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Abstract

Language models (LMs) trained on raw texts
have no direct access to the physical world.
Gordon and Van Durme (2013) point out that
LMs can thus suffer from reporting bias: texts
rarely report on common facts, instead fo-
cusing on the unusual aspects of a situation.
If LMs are only trained on text corpora and
naively memorise local co-occurrence statis-
tics, they thus naturally would learn a biased
view of the physical world. While prior studies
have repeatedly verified that LMs of smaller
scales (e.g., ROBERTA, GPT-2) amplify re-
porting bias, it remains unknown whether such
trends continue when models are scaled up.
We investigate reporting bias from the per-
spective of colour in larger language models
(LLMs) such as PALM and GPT-3. Specif-
ically, we query LLMs for the typical colour
of objects, which is one simple type of percep-
tually grounded physical common sense. Sur-
prisingly, we find that LLMs significantly out-
perform smaller LMs in determining an ob-
ject’s typical colour and more closely track hu-
man judgments, instead of overfitting to sur-
face patterns stored in texts. This suggests that
very large models of language alone are able to
overcome certain types of reporting bias that
are characterized by local co-occurrences.!

1 Introduction

Large language models (LLMs) have been com-
pared to hypothetical giant octopi living underwater
that are exposed to a lot of language data (Bender
and Koller, 2020). Such octopi would struggle to
understand what actually happens on land as they
lack the physical perceptual experience of living
there. As such, they may overfit to text-only cor-
pora and thus amplify reporting bias (Gordon and
Van Durme, 2013) rather than faithfully reflecting
the physical world.

"https://github.com/google-
research/language/tree/master/language/octopus-llm (code).
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Figure 1: On typical colour judgments, large language
models (LLMs) greatly outperform small LMs which
previously were found to be no better than corpus statis-
tics (Google Ngram). See Table 2 for full results.

In textual corpora, humans do not tend to men-
tion what is commonly known, instead using lan-
guage to express new information, which is likely
less common. For example, when describing the
colour of a banana: “green banana” has much
higher frequency than “yellow banana” in the
Google Books corpus.” It is natural to expect
LMs would overfit to such reporting bias since they
are trained to memorise such co-occurrence statis-
tics. To observe this, we can query widely used
pretrained models, such as ROBERTA[ 3¢ (Liu
et al., 2019) with our previous example. Given the
prompt “It is commonly known that most bananas
have the color <mask>", ROBERTA ranks “green”
the highest.> This agrees with corpus statistics
derived from raw text corpus such as the Google
Ngram (Lin et al., 2012) mentioned above.* Paik

%research.tiny.us/google-ngrams-banana

3research.tiny.us/roberta-banana

*The Google Books corpus is an enormous collection of
books digitised at Google (Michel et al., 2011). The 2nd
edition of the corpus derived by Lin et al. (2012) contains
>8B books, constituting over 6% of all books ever published.
Google Ngram is a corpus of ngram statistics derived from the
Google Books corpus (2nd edition). More details in §3.
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et al. (2021) test pretrained LMs’ perception of
colours and confirm that they perform no better
than naive co-occurrence statistics extracted from
the corpus. In fact, naively using corpus statistics
achieves around 40% accuracy on their proposed
colour probing benchmark CoDa while the best
LM performs similarly. Zhang et al. (2022) ex-
tend the evaluation to a broader range of visual
properties, confirming that reporting bias can nega-
tively influence model performance and increasing
model size does not help. Shwartz and Choi (2020)
repeat the reporting bias experiments of Gordon
and Van Durme (2013) on pretrained LMs and find
that LMs overestimate rare events and actions, also
amplifying reporting bias.

