NGEP: A Graph-based Event Planning Framework for Story Generation

Chen Tang', Zhihao Zhang?, Tyler Loakman®, Chenghua Lin** and Frank Guerin'
'Department of Computer Science, The University of Surrey, UK
2School of Economics and Management, Beihang University, Beijing, China
3Department of Computer Science, The University of Sheffield, UK
{chen.tang, f.guerin}@surrey.ac.uk
zhhzhang@buaa.edu.cn
{tcloakmanl,c.lin}@sheffield.ac.uk

Abstract

To improve the performance of long text gener-
ation, recent studies have leveraged automati-
cally planned event structures (i.e. storylines)
to guide story generation. Such prior works
mostly employ end-to-end neural generation
models to predict event sequences for a story.
However, such generation models struggle to
guarantee the narrative coherence of separate
events due to the hallucination problem, and
additionally the generated event sequences are
often hard to control due to the end-to-end na-
ture of the models. To address these challenges,
we propose NGEP, an novel event planning
framework which generates an event sequence
by performing inference on an automatically
constructed event graph and enhances general-
isation ability through a neural event advisor.
We conduct a range of experiments on multi-
ple criteria, and the results demonstrate that
our graph-based neural framework outperforms
the state-of-the-art (SOTA) event planning ap-
proaches, considering both the performance of
event sequence generation and the effectiveness
on the downstream task of story generation.

1 Introduction

Current neural generation models struggle to gener-
ate long stories as it is difficult to guarantee the
logical coherence of generated sentences when
conditioning only on a limited size input (e.g.
leading context or title). Therefore, current story
generation frameworks are usually split into two
stages, planning and writing, using an automati-
cally planned storyline (aka. event sequence) (Al-
hussain and Azmi, 2021; Tang et al., 2022) as the
intermediate between planning and writing.

In order to plan an event sequence, prior works
(Martin et al., 2018; Yao et al., 2019; Chen et al.,
2021; Alhussain and Azmi, 2021; Wang et al.,
2020) mostly focus on leveraging end-to-end neu-
ral generation models, such as BART (Lewis et al.,

*Corresponding author.

[1
: Event Extraction 1
’

G candidates:)

Event - N
x K

G candidates: (_ g

G candidates: None

g
G candidates:)

{ Story :
| Generation !

Figure 1: The overview of our proposed NGEP model.
The event graph G is automatically constructed from
the training set, and the potential event candidates are
generated according to the conditional probability dis-
tribution modelled on G when event planning. If there
are no proper candidates for the next event, we leverage
a BART-based neural advisor to predict the best choice.

2020), to predict events. However, whilst some
efforts (Goldfarb-Tarrant et al., 2020; Ahn et al.,
2016) have been made to improve neural event
planning (e.g., Goldfarb-Tarrant et al. (2020) use
rescoring models to guide the planning process),
event planning based on neural generation models
still tends to suffer from common limitations: (i)
The selection of individual events in the sequence
is hard to control (because of the end-to-end gen-
eration) (Chen et al., 2021); and (ii) Due to the
hallucination problem (Rohrbach et al., 2018; El-
der et al., 2020; Cheng et al., 2021; Tang et al.,
2022) each predicted event is not guaranteed to be
complete and accurate.

In this study, we propose NGEP, a novel Neural
Graph-based Event Planning framework to predict
event sequences for story generation. An overview
of the proposed framework is illustrated in Figure 1.
Firstly, events are extracted from the training set in
order to construct an event graph which records the
events and their neighbour relations. This graph
can then be used at test-time to predict events from
a leading context. The conditional probability dis-
tribution is modelled by a coherence score calcu-

186

Proceedings of the 2nd Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the
12th International Joint Conference on Natural Language Processing (Volume 2: Short Papers), pages 186—193
November 20-23, 2022. ©2022 Association for Computational Linguistics

lated with the degrees of event nodes and the con-
currency of predicted events. When an event graph
is unable to generate event candidates, i.e. no edges
point to another event, a BART-based neural advi-
sor is introduced to predict the next event from
the graph. The neural advisor is trained to model
the conditional probability between event nodes
and the context, including the input and previously
predicted events, so that it can predict the next in-
dividual event rather than the entire sequence, thus
enhancing controllability. Finally, the predicted
event sequence is sent to a downstream model for
story generation.

