalent in both
research and industrial application. We demon-
strate that such embeddings struggle to find good
separations between the multi-class, multi-label
texts in the training set on two domain-specific
datasets. Our work details the class embedding
approach, illustrates the reduced performance on
two domain-specific, multi-label datasets and anal-
yses the vector space of the samples to gain an
understanding of the methods failure.

2 Related Work

The effectiveness of AL for Text Classification has
been subject to extensive research (Tong and Koller,
2001), (Goudjil et al., 2018) with specific solutions
for deep models (Schröder and Niekler, 2020), (An
et al., 2018) and multi-label settings (Reyes et al.,
2018) (Yang et al., 2009). Our approach targets Ac-
tive Learning for Deep Learning which poses new
challenges (Schröder and Niekler, 2020) and is still
a topic in need of exploration (Ein-Dor et al., 2020).
Generating embeddings from words has been per-
formed with trained vector models (Church, 2017)
(Pennington et al., 2014) but has been moved to
the contextual embedded information within large
transformer language models such as BERT (De-
vlin et al., 2018). Extracting embeddings across
word boundaries from BERT can be done in sev-
eral ways, such as a grid-based approach (Denk
and Reisswig, 2019), a "siamese" dual network
architecture (Reimers and Gurevych, 2019) or un-
supervised techniques (Zhang et al., 2020).

3 Class Embeddings

3.1 Intuition

In any text classification task, the aim is to identify
the belonging of a text T to a range of pre-defined
classes C. Using pre-trained language models, a
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text classification model M decides the class cϵC
using only the tokenized text as input, leveraging
the powerful pre-trained weights of the underlying
transformer network as information. We can thus
assume that the surface tokens are the critical infor-
mation that determine, what class T is assigned.
One option to represent text in a continuous vector
space is via embeddings - vectors that are condi-
tioned to correspond to pieces of text. We convert
T into the vector space via embeddings (Te). In-
tuitively, one would assume that Te which belong
to the same c are also closer together in the vector
space. After all, if c is mainly decided based on the
surface tokens, it follows that there should be either
syntactical or semantical similarity between two T
both belonging to c. While semantical similarity is
much harder to capture than the surface realisation
of language, current text embedding techniques
have shown to also be sensible to word meaning
(Wiedemann et al., 2019).
In conclusion, we expect T that belong to the same
class to be closer together in a fitting vector space
representation because their text should show sim-
ilarities. Consequently, we assume that if a new
text T ∗ is mapped into the same vector space, it
is more likely to belong to the same classes as its
neighbours. As such, the centroid of a set of Te can
be used to predict the class of said T ∗.

3.2 Active Learning with Class Embeddings

Ce = {mean(Te)|TϵD and T belongs to c} (1)

Active Learning is a cyclic, supervised learning
mechanism that seeks to reduce annotation effort
by strategically selecting informative samples to
be labeled by a human annotator and then given to
the model for training. Given an annotated training
set D and an unlabeled set U , the main loop of Ac-
tive Learning can be summarized in three repeating
steps:
1. Train classification model M on available data
D.
2. Select informative samples from U and pass
them to the annotator.
3. Annotate the samples and add them to D.
Given an annotated set D, our approach calculates
Class Embeddings Ce for each class c by first
collecting all T that belong to c and then using
an embedding technique to map T into the vector
space. The corresponding ceϵCe are determined
by calculating the centroid of all Te belonging to c
(Equation (1)).

train dev test Macro F1
eurlex 10.294 1.901 1.905 0.93
arXiv 13.174 13.414 13.131 0.79

Table 1: Split sizes and Macro F1 on the full eurlex and
arXiv datasets.

In the Active Learning setting, we calculate Ce

given the current D and then select k samples
which are close to the ce of classes that are less
frequent in the training set. The idea is, that finding
samples of less represented classes will improve
classifier accuracy on that class and consequently,
will improve Macro F1. We update and evaluate
M after k samples have been selected and repeat
this process until an annotation budget is exhausted.
The full procedure is detailed in Algorithm 1.