However, the LMs tested by Paik et al. (2021);
Zhang et al. (2022); Shwartz and Choi (2020),
i.e., GPT-2 (Radford et al., 2019), BERT (De-
vlin et al., 2019), ROBERTA, and ALBERT (Lan
et al., 2020), usually have only several hundred mil-
lion parameters and are of much smaller sizes than
LLMs available now. In this work we probe T5
(Raffel et al., 2020), GPT-3 (Brown et al., 2020),
and PALM (Chowdhery et al., 2022) of various
sizes, with parameter counts ranging from 770M
to 540B. Surprisingly, we find that LLMs almost
double the performance of small language mod-
els (SLMs) on the typical colour task (Figure 1.
Paik et al. (2021) point out that SLMs achieve poor
performance on objects that typically only have
one colour (such as bananas), possibly due to their
true colour being an aspect of common sense and
thus not frequently mentioned in the training cor-
pus. We find in contrast that LLMs achieve surpris-
ingly good performance in this category, reaching
>80% accuracy. After plotting accuracy against
model size, we observe that scaling up is univer-
sally helpful for improving LLMs’ performance on
the colour probing benchmark (CoDa; Paik et al.
2021). Moreover, as LLMs are scaled their corre-
lation to corpus ngram statistics plateau, suggest-
ing that memorising (local) co-occurrence statistics
cannot explain their success.®

Our study presents controlled analyses on the
colour prediction task as a case study to show that
scaling up LLMs could overcome surface-level pat-

3For convenience and consistency, we refer to all models
with fewer than 10B parameters as small language models
(SLMs) while those with more than 10B parameters as LLMs.

8 A careful reader would note here that the models’ training
data may differ distributionally from Google Ngram. We
discuss this more in §5.

tern memorisation (i.e., text reporting bias in our
case) and learn physical world common sense at
least to some extent. This is an important and sur-
prising finding as it provides a key evidence to
counterargue the previous consensus that despite
achieving better performance for a range of NLP
tasks, larger LMs are more prone to overfitting
to corpus statistics and therefore amplifying the
reporting bias. Our study points out that this criti-
cism on model scale is misleading as it is not based
on the complete picture, and when the model ca-
pacity is increased to a significantly large scale
such as PALM-540B and GPT-3g,vinci, they start
to overcome reporting bias and are able to abstract
physical common sense from text.

2 Method

To test whether LLMs replicate corpus biases rather
than human judgment in the typical colour task, we
compare the models’ output distributions with the
corpora’s distribution and the distribution of human
judgments. Visual perception provides an ideal
testbed as corpus statistics can vary from physical
facts; obvious facts are left unspoken. In this case,
we focus on the typical colour task, largely follow-
ing the setup by Paik et al. (2021). Given a query
asking the colour of an object, the model must out-
put a distribution over eleven possible colours. We
then compare the output distribution to both corpus
statistics and average human judgement to examine
their respective correlations.

In the following, we explain how we query the
LLMs and use their predictions. We test LLMs in
three setups: zero-shot, one-shot, and five-shot.

Zero-shot.
all models:

We use the following prompt across

It is known that most {OBJECT,} have the color
<mask>

where {OBJECT,} is replaced with the object’s
name (in plural form).” After inputting the prompt,
we compute next-token-prediction likelihood for all
11 colours in the CoDA label space and record the
log-likelihood scores for all answers as the output
distribution of the query:

$(c) = log Po(clprompt) (1)

where © is LM’s parameters; c is the color;
“prompt” is the input prompt specified earlier. For 0-

"We try other prompts to test LLMs’ sensitiveness towards
the exact terms used. See Appx. §B.2 for more discussion.
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and 5-shot prompting, the answer scoring scheme
remains the same. See Appx. §C for details of how
few-shot prompts are constructed.

3 Experimental Setup

Dataset. The CoDa dataset contains queries and
human judgments of 521 objects. For each ob-
ject, CoDa has a human-perceived colour distri-
bution over 11 basic colours in English. The 11
colours were identified by Berlin and Kay (1969)
and include black, blue, brown, grey, green, orange,
pink, purple, red, white, yellow. As an example
of the dataset, the object “Carrot” has the human-
perceived scores of black: 0.0, brown: 0.023, or-
ange: 0.797, etc., where the scores over 11 colours
sum up to 1. CoDa contains three types of ques-
tions (1) Single (2) Multi and (3) Any. “Single”
means the object has only one typical colour such
as “Carrot” which is typically orange. “Multi” ob-
jects have between two and four typical colours:
“Apple” is frequently red or green. “Any” objects
have no fixed set of typical colours, such as “Shirt”
and “Car”. By default we report micro-average
results across all three types. However, we also dis-
cuss the “Single” category in detail as it is thought
to be especially indicative of reporting bias because
such facts are rarely stated in texts. The statistics
of CoDa are listed in Table 1.3

Type  Size Examples
Single 198 Carrot, Spinach
Multi 208 Apple, Street light

Any 115 Shirt, Car

Table 1: CoDa statistics and examples.

