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Abstract

To solve Math Word Problems, human students
leverage diverse reasoning logic that reaches
different possible equation solutions. How-
ever, the mainstream sequence-to-sequence ap-
proach of automatic solvers aims to decode a
fixed solution equation supervised by human
annotation. In this paper, we propose a con-
trolled equation generation solver by leverag-
ing a set of control codes to guide the model
to consider certain reasoning logic and decode
the corresponding equations expressions trans-
formed from the human reference. The empiri-
cal results suggest that our method universally
improves the performance on single-unknown
(Math23K) and multiple-unknown (DRAW1K,
HMWP) benchmarks, with substantial improve-
ments up to 13.2% accuracy on the challenging
multiple-unknown datasets. 1

1 Introduction

Solving Math Word Problems (MWPs) is the task
of obtaining mathematical solutions from natural
language text descriptions. Recent studies leverage
sequence-to-sequence (seq2seq) neural networks
(NNs) for solving MWPs, which take in the text
as the input and decodes the corresponding human-
annotated equation reference, which can further cal-
culate the answer value (Wang et al., 2017). While
promising results have been reported for single-
unknown variable problems by designing task spe-
cialized encoder and decoder architectures (Wang
et al., 2018b, 2019; Xie and Sun, 2019; Liu et al.,
2019; Guan et al., 2019; Zhang et al., 2020b,a; Shen
and Jin, 2020), using pre-trained models (Tan et al.,
2021; Liang et al., 2021) and leveraging auxiliary
tasks (Liu et al., 2020; Shen et al., 2021; Li et al.,
2022), various studies for a more challenging set-
ting, MWPs with multiple-unknowns have recently
been developed (Upadhyay and Chang, 2017; Qin

∗ This denotes equal contribution.
1Our code is available at https://github.com/

yiyunya/CTRL-MWP.

Figure 1: Example of diverse reasoning logic, expres-
sion bias, and our controlled expression generation.
<orig> and <sol> are the pre-defined control codes.

et al., 2020; Cao et al., 2021; Qin et al., 2021). For
human students in practice, they intuitively use di-
verse reasoning logic to solve MWPs. Students
could consider the MWP solution from different as-
pects by considering diverse equivalence relations
in the MWP. As we show in the upper of Figure
1, we can solve this problem in at least two differ-
ent reasoning logic: As shown on the left side, the
equation set is formed by the first reasoning logic
of “considering the equivalence relation of the two
sums of the cheeseburger and pizza calories given
in the question”; or as shown in the right side, we
can follow a second reasoning logic “considering
first only the equivalence relation of caloric content
of the cheeseburger by offsetting the calories from
the pizza”. Such diverse reasoning logic could lead
to diverse equation expressions, that the solution
equation is written in various mathematically equiv-
alent forms, such as expression 1 and expression 2
in the example. However, previous studies share a
long-lasting limitation that they force the solver to
decode a fixed equation expression supervised by
human annotation. The fixed equation expression
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supervision used in previous studies ignores di-
verse mathematical reasoning, which is especially
common for human students in multiple-unknown
problems and complex single-unknown problems.

Meanwhile, directly introducing diverse equa-
tion expressions to the seq2seq framework in a data
augmentation manner could further aggravate the
issue of expression bias, which refers to the discrep-
ancy between the annotated equation expression
and the model’s correct prediction expression. As
shown in the middle of Figure 1, even if the model
makes the correct prediction of the problem, the
training loss accumulated by diverse expressions
could be enormous. Wang et al. (2018a) propose
an equation normalization that reorders the vari-
ables in the equations as close as possible to their
order in the input text. While their method could
reduce the expression bias issue, they ignore the
inherent diverse mathematical reasoning and limits
to considering single-unknown problems.

