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Abstract
Task-oriented dialog systems deployed in real-
world applications are often challenged by out-
of-distribution queries. These systems should
not only reliably detect utterances with unsup-
ported intents (semantic shift), but also gener-
alize to covariate shift (supported intents from
unseen distributions). However, none of the
existing benchmarks for open-world intent clas-
sification focus on the second aspect, thus only
performing a partial evaluation of intent de-
tection techniques. In this work, we propose
two new datasets (CLINC14-COV and HWU12-
COV) that include utterances useful for evaluat-
ing the robustness of open-world models to co-
variate shift. Along with the i.i.d. test set, both
datasets contain a new cov-test set that, along
with out-of-scope utterances, contains in-scope
utterances sampled from different distributions
not seen during training. This setting better
mimics the challenges faced in real-world ap-
plications. Evaluating several open-world clas-
sifiers on the new datasets reveals that models
that perform well on the test set struggle to
generalize to the cov-test. Our datasets fill an
important gap in the field, offering a more real-
istic evaluation scenario for intent classification
in task-oriented dialog systems.

1 Introduction

Open-world classification has been extensively
studied in both NLP and CV. Reliably refraining
from prediction on samples from out-of-scope la-
bels is of utmost value (Zhang et al., 2021), espe-
cially to ensure safety (e.g. autonomous driving)
and high quality performance of ML models in pro-
duction environments. Yang et al. (2021) term this
as semantic shift detection.

With the advent of voice/text-based task-oriented
dialog assistants, it is important to distinguish be-
tween supported and unsupported intents to ensure
that the classifier does not return garbage when it is
barraged with queries from intents it has not been
trained on. Several state-of-the-art datasets have

been proposed to evaluate the performance of open-
world classifiers for intent detection. For example,
CLINC (Larson et al., 2019), ROSTD (Schuster
et al., 2019; Gangal et al., 2020), HWU64 (Liu
et al., 2021), etc.

However, to the best our knowledge, none of
the existing benchmarks for intent classification
incorporate another fundamental aspect of infer-
ence in production. Not only should an open-world
classifier reliably handle semantic shift, it should
also generalize (or be robust) to inference-time co-
variate shift where Ptrain(y|x) = Ptest(y|x) but
Ptrain(x) ̸= Ptest(x) (Shimodaira, 2000; Moreno-
Torres et al., 2012; Yang et al., 2021; Wang et al.,
2022). In industrial settings, it is common prac-
tice for ML systems to be trained on some amount
of synthetic data. In general, for most real-world
applications the production distribution is often un-
known. The classifier, however, is still expected to
output correct predictions regardless of this poten-
tial shift from what it has observed during training.

In this work, we propose two new En-
glish (Bender, 2011) benchmarks, CLINC14-
COV and HWU12-COV, that fill this gap by focus-
ing on both semantic and covariate shift to evaluate
the performance of intent classifiers. We lever-
age existing state-of-the-art intent classification
datasets to specifically design a test set (cov-test)
that, along with out-of-scope utterances, contains
in-domain queries generated from a different distri-
bution to the training set. The latter are collected
by identifying equivalence clusters across different
state-of-the-art intent classification datasets. Ele-
ments within an equivalence cluster contain intent
classes that, despite being sourced from different
datasets, share the same underlying intent. In total,
CLINC14-COV cov-test contains 420 queries across
14 intents, while the cov-test split in HWU12-COV

has 1080 queries across 12 intents.
We evaluate a range of open-world intent classi-

fiers and out-of-scope detection techniques on our
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# Equivalence Clusters

1 rostd:alarm/set_alarm, hwu64:alarm_set, massive:alarm_set,
clinc:alarm

2 rostd:alarm/cancel_alarm, hwu64:alarm_remove,
massive:alarm_remove

3 rostd:alarm/show_alarms, hwu64:alarm_query,
massive:alarm_query

4 rostd:weather/find, hwu64:weather_query, snips:GetWeather,
massive:weather_query, clinc:weather