Metrics. We use AcCat, Phumans Pngram- ACCatl
measures whether the model gets the most typi-
cal colour of an object correct. Other metrics are
useful, but less clearly interpretable: phyman Mmea-
sures a set of predictions’ Spearman’s p correla-
tion with the distribution of human colour judg-
ments (however, there is low human consensus for
some objects and colours). Higher Accg is better;
higher phuman indicates a closer match to human
judgments. ppgram measures the models’ predic-
tions’ correlation with the Google Ngram statistics.
Fitting corpus statistics is not necessarily good or

8The original CoDa dataset has a train/validation/test split
used for training classifiers to probe embedding-based repre-
sentations. However, the split was only applied on the embed-
ding model CLIP (Radford et al., 2021) and all other numbers
were reported on the full set. To be consistent, we also report
performance on the full dataset.

bad: we report it to see its relationship with both
model size and model performance.

Google Ngram baseline. Together with queries
and human judgments, Paik et al. (2021) also pro-
vide ngram stats collected from Google Books and
Wikipedia to compute the correlation with these
corpora. Specifically, they consider all bi- and tri-
grams containing a colour followed by an object. A
corpus-based baseline is then computing the accu-
racy/correlation between the total ngram counts of
colour-object pairs and the human perceived-scores.
We use Google Ngram as the default baseline as
Google Books is much larger than Wikipedia and
Google Ngram has better correlation with human
judgments than Wikipedia. Wikipedia results are
reported in Appx. §A.

SLM baselines. We use the best-performing
SLMs from Paik et al. (2021) as our baselines,
which are ROBERTAyge, GPT-2x1, and AL-
BERTv,.xxr. One important difference between
Paik et al. (2021)’s setup is that they create ten dif-
ferent hand-crafted templates and present the best
results per-object for each model. Our work uses a
single template across all models and objects. Thus,
we are underestimating LLMs’ performance com-
pared to the previously reported SLMs’ numbers
from Paik et al. (2021). Nonetheless, we see that
LLMs outperform SLMs by large margins.’

Compared LLMs and their sizes. OpenAl does
not disclose the exact size of their text models
Ada, Babbage, Curie and Davinci. According to
blog.eleuther.ai/gpt3-model-sizes, they roughly cor-
respond to 350M, 1.3B, 6.7B, and 175B, which we
use as the models’ parameter counts. For other
models (i.e., T5 and PALM), their number of pa-
rameters are made clear in the original papers. We
list all compared models’ sizes in the second col-
umn of Table 2.

4 Results

Main results (Table 2). We show our main re-
sults in Table 2. As a general trend, LLMs
with >10B parameters all significantly outperform
SLMs with <10B parameters, and performance

°In Appx. §B.1, we show that SLMs’ performance can
drop to chance-level using the same zero/few-shot evaluation
protocol as LLMs. We also demonstrate that when using
different prompts, LLMs such as GPT-3gayinci’s 0-shot perfor-
mance can be improved from 55.5% to 62.2% (Appx. §B.2).
However, we uniformly use one single prompt for LLMs to
avoid over-optimistic results.
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0-shot 1-shot 5-shot