To the best of our knowledge, this is the first
attempt to employ an unsupervised graph-based
inference approach with a neural advisor as the
event planning framework. A range of experiments
are conducted to evaluate the performance of our
approach, both on the quality of event sequences
and their efficacy in aiding story generation. The
results demonstrate that our model significantly
outperforms all competitive baselines.'

2 Methodology

The story generation task is formulated as follows:
The given input is a sentence acting as the leading
context C' = {c1, ¢, ..., ¢, } where ¢; denotes the
i-th token of the leading context, and the output is
a multi-sentence story S = {s%, s%, ey s%..., syt
where sé denotes the j-th token of i-th sentence in
a story. The task requires the prediction of an event
sequence’ E = {eq, ea,...,em} as a intermediate
input, which is generated according to the leading
context C' and used to generate a story S. e; de-
notes the ¢-th event representing the i-th sentence in
a story, and each event may have multiple tokens.

2.1 Event Graph Construction

The representation of an event is defined as a verb
phrase that describes the main event within a sen-
tence. We employ spaCy? to parse dependencies
between words in a given sentence, and then extract
all key roles to compose an event. Neighboring
events are considered to have directed relations r
(previous/next event), so that each story may con-
tain several triplets {€epead, 7, €tail - The set of all

'Our code for reproduction is available at https://
github.com/tangg555/NGEP-eventplan.

2We combine events with special tokens, e.g., “<s> needed
get <sep> ... <e>", where “<s>”,“<sep>", “<e>" denote the
start, separation, and end of planning, respectively.

*https://spacy.io/

triplets in the training set is the event graph GG. The
sum of repeated triplets of an event in the train-
ing set is recorded as weighted degrees d in (7
for calculations of the conditional probability be-
tween events. Due to space constraints, the details
of the event schema and extraction framework are
described in the Appendix (A.1 and A.2, respec-
tively).

2.2 Graph-based Event Planning

Due to there being no single unique storyline for
a given topic, we argue that the planned event se-
quences for open-domain story generation should
instead focus on the intrinsic relatedness between
events and their relevance to the leading context.
Therefore, we reference the framework of Bam-
man and Smith (2014) and propose an unsuper-
vised graph-based approach to model the condi-
tional probability distribution between events in
the event graph GG. The event contained within the
leading context denoted as e, is set to be the start
of the event planning process. Let P(e}|E,_,, G)
denote the conditional probability of candidates for
the i-th event e;, and Ef,_, = {ec,e1,...i_1} de-
note the input of prior events for the prediction of
ei. P(ef| E¢,_,, G) is calculated as follows:

fs(r(ei—1,€;))
G) = Z :
N S A R
Felr(eimn,ef)) = wleimn, ef)de X y(E|E,)
2)

P(e;|ES

€t<i?

 Jrept,, — (e}, EX,)

Ct<i

JES . A 3
7(62’ et<z) T'eptm X d:’;; ()

ei " P(AIES_ L G)) ()
where (€| E¢,_,) denotes the repetition penalty
of a candidate € ranging from O to 1, and rept,,
denotes the maximum number of repetitions per-
mitted in E¢, .. We penalise candidates with its
weighted in-degree diﬁ;’ as this means it has a rel-

atively weak relationship to e; 1. c*(e;,EgKi)
counts the occurrences of e observed in EZ, ..
fs(r(ei—1,€})) is the event score function which
evaluates the probability of event ¢/ through the
calculation of the weight of edge w(e;—_1,€}) (as
the graph is isomorphic, we set it to 1 here) and
the degrees of the event node d,.,. Furthermore,
7(€head, €tail) denotes the directed edge from the

head event pointing to the tail event, with * acting

187

https://github.com/tangg555/NGEP-eventplan
https://github.com/tangg555/NGEP-eventplan
https://spacy.io/

NS
EIEN
S
ey Qc——*—-\———t ——————— >© e
N RN 2
v= SO N
v = N
v S N Sy
er Ore SN - -0 4
~< \
Events ~N
_.‘
e Or--m- S oo O

Figure 2: Illustration of the neural advisor.

as the wildcard character representing any available
event. P(e| EX, _,, G) is calculated using the event
score function and the repetition penalty. Finally,
we select the candidate ¢/ by sampling candidates
according to the probability distribution P.