5 hwu64:calendar_query, massive:calendar_query, clinc:calendar

6 hwu64:cooking_recipe, massive:cooking_recipe, clinc:recipe

7 hwu64:datetime_query, massive:datetime_query,
clinc:time, clinc:date

8 hwu64:general_repeat, massive:general_repeat, clinc:repeat

9 hwu64:qa_definition, massive:qa_definition, clinc:definition

10 hwu64:takeaway_order, massive:takeaway_order„ clinc:order

11 hwu64:transport_traffic, massive:transport_traffic, clinc:traffic

12 rostd:reminder/show_reminders, clinc:reminder

13 snips:PlayMusic, hwu64:play_music,
massive:play_music, clinc:play_music

14 snips:BookRestaurant, clinc:restaurant_reservation

15 snips:AddToPlaylist, clinc:update_playlist

16 banking:declined_card_payment, clinc:card_declined

Table 1: Equivalence clusters (<dataset:intent>). Elements
within a cluster represent labels that, despite being from dif-
ferent source datasets, share the same underlying intent.

datasets. Our experiments show that all methods
perform relatively poorly on the new cov-test sets.
In the full-setting, we find a drop in performance
of more than 10 absolute F1 and Accuracy points
from test to cov-test. We observe a smaller drop
for few-shot classification suggesting that such a
setting might lead to more robust intent classifiers.
We also analyse the affect of covariate shift with
and without semantic shift, and find that not only
does the existence of both phenomena better mimic
production scenarios, it also results in a more chal-
lenging setting for classifiers. Our results show
that the current models are less reliable when ex-
posed to queries with covariate shift, especially
in the open-world setting. We hope that the new
datasets will enable future work to fill this gap in
the research and development of dialog systems.1

2 Dataset

We introduce two new datasets that contain utter-
ances to evaluate the robustness of intent-classifiers
to both covariate shift and semantic shift.

2.1 In-Scope Data Collection
To collect in-scope utterances, we leverage the ex-
isting state-of-the-art intent-classification datasets

1https://github.com/sopankhosla/cov_
shift_intent_datasets

Dataset TRAIN VAL TEST COV-TEST

CLINC14-COV 1400 280 (100) 420 (1000) 420 (1000)
HWU12-COV 5055 815 (100) 1028 (1000) 1080 (1000)

Table 2: Data Statistics for our proposed benchmarks – #ID
(#OOS) utterances in each split. COV-TEST depicts the newly
introduced test set with covariate shift.

including HWU64 (Liu et al., 2021), MAS-
SIVE (FitzGerald et al., 2022), CLINC (Lar-
son et al., 2019), ROSTD (Schuster et al.,
2019), SNIPS (Coucke et al., 2018), BANK-
ING (Casanueva et al., 2020) as our starting points.

Equivalence Clusters. We manually go through
the different intents and corresponding utterances
in the above-mentioned datasets and define Equiv-
alence Clusters (ECs) as clusters of labels across
these datasets that represent similar underlying in-
tents. Overall, we identify 16 such clusters (as
shown in Table 1). The nature of these ECs gives
rise to a natural covariate shift. Each element in the
cluster comes from a different dataset and there-
fore can be safely assumed to be generated from a
dissimilar underlying distribution (examples utter-
ances shown in Table 3). We leverage this property
to create our two new benchmarks.

CLINC14-COV. To collect this dataset, we
consider the equivalence clusters that contain
atleast one CLINC intent. We leverage the
CLINC intents in 14 such clusters to build the
in-domain training, development, and test set.
Rest of the elements in those 14 clusters are
used to populate the cov-test set. For example,
from Cluster 1, clinc:alarm utterances are make
up the train/dev/test; whereas utterances from
rostd:alarm/set_alarm, hwu64:alarm_set are used
for cov-test. Finally, to ensure balance among the
in-domain classes in CLINC14-COV cov-test, we
randomly sample 30 utterances for each intent.2

HWU12-COV. We first take the 12 ECs that contain
a hwu64 or massive intent. Then, we populate the
train/dev/test/cov-test splits using the same proce-
dure as discussed for CLINC14-COV. So, for Clus-
ter 6, hwu64/massive:cooking_recipe are consid-
ered i.i.d., whereas clinc:recipe queries are added
to the cov-test set. For cov-test, we randomly sam-
ple 90 utterances for each of the 12 intent classes.