Model Size ACC@I Phuman  Pngram ACC@I Phuman  Pngram ACC@I Phuman  Pngram
Google Ngram - 36.3 442 100.0 - - - - - -
ROBERTA 4"  335M  37.6 - - - - - - - -
GPT-2x.* 1.5B 36.1 - - - - - - - -
ALBERTyvo.xx.* 223M  31.8 - - - - - - - -
TSLarge 770M  21.1 25.7 42.2 19.4 21.0 24.5 17.9 20.7 11.8
T5xL 3B 443 574 60.3 39.0 48.8 552 42.4 47.8 60.3
T5xx1 11B 50.9 49.5 57.5 47.2 54.3 55.9 48.0 534 54.1
GPT-344a 350M 179 15.7 48.8 21.3 24.5 46.0 20.5 25.4 422
GPT-3pabbage 1.3B 27.6 22.1 58.0 27.6 29.8 51.7 28.8 37.1 51.9
GPT-3curie 6.7B 33.6 32.8 63.5 40.1 44.2 59.2 42.4 47.1 57.1
GPT-3davinci 175B 555 43.1 65.0 61.8 60.5 61.0 63.1 62.3 559
PALM-8B 8B 29.6 34.7 61.5 39.9 389 64.7 43.8 52.6 62.0
PALM-62B 62B 34.2 335 64.4 50.1 44.8 65.3 58.2 61.9 61.1
PALM-540B 540B  42.6 46.0 66.3 63.9 62.5 62.5 64.9 66.2 60.1

Table 2: Results on CoDa (average over all three types).

For Accai and pnuman (the higher the better), the best

performing models within each model class are boldfaced. The symbol * denotes numbers from Paik et al. (2021),
which uses a more optimistic protocol, aggregating the best per-object performance over 10 hand-crafted prompts.

increases monotonically with scale within each
model class. While the SLMs do not perform
significantly better than Google Ngram (accuracy
36.3%), LLMs achieve up to 64.9% (PALM-540B
5-shot). PALM-540B 5-shot also correlates best
with human judgments. For PALM and GPT-3,
few-shots are much better than 0-shot;'? while for
TS5, 0-shot seems to be the best.

Results on the “Single” colour split (Table 3).
The “Single” split deserves extra attention as it has
the highest human consensus and is also consid-
ered to be common sense knowledge, implying it is
rarely stated in the corpus (Paik et al., 2021). While
none of the SLM baselines outperform the Ngram
baseline on Acca1, the largest PALM and GPT-3
surpass the Ngram baseline by nearly 40%. Further-
more, the LLMs’ predictions correlate significantly
more to human judgments.

We also present an error analysis on the “Single
split in Appx. §B.5. Out of the ten errors made by
PALM-540B, only one is a clear mistake where the
model classifies picnic baskets as red. For other
nine errors, the error seems to be associated with
the ambiguous nature of the questions or the dataset
construction process.

9

Correlation metrics (Figure 2). For GPT-3, its
correlation with corpus ngram statistics (pngram)

1%We observe that PALM 0-shot is relatively poor (signifi-
cantly worse than GPT-3) and its strength is only shown with
few-shot. Similar behaviour of PALM is also observed on
tasks such as Natural Questions (Kwiatkowski et al., 2019).
Since this is not the focus of this paper, we leave discovering
the cause for future investigation.

Model AcC@l  Phuman  Pngram
Google Ngram 43.9 442 100.0
ROBERTALye® 429 478 -
GPT-2x.* 40.4 40.3 -
ALBERTvo.xx1.* 343 43.7 -
g GPT-3,4, 202 169 474
& GPT-3pavbage 30.8 274 56.0
GPT-3curie 39.9 39.9 62.0
GPT-34vinci 712 507 622
PALM-8B 34.8 38.2 62.1
PALM-62B 44.4 34.3 64.1
PALM-540B 53.0 42.2 65.6
GPT-34da 19.7 21.7 423
GPT-3pabbage 323 35.0 50.3
GPT-3cusie 53.5 47.3 559
2 GPT-3qavinci 823 599 533
vs  PALM-8B 53.0 50.9 60.7
PALM-62B 73.2 58.5 58.5
PALM-540B 80.8 63.1 57.0

Table 3: Results on CoDa (“Single” type). 1-shot and
TS5 results (omitted) follow similar trend as Table 2.