Enlightened by recent methods in controlled
text generation, which uses a control code to in-
fluence the style and topic of subsequent generated
text (Keskar et al., 2019; Shin et al., 2020), we
propose a new training paradigm, where a control
code guides the decoding process to consider one
type of mathematical reasoning logic and decode
the corresponding equation expression. As shown
in the bottom Figure 1, the <sol> control code
guides the model to consider the direct solution
of each individual unknown x1 and x2. Not only
can it reduce the expression bias problem since
the control code can provide guidance for the rea-
soning logic, but also training on the diverse equa-
tion expressions guided by the control codes can
lead to better interpretation of the MWPs by con-
sidering diverse reasoning logic. We design var-
ious control codes for both single-unknown and
multiple-unknown settings to allow the model to
understand different reasoning orders. We con-
duct experiments on a single-unknown benchmark
Math23K and two multiple-unknown benchmarks
DRAW1K and HMWP. Experimental results show
that our method improves the performance of both
settings, with a more significant improvement in
the challenging multiple-unknown setting.

2 Methodology

For each math word problem holding an original
equation set (e1, e2, ...), we generate new equation
expressions based on five types of diverse mathe-

matical reasoning logic considering the ordering
logic of given variables {ni} and unknown vari-
ables {xj}. i and j denote the ordered indices that
the variables appear in the text. We then assign a
corresponding control code to the equation expres-
sions. The MWP solving model takes in the text
and control code, and then is trained to predict the
corresponding equation expression.

2.1 Control Codes

We consider the diverse mathematical reasoning
logic in two aspects. The first aspect considers di-
verse reasoning orders of given variables, which
reflects in the diverse expressions of the com-
mutative law and solution form. For example,
n1 ∗ x1 = n2 could be transformed to the solu-
tion form x1 = n2/n1 which does not effect the
mathematical equivalency. This approach is valid
for both multi-unknown and single-unknown prob-
lems. The second aspect considers diverse reason-
ing orders of unknown variables, which reflects in
the diverse expressions of equivalent equation sets.
For example, swapping the equation order in the
equation set does not affect the mathematical equiv-
alency. This approach is valid for multi-unknown
problems.

We preprocess the equation annotations with
Sympy (Meurer et al., 2017) so that they follow
a predefined order similar to Wang et al. (2018a).
Then we generate different types of equation ex-
pressions based on these preprocessed equations.

For the first aspect, we consider three types of
diverse equation expressions.

• Commutative Law of Addition <add> We
traverse the equation in prefix order, and swap
the left and right subtrees of the addition op-
erators. For example, x1 = n1 + n2 + n3

would be swapped two times. We first swap
the two subtrees n1 and n2 of the first addition
operator to x1 = n2+n1+n3, and then swap
the two subtrees n2+n1 and n3 of the second
operator to x1 = n3 + n2 + n1.

• Commutative Law of Multiplication <mul>
Similarly, we traverse the equation in prefix
order, and swap the left and right subtrees
of the multiplication operators. For example,
from x1 = n1 ∗ n2 ∗ n3 to x1 = n3 ∗ n2 ∗ n1.

• Solution Form <sol> We consider a mathe-
matical reasoning method that directly consid-
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Figure 2: Statistics of datasets and the usage of control codes.

ers the solution of each unknown variable. For
example, from n1/x1 = n2 to x1 = n1/n2.

For the second aspect, we consider two types of
diverse equation expressions.

• Equation Swapping <equ> We swap the
multiple-unknown equations in sequential or-
der, which means given a list of equations
(e1, e2, ...en), we swap them to the order
(en, e1, e2, ...en−1).

• Unknown Variable Swapping <var> Sim-
ilarly, we swap the multiple unknown vari-
ables in sequential order, which means given
a list of unknown variables in the equation
(x1, x2, ...xn), we change the correspondence
between them and the unknown variables in
the original question, that the unknown vari-
ables in the new equation (xs1, x

s
2, ...x

s
n) fol-

lows xs1 denotes xn and xsi denotes xi−1 for
other indices. For example, from n1 ∗ x1 +
n2 ∗ x2 = 0 to n1 ∗ x2 + n2 ∗ x1 = 0.

To incorporate the control codes for guiding the
equation expression decoding, we follow studies
in controlled text generation (Keskar et al., 2019)
and append a control code to the encoder input. We
use an independent special token for each expres-
sion category as the control code, such as <add>,
including <orig> for the example of the original
equation expression. We use the prediction of the
original equation expression control code <orig>
for test inference since it has the most training ex-
amples.