2.2 Out-of-Scope Data Collection

We use the existing CLINC OOS samples as out-of-
scope data for different splits of our benchmarks.

2i.i.d. test set also contains 30 utterances per intent class.

https://github.com/sopankhosla/cov_shift_intent_datasets
https://github.com/sopankhosla/cov_shift_intent_datasets
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EC# Utterance Source Dataset : Label

1 (alarm_set) tomorrow i would like an alarm for 9 tomorrow clinc:alarm
please add an alarm called "fitness" rostd:alarm/set_alarm

set an alarm for two hours from now please hwu64:alarm_set
wake me up after 2 hours rostd:alarm/set_alarm

4 (weather) what will the weather be like in samoa at 6 pm snips:GetWeather
Are we expecting snow this week? rostd:weather/find

how does the weather feel clinc:weather
should i take my raincoat with me now hwu64:weather_query

13 (play_music) play a song for me clinc:play_music
play my women of rock playlist snips:PlayMusic

please select the first song in my itunes library hwu64:play_music
next play justin bieber’s sorry massive:play_music

16 (card_declined) The payment for the card did not go through banking:declined_card_payment
My card payment has been declined banking:declined_card_payment

how come my credit card isn’t working clinc:card_declined
i could not buy food using my card when i was in vietnam clinc:card_declined

Table 3: Example utterances from different equivalence clusters (EC).

OOS samples in CLINC test set are also used for
the new cov-test. We refer the reader to Larson
et al. (2019) for more details. Table 2 provides
details on statistics for both benchmark datasets.

3 Benchmark Evaluation

We evaluate a range of open-world intent classifi-
cation approaches on the new benchmarks.

Unsupervised OOS Detection. The term unsu-
pervised here refers to the absence of OOS sam-
ples during training. For this setup, we consider
approaches that leverage a confidence-score to
distinguish between in-domain and out-of-scope
instances. Confidence scores can be calculated
using logits like Maximum Softmax Probability
(Hendrycks et al., 2020; Hsu et al., 2020) or
distance-based statistics like Mahalanobis distance
and Cosine similarity (Zhou et al., 2021). In ad-
dition, we show results for KNN-C (Zhou et al.,
2022) that uses cosine distance to arrive at a local
outlier factor score, and ADB (Zhang et al., 2021)
that learns adaptive spherical decision boundaries.

Pseudo k+1 OOS Detection strategies focus on
generating synthetic out-of-scope samples. These
synthetic samples are then included in the training
regime of the open-world classifier in a k+1 multi-
class classification setup, with k ID and 1 (pseudo)
OOS classes. For our experiments, we consider re-
cent algorithms like ODIST (Shu et al., 2021) and
DCLOOS (Zhan et al., 2021) under this umbrella.

4 Experimental Setup

Evaluation Metrics. In line with Shu et al.
(2017); Lin and Xu (2019); Khosla and Gangad-
haraiah (2022), we evaluate the perfromance of the

various approaches on accuracy (Acc) and macro
F1-score on known classes (F1In), open class
(F1Out), and all classes combined (F1All).

Hyperparameters. For a fair comparison, we
use the bert-base-uncased encoder from Hugging-
Face for classification with most of the default hy-
perparameters.3 We experiment with training batch
sizes {32, 64, 128}. Model with batch size 64 per-
forms the best across all datasets. The learning rate
for ID classifier training is set to 2e-5. For ADB,
KNN-C, ODIST, and DCLOOS, we use the default
hyperparameters in their released code. 4,5

Threshold Selection. For MSP, Maha, and Co-
sine we follow Khosla and Gangadharaiah (2022)
and extract a random subset from the validation
data (VAL-HOLD) for threshold selection. The in-
domain classifier is not exposed to this random sub-
set for development. For threshold tuning, we max-
imize Accin +Recallout on VAL-HOLD. For other
methods, we follow their released source code.