initially increases but then plateaus and even de-
creases (on 5-shot: 42.2 — 51.9 — 57.1 — 55.9).
On PALM, ppgram decreases from the start as model
size grows (on 5-shot: 62.0 — 61.0 — 60.1). On
both models, pngram initially is larger than phuman.
However, for model sizes above 10! parameters,
both models’ predictions have phuman > Pngram-
This suggests that when LMs are small, they can un-
derfit corpus ngrams. When LMs start to be scaled
up, they increasingly fit the corpus. However, af-
ter a certain model size, additional scale does not
lead to more overfitting to corpus statistics. On the
contrary, as LLMs’ predictions correlate more with
human judgment, they also start to decorrelate with
corpus statistics.
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Figure 2: GPT-3 and PALM’s Spearman’s p correla-
tion with human judgment and Google Ngram as they
are scaled up. These are 5-shots results from Table 2.

5 Discussion and Limitations

Discrepancy among corpora. The corpus statis-
tics we investigate are induced from Google Books
and Wikipedia. They do not necessarily repli-
cate the corpus statistics used for training LLMs.
Nonetheless, we do not believe the discrepancy
would be big enough to boost LLMs’ performance
to 80% on single-type questions. Future work
could investigate the original training corpus of
LLMs (e.g., C4 for TS5).

Is ngram a good reference? Paik et al. (2021);
Zhang et al. (2022) use the counts of colour oc-
currences with objects in bi- and tri-grams. How-
ever, to fully understand whether LLMs overfit,
we also need to consider longer contexts as it is
possible that the typical colour of an object is de-
scribed in longer pieces of text; thus, LLMs perfor-
mance improvements can be attributed to memoris-
ing long-term dependencies better than SLMs. In
this case, the “generalisation” is only memorising
a context that is similar to the prompt. Alterna-
tively, LLMs may learn good representations of
the quantifiers, such as “most”, and the usage of
the atypical colours in the text may not co-occur
with quantifiers suggesting it is common. In fu-
ture work, we intend to examine whether a similar
phenomenon persists when collecting occurrence
stats over typical model input lengths and using
more fine-grained data that also characterises pre-
modifiers such as quantifiers.

Comparing within model class for better con-
trol of confounders. Though LLMs today are
almost all Transformer-based models with similar
autoregressive pretraining objectives, we note that

there are caveats preventing us from having a per-
fect control over design choices on pretraining cor-
pora and specific architectures. In terms of pretrain-
ing data, within-family models of different sizes
generally use the same training data (GPT-3models
are however less transparent in this regard). How-
ever, it is unclear what differences there are across
model families. In terms of model architectures,
TS5 is an encoder-decoder model while GPT-3 and
PALM are decoder-only models. PALM has fur-
ther modifications on top of the original Trans-
former architecture such as using SwiGLUE activa-
tion (Shazeer, 2020) instead of the standard ReLU;
using RoPE embeddings (Su et al., 2021) instead
of the original relative position embeddings. As a
result, more conclusive findings should be drawn
within model classes, e.g. comparing PALM-540B
with its two smaller versions instead of GPT-3
models.

Colours live on a spectrum. The evidence we
obtain does not reflect whether LLMs have a fine-
grained and holistic understanding of the nature
of colour. That is, colours live on a continuous
spectrum. LLMs could have solved CoDa by iden-
tifying the mappings between objects and colours
but not colour’s relative positions on the spectrum.
One way to probe this is to examine if LLMs can
resolve colour synonyms (e.g., do LLMs know that
“scarlet” occupies a subspan of the colour red?).
However, a rigorous and systematic study of this
problem is beyond the scope of this study.

6 Conclusion and Future Work

In this work, we examine LLMs ability to make typ-
ical colour judgments, a simple property of visual
common sense. Contradicting Paik et al. (2021);
Zhang et al. (2022), we find that typical colour
judgments do not follow an inverse scaling law,
and scale is indeed quite critical for high accuracy
on the task. While generalising from this task to vi-
sual reasoning as a whole is premature, we provide
some evidence that larger models of language alone
are able to overcome a basic type of reporting bias.
Future work will look at a wider range of physical
properties (Collier et al., 2022) and more carefully
control for the data and model size. We also hope
our work opens an avenue for empirically verifying
on what level meaning acquisition is possible from
a cognitive linguistic perspective (Piantasodi and
Hill, 2022).
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A A More Comprehensive Table
(Table 5)

In the main text, we compare different models un-
der different setups in Table 2. To provide more
information for reference and also strengthen our
findings, we present a more comprehensive Table 5
which also reports Kendall’s 7 as a correlation met-
ric, and include Wikipedia stats provided by Paik
et al. (2021) as another source of ngrams. The main
conclusion remains the same. Kendall’s 7 has iden-
tical trend to Spearman’s p, and similar fitting trend
of Google Ngram is also shown on Wikipedia.