2.3 Neural Advisor

Event graph inference may not be possible for all
instances in the test set if the extracted event from
a leading context has not been seen at graph con-
struction time. Consequently, if the event graph is
unable to generate any candidates for the next event
we need another module to analyse the given in-
formation and predict the most probable candidate
to compose the storyline. Therefore, as Figure 2
shows, we train a generation model, BART, to "ad-
vise" on selecting the next event as below:

E.,_A{ei,...eic1} ste e€G ®)

F; = Encoder([C; E,_,]) (6)

L= predict <" Decoder(F;) 7

where E.,_, denotes the prior event sequences be-

fore time step ¢. When training, we force BART to
learn the relations between reference events, and
then find the closest event candidate e/ via the Jac-
card similarity index in GG to be the next event e;.

2.4 Overall Event Planning Process

We combine the graph-based event planning with
the neural advisor (denoted as advise(x)) to pre-
dict event sequences (illustrated in algorithm 1).
The training objective of neural advisor is same
to the vanilla BART, and the graph-based event
planning process is unsupervised.

3 Experiment

3.1 Experiment Setup

Datasets We conduct our experiments on ROC-
Stories (Mostafazadeh et al., 2016), following the

Algorithm 1: Predict Event Sequence F
Input: A leading context C' and the event
graph G, the minimal planning size
of events [,;, and the maximal [,
Output: Event Sequence F for C'
1 Initialize £ < [];

2 extract e, from C

3 ife. € G then

4 reselect e, < e/, € G where €/, is equal
L ec.verb, otherwise e. < advise(e.)

5 €pre < €c

6 while |E| < Iy or |E| > L, do

7 Let E’ denote the set of candidates e

8 if ' = o then

9 ‘ Enext — advise(epext)

10 else

11 Get neXt‘E5t<next) for E’

12 Get P(i EE,_,,G) for B

13 Sample enext according to P

14 Append epext to

work of Guan et al. (2021) to preprocess and
split the data. The total number of stories in the
Train/Dev/Test sets is 88344/4908/4909.

Training Details and Parameters Experiments
were performed on an RTX A5000 GPU, and the
random seed was fixed to 42 to facilitate repro-
duction. We implement the PyTorch Lightning*
framework to set up training processes. The train-
ing parameters are as follows: batch size is set to
64; learning rate is 1le—4; max source length is set
to 1024; the optimiser uses Adam (Kingma and
Ba, 2014), and the ¢ of Adam is set to 1le—8. The
whole training process runs for 5 epochs, but the
results only consider the checkpoint with the best
performance (lowest loss).

Metrics | R-14 R-2t R-L?| B-1t B2t | D-1f D-2¢
Seq2Seq 5433 29.10 53.05 | 0391 0.089 | 0.051 0277
BART 56.36 3035 54.68 | 0.398 0.095 | 0.060 0.298
GPT:2 4478 2071 42.80 | 0217 0.052 | 0.055 0.318
EventAdvisor | 59.85 3243 57.74 | 0.436 0.110 | 0.050 0.257
NGEP 5930 31.96 57.54 | 0429 0.099 | 0.072 0311
Golden | NNA N/A N/A | NNA N/A | 0072 0315

Table 1: Automatic evaluation on event sequences. T
/ | means the higher/lower the metric, the better. The
best performing model is highlighted in bold, and the
second best is underlined.

*https://www.pytorchlightning.ai/

188

https://www.pytorchlightning.ai/

Seq2Seqsory BART 101y HINT;0ry T-55t0ry

IR-A] D-2t D-3t D-41 | IR-A| D-2t D-31 D-47 | IR-A] D-2t D-3t D-41 | IR-A| D-2t D-31 D41
w/o events ‘ 1.16 0233 0.554 0.777 ‘ 1.88 0.243 0.567 0.789 ‘ 1.81 0.188 0.494 0.740 ‘ 1.68 0216 0.498 0.719
Seq2Seq 1.27 0.227 0546 0.773 | 140 0247 0.576 0.799 | 143 0.185 0490 0.738 | 1.54 0213 0497 0.719
BART 1.33 0230 0.547 0.769 | 1.74 0250 0.575 0.795 | 1.76 0.188 0490 0.732 | 193 0218 0498 0.719
GPT-2 1.25 0222 0544 0.776 | 198 0.235 0.565 0.791 1.87 0.174 0472 0.720 | 2.32 0.209 0.493 0.718
EventAdvisor | 1.32 0.234 0.555 0.778 | 1.75 0244 0564 0.781 | 1.80 0.183 0478 0.718 | 1.84 0211 0490 0.712
NGEP 1.16 0235 0.558 0.779 | 131 0.272 0.601 0.811 | 1.25 0.244 0.507 0.742 | 129 0.231 0.517 0.738