5 Results and Analysis
Here, we present the results of our experiments.

Full Setting Open-world Classification. Table 4
shows the results on full setting open-world classifi-
cation.6 The compared state-of-the-art methods see
a significant drop in performance from i.i.d. test
set to cov-test on both benchmark datasets.

On CLINC14-COV, the models consistently lose
8-12 Acc points, and 18-20 F1All points, a large

2Each result is an average of 10 runs with different seeds.
3https://huggingface.co/bert-base-uncased
4roberta-base results are present in the Appendix.
5All experiments are run on a Tesla V100 16GB GPU.
6We report the averaged scores on 10 random seeds and

the std. dev. values for brevity.
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Performance on TEST COV-TEST

F1All F1In F1Out Acc F1All F1In F1Out Acc

CLINC14-COV

MSP 88.5 88.2 93.3 91.2 72.9 71.7 89.0 84.2
Cosine 91.4 91.0 96.1 94.4 71.6 70.2 90.8 86.0
Maha 92.4 92.1 96.7 95.2 73.2 71.9 91.4 86.9
ADB 89.1 88.7 94.2 92.1 71.9 70.9 85.8 80.6
KNN-C 92.5 92.2 96.6 95.2 71.2 69.8 91.0 86.3

ODIST 90.5 90.1 95.6 93.8 72.3 71.0 90.6 85.7
DCLOOS 92.5 92.2 97.0 95.7 59.7 57.6 89.3 83.2

HWU12-COV

MSP 86.9 87.5 80.4 83.1 80.4 80.7 76.6 78.7
Cosine 92.0 92.1 90.4 90.6 85.4 85.3 86.6 86.6
Maha 92.3 92.4 90.8 91.1 84.5 84.3 86.6 86.5
ADB 88.8 89.1 85.3 86.6 84.7 84.9 82.6 83.7
KNN-C 92.1 92.3 89.8 90.3 84.0 83.9 85.7 85.7

ODIST 90.0 90.1 88.1 88.7 83.2 83.1 84.2 84.3
DCLOOS 93.6 93.7 92.9 93.0 80.5 80.1 85.2 84.1

Table 4: Full-setting open-world classification results. Al-
though the compared state-of-the-art methods perform well
on i.i.d. test, they struggle to generalize to the new cov-test.

part of which can be attributed to their poor perfor-
mance on in-domain classes (Fin) on this set. On
HWU12-COV, the drop is smaller yet still signifi-
cant, with performance (F1All, Acc) going down
from low 90s to mid 80s. Similar to CLINC14-
COV, we see large differences (around 10 points)
between the F1in scores on test vs cov-test sets.

Unsupervised vs Pseudo k+1 OOS Detection.
We also observe that the unsupervised open-world
classification algorithms seem to suffer slightly
smaller drops in F1in from test to cov-test as com-
pared to their pseudo k+1 counterparts (Table 4).
Although DCLOOS achieves a very high F1 on
CLINC14-COV i.i.d. test (F1in = 92.2%, F1All =
92.5%), its performance on cov-test is substan-
tially impacted (F1in = 57.6%, F1All = 59.7%).
This holds true for HWU12-COV as well where
DCLOOS scores the lowest F1in, F1All on cov-
test amongst all systems studied in this work. Com-
pare this to unsupervised approaches like Cosine
and Maha that achieve the highest F1 scores on
cov-test while remaining competitive on i.i.d. test.

Few-shot Classification. Next, we study the im-
pact of covariate-shift in the few-shot setting. Ta-
ble 5 shows the results for 5, 10-shot classification.