B Further Discussions

Here we present some more extensive discussions
on several topics that concern the experimental
setup, including testing SLMs under the same
setup as the LLMs (Appx. §B.1); testing different
prompts (Appx. §B.2); the discrepancies among
analysed corpora and the real pretraining corpora
of LLMs (Appx. §B.3); the risk of direct data leak-
age (Appx. §B.4); and error analysis (Appx. §B.5);

B.1 Real zero/few-shot setup for SLMs

In the main text, we used SLM numbers reported
by Paik et al. (2021) under an optimistic setup: i.e.
out of 10 prompts, choosing always the prompt that
maximises per-object’s performance when evalu-
ating models. We note that when under the same
evaluation protocol as LLMs, SLMs’ performance
would have dropped to chance level. We pick
the best performing SLM ROBERTA e as an
example. When consistently using one prompt,
ROBERTAL4ge has only an accuracy score of 7.3%.
Prompting with few-shot examples does help a bit.
However, the 5-shot accuracy of ROBERTA ;e
(real) still has a roughly 50% gap compared with
few-shot performance of the best LLMs.

B.2 LLMSs’ Sensitiveness to Prompts

For the main experiment, we choose an arbitrary
prompt: “It is known that most {OBJECT} have
the color <mask>.”. However, it is possible that
LLMs are particularly good or bad at this prompt
and it is worth testing whether LLMs are robust to
how we ask the question. In Table 6, we test GPT-
3’s sensitivity towards different prompts. First, we
change the quantifier “most” to “all”, no quanti-
fier, “some”, “few”, and “no”. We find that the
LLM is sensitive to the quantifier and produces

scores generally well correspond to the quantity
being asked. Note that “all” and no quantifier lead
to lower performance than “most”, possibly due to
the question is unnatural since there is rarely any
object exclusively having only one colour. We also
paraphrase the original prompt and find that a gram-
matical paraphrased query can lead to up to around
+/-6% performance difference. An ungrammatical
prompt will damage the model’s performance, even
including key words such as “most”, “color”, and
“common sense”.

B.3 Discrepancy among Corpora

As discussed in Limitations (§5), we use Google
Books and Wikipedia in line with Paik et al. (2021)
for direct comparison. As can be seen in Table 5,
Google Ngram is better agreeing with human judg-
ment. Moreover, Google Books is much larger than
Wikipedia. So, in the main experiments, we use it
as an approximation of pretraining corpora. How-
ever, it remains unknown how well these sources’
ngram distributions align with the real training cor-
pora of LLMs. In future work, there should ideally
be more strict control and better access to the pre-
training data to draw firmer conclusions.

B.4 Have the LLMs seen test data during
training?

It is unlikely that LL.Ms have seen the test data in
its exact form in their pretraining corpora. As the
whole web can be used as training data, this is a real
risk. However, we think it is unlikely that LLMs
have seen CoDa. The CoDa dataset was released on
October 2021. GPT-3-davinci-002 was trained with
data until June 2021; GPT-3-curie/babbage/ada-001
were using data until October 2019;!! T5’s pretrain-
ing corpus C4 was crawled on April 2019. PalLM’s
precise training data is unknown, but the paper
was published after CoDa. However, performance-
wise PalLM is not significantly better than GPT-3-
davinci-002, which uses training data before the
release of CoDa.

B.5 Error Analysis

Here we pick the errors made by the models on
Single-type questions to understand why or what
type of questions they make mistake. Both GPT-3
and PALM achieve above 80% in this category. We
randomly sample 10 errors made by PALM-540b
(5-shot) and list them below.