2.2 MWP solving model

Solving multiple-unknown problems usually re-
quires equation sets, which are challenging to gen-
erate. To tackle this problem, we follow the decod-
ing target paradigm of Qin et al. (2020), which in-
troduces a Universal Expression Tree (UET) to rep-
resent multiple-unknown equation sets uniformly

as an expression tree by using a dummy node as
the head of the equation set. UET can also handle
single-unknown problems in a unified manner.

For the solver model, we use two strong base-
line models for experiments. For the first model,
we leverage a seq2seq pre-trained language model
BART (Lewis et al., 2020; Shen et al., 2021) as the
solver model, which has reported promising results
for text generation tasks. The encoder takes in the
textual input and generates high-quality represen-
tations of the problem text. The decoder generates
the UET based on these representations.

For the second model, we follow Li et al. (2022)
and use BERT-GTS as MWP solving model. We
leverage the contextual pre-trained language model
BERT as the encoder, and use a Goal-driven tree-
structured MWP solver (GTS) (Xie and Sun,
2019) based on Long-Short-Term-Memory net-
works (LSTM) as the decoder.

3 Experiments

3.1 Datasets

We evaluate our proposed method on one
single-unknown Chinese dataset Math23K (Wang
et al., 2017) and two multiple-unknown datasets,
DRAW1K (Upadhyay and Chang, 2017) in En-
glish and HMWP (Qin et al., 2020) in Chinese.
We show the statistics of overall data size, single
and multiple unknown problem size, and the us-
age of control codes of the datasets in Figure 2.
The five control code methods are enumerated for
each example to generate new equation expressions.
While <sol> is applicable for both single-unknown
and multiple-unknown problems, the annotation
schema in Math23K uses the Solution Form, which
corresponds to <orig>, that no more further equa-
tion expressions are generated for<sol>. We use
from 1.87 to 6.15 times of original data examples
size for training on the three datasets.
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Model Math23K DRAW HMWP
GTS (Xie and Sun, 2019) 75.6 39.9 44.6
G2T (Zhang et al., 2020b) 77.4 41.0 45.1
SAU-Solver (Qin et al., 2020) - 39.2 44.8
BART† (Shen et al., 2021) 80.4 32.1 41.5
BERT-GTS† (Li et al., 2022) 82.6 42.2 48.3
Controlled BART 82.3 45.3 47.9
Controlled BERT-GTS 84.0 50.2 56.4

Table 1: Results on MWP datasets. † denotes our implementation results.

Model Math23K DRAW HMWP
BERT-GTS 82.6 42.2 48.3
+ <add> 83.0 46.8 50.8
+ <mul> 83.3 47.6 51.9
+ <sol> - 46.3 50.5
+ <equ> - 48.3 50.1
+ <var> - 47.4 50.1
All 84.0 50.2 56.4
- code 83.3 49.6 49.6

Table 2: Ablation Study on MWP datasets. + <control
code> denotes using only one control code. All denotes
using all control codes. - code denotes using the exam-
ples as data augmentation without control codes.

3.2 Results

We show our experimental results on the three
datasets in Table 1. We compare our results with
three models: GTS uses an LSTM encoder and
decoder, which considers tree structure informa-
tion during decoding; G2T uses a Graph Neural
Network that considers quantity information as the
encoder and similar tree decoder; SAU-Solver in-
troduces a semantically-alignment to the target vo-
cabulary of the equations to improve the GTS de-
coder. As we can see, our method outperforms the
baseline for both models on all datasets. The accu-
racy of different models gains improvement from
1.8% to 1.9% for single-unknown problems and
from 4.8% to 13.2% for multiple-unknown prob-
lems. The results demonstrate the effectiveness
of our method, especially for multiple-unknown
problems.

3.3 Ablation Study

We conduct further analysis on the more effective
model BERT-GTS. In Table 2, we show the abla-
tion study using different control codes. As shown
in the Table, using each control code individually
can improve the model’s prediction. <mul> is par-

Figure 3: Performance on different given variable sizes.

ticularly effective for all datasets since it has an
extensive example size for each dataset. Using all
control codes together further boosts the model
performance by providing diverse mathematical
reasoning logic as guidance.