Expectedly, the performance in the few-shot set-
ting on i.i.d. test is lower than what was achieved
in the full-setting. This difference is larger on
HWU12-COV as compared to CLINC14-COV. It
is interesting to see, however, that the drop in Acc
and F1 from test to cov-test is lower than that in
the full-setting. The gap is almost non-existent for
HWU12-COV. This seems to indicate that the few-

Performance on TEST COV-TEST

F1All F1In F1Out Acc F1All F1In F1Out Acc

CLINC14-COV (5-Shot)

MSP 79.7 79.1 88.0 84.3 65.8 64.4 85.0 78.6
Cosine 82.2 81.4 92.3 89.0 66.9 65.3 88.9 82.6
Maha 84.2 83.5 93.3 90.2 68.5 67.0 89.9 83.8
ADB 80.4 79.5 93.1 89.8 57.0 54.7 88.3 81.6

CLINC14-COV (10-Shot)

MSP 83.6 83.0 91.3 88.1 70.0 68.7 87.8 82.1
Cosine 85.6 85.0 93.6 90.8 69.7 68.2 89.8 84.3
Maha 86.5 86.0 93.7 90.9 71.5 70.2 90.0 84.4
ADB 84.0 83.3 93.8 91.0 64.8 63.0 89.5 83.8

HWU12-COV (5-Shot)

MSP 69.2 69.1 70.7 69.4 71.9 72.0 71.7 71.5
Cosine 70.7 70.4 74.4 71.9 72.5 72.3 74.9 73.1
Maha 73.8 73.1 81.8 77.1 73.7 73.1 81.1 77.2
ADB 63.8 62.8 76.7 70.7 59.4 58.0 75.7 69.9

HWU12-COV (10-Shot)

MSP 77.3 77.4 75.6 76.3 80.0 80.2 76.5 78.2
Cosine 80.9 80.7 83.6 81.6 81.9 81.7 84.0 82.9
Maha 83.2 82.9 86.5 84.2 82.2 81.9 85.8 84.2
ADB 77.2 76.8 81.9 78.9 75.2 74.6 81.8 79.3

Table 5: Few-shot classification results for unsupervised open-
world classification. The drop in performance from test to cov-
test seems to be smaller than that observed in the full-setting.
We note that this gap is almost non-existent on HWU12-COV.

shot setting might be more robust to covariate shift
as the models do not overfit on the training data.

Covariate Shift in Open-world Setting. Finally,
we also discuss the differential impact of covariate
shift in the absence and presence of semantic shift.

On CLINC14-COV (Figure 1), Maha (seed 0) is
extremely accurate in its predictions about the ID

classes in the presence of semantic shift. But, it
classifies some OOS samples incorrectly (Fig. 1
left). For covariate shift, we find that in the absence
of any semantic shift, the model is robust enough
for most intents (middle). However, when both phe-
nomena occur together, as is the case in the newly
proposed cov-test, model’s outputs go awry and
it considers several of the ID samples to be OOS

(right). For example, in the closed-world setting
(no open-intent), the model only misclassifies 2
date samples from cov-test (middle). However, this
number goes up to 24 when covariate shift is intro-
duced in the open-world setting (right). This seems
to be a result of the model’s reduced confidence
on cov-set ID utterances, ultimately lowering their
score below the OOS detection threshold. Open-
world classification methods end up introducing
tighter conceptual boundaries around each ID class
as compared to their closed-world counterparts thus
making it easier to confuse ID examples with co-
variate shift as OOS. We observe a similar trend for
other methods, but exclude those results for brevity.
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Figure 1: Confusion matrix for Maha (seed 0) on CLINC14-COV with and without covariate and semantic shifts. Covariate shift
by itself (middle) does not seem to significantly affect classifier’s performance. However, when present along with semantic shift
(right), often the case in real-world scenarios, it adversely affects the prediction accuracy (e.g. on intents like date, calendar).

6 Related Work

Intent Classification Corpora. There are several
available state-of-the-art datasets to evaluate intent
classification models (e.g. Larson et al. (2019); Lee
et al. (2019); Liu et al. (2021), (Liu et al., 2021;
Xu et al., 2015; Casanueva et al., 2020)). While
some of these corpora also contain out-of-scope
utterances in their test sets, none of them include
non i.i.d. in-scope samples. Our new CLINC14-
COV and HWU12-COV fill this gap by incorporating
such samples in a new cov-test set to evaluate the
robustness of intent classification models to both
covariate shift and semantic shift.