"beta.openai.com/docs/models/gpt-3
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0-shot 1-shot 5-shot
Model Size Accay Phuman  Pngram Accai Phuman  Pngram Accai Phuman  Pngram
Google Ngram - 36.3 442 100.0 - - - - - -
ROBERTALarge* 335M 37.6 - - - - - - - -
ROBERTALarge (real) 335M 7.3 25.8 559 8.4 17.0 529 154 28.5 51.8
GPT-34avinci 175B 55.5 43.1 65.0 61.8 60.5 61.0 63.1 62.3 55.9
PALM-540B 540B 42.6 46.0 66.3 63.9 62.5 62.5 64.9 66.2 60.1

Table 4: Evaluating the best performing SLM on CoDa, using one consistent prompt (the same setup for all LLMs
tested). Performance of the optimistic 10-prompt setup by Paik et al. (2021) and also performance of LLMs are
listed for reference. When evaluated under the same protocol as LLMs, the best performing SLM ROBERTA’s
performance drops very significantly and is at chancel level.

query: ... most mangoes have the color <mask>
ground truth: orange

prediction: yellow

———————————— error2 -------------

query: ... most computer monitors have the
color <mask>

ground truth: black

prediction: gray

------------ error 3 -------------

query: ... most sinks have the color <mask>
ground truth: gray

prediction: white

------------ error4 - ------------

query: most porcupines have the color
<mask>

ground truth: brown

prediction: black

———————————— error S -------------

query: ... most potatoes have the color <mask>
ground truth: brown

prediction: white

———————————— error6-------------

query: most kangaroos have the color
<mask>

ground truth: brown

prediction: gray

------------ error 7 -------------

query: ... most pancakes have the color <mask>
ground truth: brown

prediction: yellow

------------ error 8 -------------

query: most scorpions have the color
<mask>

ground truth: brown

prediction: black

———————————— error 9 - ------------

query: ... most coins have the color <mask>
ground truth: gray

prediction: yellow

———————————— error 10-------------

query: ... most picnic baskets have the color
<mask>

ground truth: brown

prediction: red

Most of the ten queries seem to be ambiguous.
Black and brown scorpions are both common; the
color of a mango might be described as orange or

yellow; kitchen sinks are normally gray but bath-
room sinks are normally white; old computer moni-
tors are normally gray but newer ones are normally
black. The most obvious mistake seems to be on
picnic baskets which PALM classifies as red. We
believe these are included in Single-type questions
due to the method used for constructing CoDa. To
identify if an object has a single, multiple, or many
typical colours, Paik et al. (2021) use a clustering
algorithm together with manual assignment. How-
ever, the threshold of one-versus-many clusters can
be hard to decide, and many objects would end up
at the boundary. Also, depending on the number
of annotators, the presented ground truth may be
noisy when compared to the general population.

C Few-shot Prompts

One-shot. For one-shot, we prepend one ran-
domly selected example from the dataset. The
example is constructed by randomly selecting an
object from the dataset and then choosing the
colour with the highest probability answer from
the ground truth. Some of the objects could have
multiple reasonable colours (e.g., yellow will be
chosen for bananas, even though they can be green
or brown).

It is known that most {OBJECT;} have the
color {COLOR; }; most {OBJECT,} have the color
<mask>

Five-shot. Similar to one-shot, but we randomly
sample five objects from the dataset.

It is known that most {OBJECT; } have the color
{COLOR; }; {OBJECT2} have the color {COLOR2};
... {OBJECT5} have the color {COLORs5}; most
{OBJECT,} have the color <mask>
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human GBN wiki

Model size  Accai p T P T p T

GBN - 36.3 442 362 100.0 100.0 66.5 559

wiki - 233 286 232 665 559 100.0 100.0
0-shot

ROBERTARy* 110M  28.0 - - - - - -
ROBERTALgrge 335M  37.6 - - - - - -

GPT-2gman* 124 271 - - } _ _ _
GPT'ZBase* 355M 31.7 - - - - _ _
GPT‘zLarge* 774M 33.2 - - - - _ _
GPT-2x." 15B  36.1 - - - - _ ]