Table 2: Automatic evaluation with unreferenced metrics on generated stories. The row labels stand for different
event planning methods, and the column labels are SOTA models for story generation.

o, o,

3.04° 3.0

3.0 2

v w/0 events

—_— Seq2Seq

=t BART
GPT-2

e EventAdvisor

—t— NGP

2.5 25

2.0 2.0 >

0.5 0.5

2.5

2.0

0.5

0.0 0.0

1 2 3 4 5 1 2 3 4 5
(a) Seq2Seq (b) BART

Figure 3: Intra-story repetitions (the lower the better) for each sentence in a story.

0.0

(c) HINT

d)T-5

We show the performance of

different event planning approaches work different story generation models.

Baselines Several SOTA generation models for
event planning and story generation (or long text
generation) are selected as baselines.” (i) Neu-
ral Event Planning: Seq2Seq (Yao et al., 2019),
BART (Goldfarb-Tarrant et al., 2020), and GPT-2
(Chen et al., 2021); (ii) Story Generation Seq2Seq
(Yao et al., 2019), BART (Goldfarb-Tarrant et al.,
2020), HINT (Guan et al., 2021), and T-5 (Raffel
et al., 2020), in line with previous work in the area.

3.2 Evaluation Metrics

We adopt a range of automatic metrics including
ROUGE-n (R-n) (Lin, 2004) and BLEU-n (B-n)
(Papineni et al., 2002) as referenced metrics to com-
pare to human-written event plans, and Distinction-
n (D-n) (Li et al., 2016), Intra-story Repetition
(Yao et al., 2019), and Intra-story Repetition Ag-
gregate Score (IR-A) (Yao et al., 2019) to assess
the degree of repetition and diversity within event
sequences and generated stories.

3.3 Experimental Results

Evaluation of Event Sequences As shown in
Table 1, when considering all metrics, both Even-
tAdvisor and NGEP substantially outperform the

>We additionally intended to compare our model to Graph-
Plan (Chen et al., 2021), which also proposed the use of event
graphs to improve event planning. However, we encountered
difficulties in attempting to reproduce this work, e.g., the word
embedding based framework only works for one-word events
and there is no publicly available code.

selected baselines. Performance on the referenced
metrics, ROUGFE and BLEU, indicates that the
events predicted by our proposed models are more
similar to the human-written event sequences. We
hypothesise that the superior performance of Even-
tAdvisor over NGEP is a result of select test events
not being present in GG, with our event advisor be-
ing more robust to such cases.

Performance on Story Generation Table 2 mea-
sures the quality of generated stories® on unrefer-
enced metrics conditioning on the leading context
C and event plans . We observe that NGEP sub-
stantially outperforms all baseline models. This
indicates that our proposed graph-based inference
improves story generation through planning better
storylines, as our predicted events have no halluci-
nation problems and contain event sequences that
are more logically coherent. The intra-story repe-
titions shown in Figure 3 further demonstrate that
the proposed model is more stable throughout the
generation process (less fluctuations), and the pre-
dicted events display less repetition, improving the
diversity of stories.

In-depth Analysis To further study how the pro-
posed framework works during event planning, we
conduct a case study as illustrated in Figure 4.
Given the leading context, we can extract the con-

C and F are concatenated as the input of those models.

189

tained event had test. In the event graph con-
structed from the training dataset, the event had
test has many candidates whose conditional proba-
bilities are calculated by the proposed NGEP. It can
be observed that the event candidate studied has the
highest probability. This is because, in the training
dataset, more stories contain the content "people
studied hard to prepare for this test". This indicates
that instead of implicitly capturing the relatedness
between events through neural models, NGEP al-
lows the predicted events to have more knowledge
grounding. Therefore, compared to traditional neu-
ral event planning methods, the processes behind
NGERP are easier to interpret, whilst also avoiding
the hallucination problem of deep learning.