Evaluating model robustness. Prior works have
proposed datasets with adversarial examples to
evaluate model robustness. Jia and Liang (2017)
show that inserting text can confuse QA systems.
Ribeiro et al. (2020) propose a behavioral check-
list, an automated test data modification framework
to probe model robustness on sentiment analysis
and machine comprehension. Whereas, works like
Peng et al. (2021); Krone et al. (2021) show that
models trained on clean data often struggle to gen-
eralize to noisier inputs (e.g. spelling errors, speech
disfluencies). In this work, we propose challenge
sets that evaluate model robustness to covariate
shift. These new benchmarks complement prior art
by introducing a new dimension for probing robust-
ness of open-world intent classification systems.

Larson et al. (2020) used crowdsourcing to gen-
erate paraphrases of test samples tabooing the use
of certain key words. They showed that mod-
els trained on the standard datasets struggled on
these samples. Although similar in motivation, our
benchmark creation approach differ from theirs. In-
stead of manual paraphrasing, we extract distribu-

tionally shifted examples from the equivalent intent
classes in the existing state-of-the-art datasets.

Equivalence Clusters. Our notion of equiva-
lence clusters is similar to the notion of collisions
proposed concurrently in Larson and Leach (2022).
They introduce the task of intent collision detec-
tion when updating the intent classification dataset
to incorporate more intents, and show that model
performance suffers if new data does not take col-
liding intents into consideration. On the other hand,
we use semantically similar intents in our equiva-
lence clusters to create a challenging test set that
evaluates model robustness to covariate shift.

7 Conclusion

In this work, we propose two new bench-
mark datasets to evaluate open-world intent-
classification techniques on their robustness to co-
variate shift. We leverage previously proposed
intent-detection datasets to construct equivalence
clusters whose elements represent intent labels that
come from different datasets but refer to the same
underlying intent class. The nature of these clus-
ters results in a natural covariate shift, as utterances
corresponding to each element can be assumed to
be generated from a different distribution. These
benchmarks test models in the presence of both
semantic and covariate shift, a setting that better
mimics the challenges faced in real-world produc-
tion scenarios. We evaluate a range of state-of-
the-art open-world classification techniques on our
datasets and find that despite their superior perfor-
mance on i.i.d. test data, they fail to generalize on
the covariance test samples. We believe that our
datasets and analysis will lead to developing more
robust systems for task-oriented dialog.
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Appendix

A Label Distribution

In Table A1, we show the label distribution for
CLINC14-COV and HWU12-COV. The new cov-
test sets contain a uniform distribution for each
in-domain intent class, with the 30 and 90 new ut-
terances per intent for CLINC14-COV and HWU12-
COV respectively. Train, dev, and test splits for
HWU12-COV are not balanced. Please note that
this is a property of the original HWU64 corpus.

Dataset Labels
(#train, #dev, #test, #cov-test)

CLINC14-COV reminder (100, 20, 30, 30),
play_music (100, 20, 30, 30),
definition (100, 20, 30, 30),

traffic (100, 20, 30, 30),
card_declined (100, 20, 30, 30),

weather (100, 20, 30, 30),
repeat (100, 20, 30, 30),

calendar (100, 20, 30, 30),
recipe (100, 20, 30, 30),

restaurant_reserve (100, 20, 30, 30),
date (100, 20, 30, 30),

alarm (100, 20, 30, 30),
order (100, 20, 30, 30),

update_playlist (100, 20, 30, 30)

HWU12-COV alarm_query (288, 36, 53, 90),
cooking_recipe (361, 59, 91, 90),
qa_definition (425, 71, 76, 90),
alarm_remove (174, 24, 32, 90),

weather_query (728, 143, 175, 90),
play_music (794, 141, 195, 90),

datetime_query (501, 81, 107, 90),
transport_traffic (272, 38, 34, 90),

calendar_query (724, 119, 145, 90),
takeaway_order (290, 38, 41, 90),

alarm_set (341, 47, 60, 90),
general_repeat (157, 18, 19, 90)

Table A1: Label distribution: CLINC14-COV & HWU12-COV.