ALBERTvapae® 1IM 209 - - - - - -
ALBERTy) [age® 17M 288 - - - - - -
ALBERTyv,x.* S8M 252 - - - - - -
ALBERTv xx1* 223M 318 - - - - - -

T5Large 770M  21.1 257 206 422 321 333 259
T5xL 3B 443 574 466 603 473 417 323
TS5xxL 11B 509 495 405 575 449 405 314
GPT-3,4a 350M 179 203 157 488 36.7 369 28.1
GPT-3pavbage 1.3B 276 27.8 221 580 445 446 346
GPT-3curie 6.7B 336 41.0 328 635 50.1 373 368
GPT-34avinci 175B 55,5 528 431 650 515 481 37.3
PALM-8B 8B 29.6 347 273 615 476 468 36.5
PALM-62B 62B 342 335 269 644 509 499 495
PALM-540B 540B 42,6 440 355 66.3 52.7 483 38.0
1-shot
T5Large 770M 194 21.0 164 20.3 15.7 245 18.5
T5xL 3B 390 488 394 376 289 552 426
T5xxL 11B 472 543 443 387 296 559 435
GPT-3,4a 350M 213 245 193 460 350 348 270
GPT-3papbage 1.3B 276 298 236 51.7 397 397 305
GPT-3cusie 6.7B 40.1 442 356 592 463 446 347
GPT-3davinci 175B 61.8 605 50.1 61.0 480 420 327
PALM-8B 8B 309 480 389 647 51.7 476 37.6
PALM-62B 62B 50.1 549 448 653 51.7 462 358
PALM-540B 540B 639 635 528 625 493 427 331
5-shot
T5Large 770M 179 207 162 11.8 9.1 6.0 4.3
T5xL 3B 424 478 388 603 473 426 333
TS5xxL 11B 48.0 534 436 541 420 36.6 288
GPT-3,4a 350M 205 254 199 422 323 312 238
GPT-3papbage 1.3B 28.8 371 295 519 397 396 30.6
GPT-3curie 6.7B 424  47.1 380 57.1 448 409 32.1
GPT-34avinci 175B 63.1 623 516 559 437 359 277
PALM-8B 8B 438 523 426 62.0 49.1 449 35.1
PALM-62B 62B 582 619 512 61.1 480 413 318
PALM-540B 540B 649 662 552 60.1 473 407 31.6

Table 5: Full table containing more corpus stats (wiki) and more metrics (Kendall’s 7). GBN: Google Ngram; wiki:
Wikipedia ngrams. Both are from Paik et al. (2021).
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Prompt Accar
It is known that most { OBJECT } have the color <mask> (original) 55.5
different quantifiers
It is known that all {OBJECT} have the color <mask> 499
It is known that { OBJECT } have the color <mask> 46.3
It is known that some { OBJECT} have the color <mask> 27.3
It is known that few {OBJECT } have the color <mask> 22.5
It is known that no {OBJECT} have the color <mask> 14.0
paraphrases of the original prompt
It is known that color of most {OBJECT } are <mask> 56.6
It is known that the color of most {OBJECT} are <mask> 59.1
It is common sense that the color of most {OBJECT } are <mask> 62.2
It is known that most {OBJECT} are <mask> 49.1
It is known that {OBJECT } are <mask> 44.2
It is common knowledge that most { OBJECT } have the color <mask> 52.0
It is common sense that most { OBJECT } have the color <mask> 55.5
It is commonly known that most { OBJECT} have the color <mask> 53.0
Everybody knows that most { OBJECT } have the color <mask> 54.3
Most people think that {OBJECT } have the color <mask> 53.6
The majority of {OBJECT} have the color <mask> 51.2
The vast majority of {OBJECT} have the color <mask> 52.9
Most {OBJECT} color <mask> (ungrammatical) 44.1
Common sense most { OBJECT } color <mask> (ungrammatical) 43.4

Table 6: GPT-3,yvinci’s 0-shot performance on CoDa across different prompts.
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