Algorithm 1 Active Learning with Class Embed-
dings

1: procedure CE(labeled set D, unlabeled set U ,
model M, budget b, sample size k)

2: while budget > 0 do
3: train M on D
4: Ce ← Class Embeddings on D
5: k∗ ← k
6: while k∗ > 0 do
7: cmin ← least frequent class in D
8: T ← TϵU, T closest to ce of cmin

9: annotate T
10: D ← D ∪ T
11: k∗ ← k∗ − 1
12: b← b− 1

4 Experiment

4.1 Datasets
We use modified versions of the Eurlex57K (re-
ferred to as eurlex) (Chalkidis et al., 2019) corpus
containing excerpts from European law as well
as a collection of abstracts from scientific pub-
lication site arXiv (https://www.kaggle.
com/Cornell-University/arxiv). Both
datasets are annotated with several hundred classes
and are intended for large-scale, multi-label text
classification, meaning that a sample can belong
to any number of classes instead of only one. We
reduce the number of classes to 5 frequent and 5
rare labels to create a reduced version of the cor-
pus, keeping the multi-label nature intact. Macro
F1 when using the full dataset is found in Table 1.

(https://www.kaggle.com/Cornell- University/arxiv)
(https://www.kaggle.com/Cornell- University/arxiv)
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Figure 1: Macro F1 on the eurlex dataset of Active
Learning for training set sizes 100 to 600 samples com-
pared to random selection and two Active Learning
baselines.

4.2 Setup
We use BERT (Devlin et al., 2018)* for text clas-
sification with a single, feed-forward output layer.
We train the model for 15 epochs with early stop-
ping, a batch size of 16 and an adaptive learning
rate (ADAM). We evaluate all experiments using
the multi-class measures Macro F1† (averaging F1
for each class, thus, treating each class as equally
important, which is beneficial in the unbalanced
class settings).
For document embeddings, we employ pre-trained
Sentence-Bert (Reimers and Gurevych, 2019) em-
beddings‡ which maps a document into a 380 ele-
ment vector.
We simulate Active Learning by using a subset
of the corpus as "labeled" set and reserving the
rest as the "unlabeled" set, using the oracle annota-
tions once a sample is queried from the "unlabeled"
set. We start with a labeled set of 100 randomly
selected samples and query 50 samples in each Ac-
tive Learning step until the annotation budget of
600 samples is exhausted.
All experiments are run on a NVIDIA RTX 6000
GPU.

4.3 Results
Figures 1 and 2 show the results of Active Learn-
ing on the eurlex and arXiv datasets respectively.

*Using the "bert-base-uncased" model from huggingface
https://huggingface.co

†We also evaluated Micro F1 but found that the two be-
haved similarly.

‡Using the "all-mpnet-base-v2" downloadable from
https://www.sbert.net

100 200 300 400 500 600 700 800 900
#texts

0.2

0.3

0.4

0.5

0.6

0.7

M
ac

ro
 f1

arXiv

random
alps
cvirs
embedded_class

Figure 2: Macro F1 on the arXiv dataset of Active Learn-
ing for training set sizes 100 to 600 samples compared
to random selection and two Active Learning baselines.

We compare the class embedding approach (Sec-
tion 3.2) against three Active Learning baselines
(DAL - (Gissin and Shalev-Shwartz, 2019), ALPS
- (Yuan et al., 2020), CVIRS - (Reyes et al., 2018))
as well as Active Learning by random sampling.
Out of the Active Learning strategies, we report the
two best performing approaches for each dataset.
We find that the class embeddings perform signifi-
cantly worse than all baselines by a margin of up to
0.15 compared to random selection. Class Embed-
dings appear to hinder the Active Learning process
as they even perform worse than Active Learning
strategies which already have reduced performance
compared to random selection, i.e. the DAL base-
line on the eurlex dataset.