B Extended Results

The main paper shows results for open-intent classi-
fication methods built on top of bert-base-uncased
encoder. Here, for completion, we also provide
the scores achieved by methods which leverage
roberta-base instead. Table A2 contains results
for full-setting and 5,10-shot settings on both new
benchmarks. Similar to the trends seen for bert-
base-uncased, we find that there is a significant
drop in F1 and Accuracy from test to cov-test in full
setting. For F1All this gap is more than 15 absolute
points on CLINC14-COV, and about 10 points on
HWU12-COV. In the few-shot scenario, we note
that this gap is smaller, and almost non-existent for
HWU12-COV(5,10-Shot). Overall, roberta models
yield slightly higher scores on both test and cov-test
as compared to their bert counterparts.

C Confusion matrices

In Figures A1 and A2, we show the confusion ma-
trices for Maha (seed 0) model on CLINC14 and
HWU12 respectively. The four plots depict model’s

confusion in the presence and absence of covariate
and semantic shift. We find that for both datasets,
introducing both phenomena together results in the
most difficult setting, with CLINC14-COV cov-test
being harder than HWU12-COV cov-test.

Performance on TEST COV-TEST

F1All F1In F1Out Acc F1All F1In F1Out Acc

CLINC14-COV (Full)

MSP 90.0 89.6 94.4 92.4 73.1 71.9 89.5 84.7
Energy 90.0 89.7 94.1 92.2 73.2 72.1 89.4 84.6
Cosine 92.5 92.3 96.2 94.6 73.2 71.9 90.6 86.0
Maha 92.5 92.2 96.2 94.6 73.3 72.1 90.5 85.7
ADB 88.8 88.5 93.2 91.0 73.4 72.5 85.7 80.8

CLINC14-COV (5-Shot)

MSP 81.6 81.0 90.1 86.5 66.9 65.5 86.8 80.5
Energy 80.1 79.5 87.9 84.5 66.6 65.2 85.4 78.9
Cosine 86.8 86.2 94.3 91.8 71.5 70.1 90.8 85.6
Maha 87.6 87.1 95.1 92.7 70.9 69.4 91.3 85.9
ADB 86.1 85.5 94.5 92.0 66.9 65.2 90.0 84.5

CLINC14-COV (10-Shot)

MSP 84.2 83.7 91.0 87.9 68.4 67.0 87.1 81.2
Energy 84.0 83.4 91.6 88.5 70.1 68.8 88.3 82.6
Cosine 88.7 88.3 95.0 92.8 71.7 70.4 90.6 85.6
Maha 89.0 88.5 95.0 92.9 72.6 71.3 90.8 85.9
ADB 86.0 85.6 92.5 89.7 70.8 69.5 88.4 83.0

HWU12-COV (Full)

MSP 89.4 89.9 83.9 85.7 81.6 81.8 79.8 81.1
Energy 89.9 90.4 85.0 86.5 80.6 80.7 80.2 80.9
Cosine 93.4 93.5 92.3 92.2 83.5 83.2 87.2 86.6
Maha 93.8 93.8 92.9 92.8 82.8 82.5 87.1 86.3
ADB 89.5 89.8 86.8 87.9 84.4 84.5 84.1 84.7

HWU12-COV (5-Shot)

MSP 73.3 73.5 71.8 72.6 73.5 73.6 71.5 72.5
Energy 72.9 73.3 68.3 71.5 73.9 74.3 69.3 72.3
Cosine 79.7 79.2 86.2 83.0 78.8 78.2 86.6 82.8
Maha 79.9 79.3 86.5 83.0 77.5 76.8 85.8 81.9
ADB 78.2 77.7 83.5 80.7 73.8 73.0 83.0 79.7

HWU12-COV (10-Shot)

MSP 79.0 79.2 76.7 77.7 79.7 80.0 75.6 77.4
Energy 79.2 79.6 75.4 77.3 80.1 80.5 75.0 77.6
Cosine 84.8 84.6 87.0 85.6 83.7 83.5 86.8 85.6
Maha 85.3 85.1 88.2 86.6 83.2 82.9 87.3 85.4
ADB 82.4 82.3 83.9 82.6 81.2 80.9 83.8 83.0

Table A2: Full-setting and few-shot classification results for
unsupervised open-world classification (roberta-base).