Leading Context:
root comp

had test
ST [FEMALE] had a hard test in
e CieC - / \\ school she needed to study for .
"« X
study studied stayed had test e, O
“““ (TTEATT (TR T E)
C_pi0.033 1\ _Pi0:098 1 p:0.057 s ‘
-7 N e ()
o " \4\ studied €, @, <>
("LLIFEMALE] T) was nice ez ()
! F vel
: studied hard for her 1 Events
ttest s _______) !
______________ realized were €3 (:
... [MALE] studied
1 for the entire week : |
\ during the test ' was ey ()

______________ @,

Figure 4: An example of the event planning process
within our proposed NGEP. d denotes degree, and p
denotes the conditional probability.

4 Conclusion

This study proposes a novel hybrid event planning
approach which performs inference on event graphs
with the help of a neural event advisor. A range of
experiments demonstrate that the proposed model
outperforms other SOTA neural event planning ap-
proaches, and substantially improves performance
on the downstream task of story generation.

Acknowledgements

Chen Tang is supported by the China Scholar-
ship Council (CSC) for his doctoral study (File
No0.202006120039). Tyler Loakman is supported
by the Centre for Doctoral Training in Speech and
Language Technologies (SLT) and their Applica-
tions funded by UK Research and Innovation [grant
number EP/S023062/1]. We also gratefully ac-
knowledge the anonymous reviewers for their in-
sightful comments.

References

Emily Ahn, Fabrizio Morbini, and Andrew Gordon.
2016. Improving fluency in narrative text generation
with grammatical transformations and probabilistic
parsing. In Proceedings of the 9th International Nat-
ural Language Generation conference, pages 70-73,
Edinburgh, UK. Association for Computational Lin-
guistics.

Arwa I Alhussain and Aqil M Azmi. 2021. Automatic
story generation: a survey of approaches. ACM Com-
puting Surveys (CSUR), 54(5):1-38.

David Bamman and Noah A. Smith. 2014. Unsuper-
vised discovery of biographical structure from text.
Transactions of the Association for Computational
Linguistics, 2.

Jari Bjorne and Tapio Salakoski. 2018. Biomedical
event extraction using convolutional neural networks
and dependency parsing. In Proceedings of the
BioNLP 2018 workshop, pages 98—108, Melbourne,
Australia. Association for Computational Linguistics.

Hong Chen, Raphael Shu, Hiroya Takamura, and Hideki
Nakayama. 2021. GraphPlan: Story generation by
planning with event graph. In Proceedings of the
14th International Conference on Natural Language
Generation, Aberdeen, Scotland, UK. Association
for Computational Linguistics.

Yi Cheng, Siyao Li, Bang Liu, Ruihui Zhao, Sujian Li,
Chenghua Lin, and Yefeng Zheng. 2021. Guiding the
growth: Difficulty-controllable question generation
through step-by-step rewriting. In Proceedings of the
59th Annual Meeting of the Association for Compu-
tational Linguistics and the 11th International Joint
Conference on Natural Language Processing (Vol-
ume 1: Long Papers), pages 5968-5978.

Marie-Catherine De Marneffe and Christopher D Man-
ning. 2008. Stanford typed dependencies manual.
Technical report, Technical report, Stanford Univer-
sity.

Henry Elder, Alexander O’Connor, and Jennifer Foster.
2020. How to make neural natural language genera-
tion as reliable as templates in task-oriented dialogue.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 2877-2888, Online. Association for Computa-
tional Linguistics.

Seraphina Goldfarb-Tarrant, Tuhin Chakrabarty, Ralph
Weischedel, and Nanyun Peng. 2020. Content plan-
ning for neural story generation with aristotelian
rescoring. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing
(EMNLP), pages 4319—4338, Online. Association for
Computational Linguistics.

Jian Guan, Fei Huang, Zhihao Zhao, Xiaoyan Zhu, and
Minlie Huang. 2020. A knowledge-enhanced pre-
training model for commonsense story generation.
Transactions of the Association for Computational
Linguistics, 8:93-108.

190

https://doi.org/10.18653/v1/W16-6611
https://doi.org/10.18653/v1/W16-6611
https://doi.org/10.18653/v1/W16-6611
https://doi.org/10.1162/tacl_a_00189
https://doi.org/10.1162/tacl_a_00189
https://doi.org/10.18653/v1/W18-2311
https://doi.org/10.18653/v1/W18-2311
https://doi.org/10.18653/v1/W18-2311
https://aclanthology.org/2021.inlg-1.42
https://aclanthology.org/2021.inlg-1.42
https://doi.org/10.18653/v1/2020.emnlp-main.230
https://doi.org/10.18653/v1/2020.emnlp-main.230
https://doi.org/10.18653/v1/2020.emnlp-main.351
https://doi.org/10.18653/v1/2020.emnlp-main.351
https://doi.org/10.18653/v1/2020.emnlp-main.351
https://doi.org/10.1162/tacl_a_00302
https://doi.org/10.1162/tacl_a_00302