5 Analysis

5.1 Proximity to unlabeled samples

One important assumption presented in Section 3.1
is, that an unlabeled§ sample T ∗ϵU will be close
in the embedding space to the class embeddings
ceϵCe of the classes cϵC it belongs to. We test
this assumption by analysing how many T ∗ that
belong to c are actually closest to the corresponding
class embedding by querying the closest 100 T ∗

for every ce. Table 2 shows, that on the eurlex
dataset for a small labeled set with 100 samples,
almost no T ∗ are near a ce of a class they belong to.
We also see that this is not an effect of the labeled
set being too small as increases in the size of D
(even to around 50% of the full training set) do not

§Here, unlabeled simply denotes that the sample does not
come from the training set of the model (Section 4.2).

https://huggingface.co
https://www.sbert.net
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size of D class 1 class 2 class 3 class 4 class 5 class 6 class 7 class 8 class 9 class 10
100 1 0 0 0 0 0 7 2 0 0
200 2 0 0 0 0 0 7 2 0 0
500 1 0 0 0 0 0 7 2 0 0

1500 2 0 0 0 0 0 7 1 0 0

Table 2: Number of samples in the unlabeled set U of the eurlex dataset with class j found within the closest 100
samples of the centroid of class j using pre-trained Sentence-BERT. We experiment with varying sizes of the labeled
set D.

significantly change the results. Effectively, this
means that the computed ce are not close to new
samples of the same class and that our assumption
is incorrect. This observation holds for the arxiv
dataset as well. (See Appendix for the full results
table).

c0 c1 c2 c3 c4 c5 c6 c7 c8 c9
class

0.0

0.1

0.2

0.3

0.4

co
sin

e 
di

st
an

ce

eurlex 100 samples, similarity of labeled set to class embeddings
same class
different class (avg)

Figure 3: Average cosine distance between labeled sam-
ples and corresponding class embedding of the same
class (blue, left) and averaged class embeddings of all
other classes (green, right).

5.2 Examination of the labeled set

One explanation for the behaviour on unlabeled
samples is, that the class embeddings are not well-
positioned. For example, when calculating Ce we
do not account for outliers which might cause a
shift in the centroid. Alternatively, class embed-
dings might all be very close to each other, resulting
in a partitioning that is not very meaningful. We
run a sanity check in Figure 3 and Figure 4 and
look at the average distance between samples in
the labeled set TϵD and the computed class em-
beddings for a size of 100 samples¶. We find that
on average, samples are closer to the ce of classes

¶We also experiment with higher numbers but find no
significant differences.
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Figure 4: Average cosine distance between labeled sam-
ples and corresponding class embedding of the same
class (blue, left) and averaged class embeddings of all
other classes (green, right).