D Example Predictions

In Table A3, we provide Maha (seed 2) model’s
predictions on (atmost) five randomly sampled
utterances from test and cov-test of CLINC14-
COV. As shown, the utterances that are incorrectly
classified for intent classes like definition, alarm,
card_declined, rest_reserve, we do not find linguis-
tic expressions that frequently occur in the correctly
classified subset. For example, for card_declined,
incorrectly classified queries consistently lack any
explicit mention of "card". Similarly, for definition,
most correctly classified utterances use words like
"define", "mean" to depict their intent. Whereas,
incorrect ones use phrases like "tell me". We ob-
serve that the linguistic differences between test
and cov-test of rest_reserve are more subtle.
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Figure A1: Confusion matrix for Maha (seed 0) on CLINC14-COV with and without covariate and semantic shifts. Covariate
shift by itself (bottom left) does not significantly affect classifier’s performance. However, when present along with semantic
shift (bottom right), often the case in real-world cases, it adversely affects the prediction accuracy (e.g. on intents like order,
calendar).

Figure A2: Confusion matrix for Maha (seed 0) on HWU12 with and without covariate and semantic shifts.
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TEST COV-TEST

definition

what does amicable mean ✔ what are the definitions of orange ✔

i’d like to know what bitcoin means ✔ what is photosynthesis ✔

what’s the definition of remunerative ✔ spell and define oscillate ✔

define antebellum ✔ define framework ✔

can you tell me what dendrofilous means ✔ what is the definition of the word perpetual ✔

i heard some woman say she was going to yerd me, what’s that mean ✗ tell me all about hurricane ✗

what is computer ✗

tell me about morel mushrooms ✗

what is a mango ✗

give me the description about smartphone ✗

alarm

i need an alarm set now ✔ Reset the alarm for the beginning of the movie tonight ✔

i’d love to set an alarm ✔ set alarm for 8 am ✔

set the alarm now ✔ Set a daily alarm for 17h00 ✔

i would like to have an alarm set for me ✔ Set alarm for 6 am, Mon-Fri ✔

i need an alarm ✔ please ring the wake up alarm at eight am next saturday ✔

i need to up by noon ✗

can you wake me up at noon ✗

card_declined

why did i get rejected on my card ✔ My card was not accepted. ✔

why was my card not accepted ✔ Why has my card payment been declined? ✔

i was in thailand and i could not use my card to buy snacks ✔ I couldn’t pay with card in a shop ✔

why was my card not working at target ✔ I was trying to purchase something at the store today and my card has been declined. Why has this happened? ✔

can you tell me why my card got declined ✔ My card payment did not complete. ✔

how come i got declined ✗ You have declined my payment. ✗

Why was my Payment declined ✗

Why are you declining my payment? Everything was fine. ✗

Why did it decline my payment? ✗

My latest payment was declined, I was told everything was back to working order. What happened? ✗

rest_reserve

i need a table for two at the havana at nine ✔ make a reservation in a popular sicilian bar place nearby for me only tomorrow ✔

get me a table for five at itta bena at three ✔ book me a reservation for a party of 3 at a pub in northern mariana islands ✔

could you reserve table for 3 at carlos jr under the name adam at 4 ✔ book a reservation for an oyster bar ✔

reserve table for 5 at red robin under the name sara at 3 ✔ table for 8 at a popular food court ✔

are there any open reservations at outback tonight ✔ i d like a table for midday at the unseen bean ✔

i want to book a restaurant for my father in law and i in buckner a year from now ✗

book a table for nine people in svalbard and jan mayen ✗

i want to book a jewish restaurant in gambia ✗

book a table at a fried chicken restaurant ✗

find a restaurant in fm that servec quiche ✗

Table A3: CLINC14-COV: Five random correctly and incorrectly classified examples (Maha; seed 2) across four intent classes in
TEST and COV-TEST.