We also show the results of removing the con-
trol codes and solely using the diverse equation
expressions in a data augmentation manner in Ta-
ble 2. Solely introducing diverse mathematical
reasoning logic can also improve the model perfor-
mance compared to the baseline model. However,
the expression bias problem limits the performance
since training loss could accumulate for diverse
equation expressions. By incorporating control
codes to guide the decoding process, our method
can consider diverse reasoning logic and reduce the
expression bias problem in the meantime.

3.4 Study on Variable Size

We show the performance on different given vari-
able sizes of the BERT-GTS baseline model and
our controlled equation generation method on
Math23K in Figure 3. As the variable size grows,
the problem becomes more complex, and the per-
formance gap between our method and the baseline
becomes more significant. Our method can incorpo-
rate diverse equation expressions to help the model
learn mathematical reasoning logic.
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Category English Chinese
<add> Swap addition operands 加法交换律
<mul> Swap multiplication operands 乘法交换律
<sol> Solution form 以解形式表达
<equ> Swap equation order sequentially 交换方程组算式
<var> Swap unknown variables order sequentially 交换未知量

<orig> Original Form 原始形式

Table 3: Description based control codes used for each category.

Model Math23K DRAW HMWP
BERT-GTS 82.6 42.2 48.3
+ token 84.0 50.2 56.4
+ description 83.3 52.1 58.3

Table 4: Study on using different control code strategies.
+token denotes using special tokens. +description de-
notes using a short description text of the category.

3.5 Study on control code strategies

Various studies have shown that natural language
style control codes that serve as a description
of the target text could benefit the model perfor-
mance (Keskar et al., 2019; He et al., 2020). In
Table 4, we show the performance of applying a
description text based control code for each ex-
pression category, such as Swap addition operands.
We use the description text Original input for the
origin equation expression <orig> category, and
also use it for inference at test stage. The detailed
descriptions are shown in Table 3. Description text
based control codes achieve better performance on
multiple-unknown datasets, which have more ex-
pression categories. Such control codes could be
beneficial as more controlled equation generation
strategies are applied, which we leave as future
work.

4 Conclusion and Future Work

In this paper, we introduce diverse mathematical
reasoning logic to the seq2seq MWP solver frame-
work using five control codes to guide the solver
to predict the corresponding equation expression
in a controlled equation generation manner. The
approach allows the solver to benefit from diverse
reasoning logic beyond the human-annotated fixed
solution equation. Meanwhile, the controlled equa-
tion generation training paradigm reduces the ex-
pression bias problem caused by diverse equation
expressions. Experimental results show the effec-
tiveness of our method, outperforming strong base-

lines on single-unknown (Math23K) and multiple-
unknown (DRAW1K, HMWP) datasets.

There exists other controlled equation genera-
tion strategies such as such as adding brackets to
merge subtraction terms (e.g. from n1−n2−n3 to
n1−(n2+n3)) or combining current control codes
to form a new type of equation expression, which
potentially could lead to more than 10 controlled
equation generation strategies. In addition, consid-
ering the prediction of multiple control codes in
addition to <orig> could further improve the per-
formance results, for example, applying ensemble
learning methods such as major voting, or design-
ing rankers to choose a optimal prediction among
the prediction of multiple control codes. These
problems could be considered as future work of
this study.
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A Experimental Details

We evaluate Math23K on the standard train test
setting. DRAW1K and HMWP are evaluated by
5-cross validation.

For DRAW1K, we use the bert-base pre-trained
encoder. For Math23K and HMWP, we use the
pre-trained encoder that could be found here 2.

For Math23K, the max text length is 256, the
max equation decoding length is 45, the batch size
is 16 and the epochs number is 50. We use AdamW
with a learning rate of 5e-5.

For DRAW1K, the max text length is 256, the
max equation decoding length is 32, the batch size
is 16 and the epochs number is 50. We use AdamW
with a learning rate of 5e-5.

For HMWP, the max text length is 1024, the max
equation decoding length is 100, the batch size is
8 and the epochs number is 50. We use AdamW
with a learning rate of 5e-5.

Experiments are conducted on NVIDIA 3090
and A100(80G). The runtime for the longest exper-
iments is around 6 hours.

2https://huggingface.co/yechen/bert-base-chinese
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