they belong to by a margin of around 0.2 on the
eurlex dataset and 0.4 on the arXiv dataset. Due
to the multi-label nature of the datasets we expect
certain overlap between classes. Overall, Figures
3 and 4 seem to indicate a good positioning of the
class embeddings, which means that the training
set samples are in fact found in the proximity of
corresponding class embeddings. Figures 5 and 6
show the result of a Principal Component Analysis
(PCA) on the two datasets respectively. We find
that while there are some clusters, overall there is
no clear separation of classes. This could be an in-
dication, that the sentence-BERT embeddings (see
Section 4.2) are too large or too diverse to effec-
tively decompose into 2 dimensions. However, it
is also possible that even in the high-dimensional
space, separation of the different classes is already
difficult.
On the eurlex dataset, Figure 3 confirms this sus-
picion somewhat since the distance margins are
narrow overall. We find that for many classes, ob-
servations hold between Figure 3 and Figure 5.
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For example, samples belonging to class 2 have
a are generally very close to their corresponding
class embedding while Figure 5 also shows a nar-
row cluster of class 2 samples. However, for some
samples we observe conflicting information from
the two Figures, for example class 3, which has
the least average distance in Figure 3 but is very
spaced out in the PCA in Figure 5.
In general, the analysis of the arxiv dataset in Fig-
ures 4 and 6 leads to analogous conclusions. The
main difference is that while the average distances
in Figure 4 are twice as long as for the eurlex
dataset, the samples in Figure 6 seem even more
clustered around a central point. In general, most of
the centroids are very close together in the reduced
space, making clear separation of classes difficult.
Overall, we can conclude that the class embeddings
provide only limited grouping for the dataset they
were calculated on.
In addition, we find that the labels have semantic
overlap to each other. In the arXiv dataset, frequent
labels deal with various areas of Physics, while
rare labels deal with Computer Science and Infor-
matics. On the eurlex dataset, frequent labels deal
with Fruit, import and export while rare labels are
more diverse. (Full Table is found in the appendix).
This could explain the proximity of centroids in the
PCA analysis, especially for the arxiv dataset in
Figure 6. On the eurlex dataset in Figure 5 however,
centroids of different topics, e.g. Gaming (centroid
9) and Export Refund (centroid 1) are close to each
other.
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Figure 5: PCA with 2 components of the class embed-
dings and embedded samples in the training set with 100
samples. Shapes of the data points indicate class (sam-
ples with multiple classes are plotted multiple times)
and enlarged data points mark centroids (i.e. class em-
beddings).
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Figure 6: PCA with 2 components of the class embed-
dings and embedded samples in the training set with 100
samples. Shapes of the data points indicate class (sam-
ples with multiple classes are plotted multiple times)
and enlarged data points mark centroids (i.e. class em-
beddings).

6 Conclusion & Future Work

We present Class Embeddings, which hinder the
Active Learning (Section 4.3) since the classes of
new samples can not be correctly predicted (Sec-
tion 5.1). Despite reasonable assumptions about the
effectiveness of pre-trained embeddings (Section
3.1) we find that class embeddings are not mean-
ingful representatives of the dataset classes and that
their ability to partition the dataset is limited (5.2).
We encourage experimenting with this approach,
as it is relatively inexpensive to compute. In addi-
tion to using common heuristics with BERT, such
as averaging the word embeddings, fine-tuning the
sentence-embeddings on the dataset might make a
difference and result in higher quality Class Em-
beddings. Also, testing the approach on different
datasets is crucial - in our work, improving upon
random selection is difficult even for sophisticated
Active Learning strategies. Finally, we would like
to motivate more application-oriented research (e.g.
Information Retrieval, Semantic Similarity rank-
ings etc...) into the inner workings of pre-trained
contextual embeddings in order to improve under-
standing of the information they encode.
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size of D class 1 class 2 class 3 class 4 class 5 class 6 class 7 class 8 class 9 class 10
100 1 0 0 0 0 0 7 2 0 0
200 2 0 0 0 0 0 7 2 0 0
500 1 0 0 0 0 0 7 2 0 0

1500 2 0 0 0 0 0 7 1 0 0

Table 3: Number of samples in the unlabeled set U of the arXiv dataset with class j found within the closest 100
samples of the centroid of class j using pre-trained Sentence-BERT. We experiment with varying sizes of the labeled
set D.

arXiv eurlex
class 1 High-Energy-Physics import
class 2 Statistical Mechanics export refund
class 3 Quantum Physics Pip Fruit
class 4 Superconductivty Fruit Vegetable
class 5 Strongly Correlated Electrons Citrus Fruit
class 6 Atomic and Molecular Clusters Quantitative Restriction
class 7 Network Architecture Germany
class 8 Formal Languages Portugal
class 9 Human Computer Interaction Ship’s Flag
class 10 Other Computer Science Gaming

Table 4: Descriptions of labels used in both datasets.Frequent labels are above center line, rare labels are below
center line.
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Figure 7: Micro F1 on the arXiv dataset.
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Figure 8: Micro F1 on the arXiv dataset.
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