Jian Guan, Xiaoxi Mao, Changjie Fan, Zitao Liu, Wen-
biao Ding, and Minlie Huang. 2021. Long text gener-
ation by modeling sentence-level and discourse-level
coherence. In Proceedings of the 59th Annual Meet-
ing of the Association for Computational Linguistics
and the 11th International Joint Conference on Natu-
ral Language Processing (Volume 1: Long Papers),
pages 6379-6393, Online. Association for Computa-
tional Linguistics.

Harsh Jhamtani and Taylor Berg-Kirkpatrick. 2020.
Narrative text generation with a latent discrete plan.
In Findings of the Association for Computational Lin-
guistics: EMNLP 2020, pages 3637-3650, Online.
Association for Computational Linguistics.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. 2020.
BART: Denoising sequence-to-sequence pre-training
for natural language generation, translation, and com-
prehension. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 7871-7880, Online. Association for Computa-
tional Linguistics.

Jiwei Li, Michel Galley, Chris Brockett, Jianfeng Gao,
and Bill Dolan. 2016. A diversity-promoting ob-
jective function for neural conversation models. In
Proceedings of the 2016 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 110-119, San Diego, California. Association
for Computational Linguistics.

Chin-Yew Lin. 2004. ROUGE: A package for auto-
matic evaluation of summaries. In Text Summariza-
tion Branches Out, pages 74—81, Barcelona, Spain.
Association for Computational Linguistics.

Lara Martin, Prithviraj Ammanabrolu, Xinyu Wang,
William Hancock, Shruti Singh, Brent Harrison, and
Mark Riedl. 2018. Event representations for auto-
mated story generation with deep neural nets. In
Proceedings of the AAAI Conference on Artificial
Intelligence, volume 32.

Nasrin Mostafazadeh, Nathanael Chambers, Xiaodong
He, Devi Parikh, Dhruv Batra, Lucy Vanderwende,
Pushmeet Kohli, and James Allen. 2016. A corpus
and cloze evaluation for deeper understanding of
commonsense stories. In Proceedings of the 2016
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 839-849, San Diego,
California. Association for Computational Linguis-
tics.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalu-
ation of machine translation. In Proceedings of the

40th Annual Meeting of the Association for Compu-
tational Linguistics, pages 311-318, Philadelphia,
Pennsylvania, USA. Association for Computational
Linguistics.

Colin Raffel, Noam Shazeer, Adam Roberts, Kather-
ine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. 2020. Exploring the
limits of transfer learning with a unified text-to-text

transformer. Journal of Machine Learning Research,
21(140):1-67.

Anna Rohrbach, Lisa Anne Hendricks, Kaylee Burns,
Trevor Darrell, and Kate Saenko. 2018. Object hallu-
cination in image captioning. In Proceedings of the
2018 Conference on Empirical Methods in Natural
Language Processing.

Delia Rusu, James Hodson, and Anthony Kimball. 2014.
Unsupervised techniques for extracting and cluster-
ing complex events in news. In Proceedings of the
Second Workshop on EVENTS: Definition, Detec-
tion, Coreference, and Representation, pages 2634,
Baltimore, Maryland, USA. Association for Compu-
tational Linguistics.

Chen Tang, Frank Guerin, Yucheng Li, and Chenghua
Lin. 2022. Recent advances in neural text gen-
eration: A task-agnostic survey. arXiv preprint
arXiv:2203.03047.

Lin Wang, Juntao Li, Rui Yan, and Dongyan Zhao.
2020. Plan-CVAE: A planning-based conditional
variational autoencoder for story generation. In Pro-
ceedings of the 19th Chinese National Conference on
Computational Linguistics, pages 892-902, Haikou,
China. Chinese Information Processing Society of
China.

Lili Yao, Nanyun Peng, Ralph Weischedel, Kevin
Knight, Dongyan Zhao, and Rui Yan. 2019. Plan-
and-write: Towards better automatic storytelling. In
Proceedings of the AAAI Conference on Artificial
Intelligence.

A Appendix
A.1 Details of Event Schema

An event is intended to represent an important
change that happens within a narrative, and so gen-
erally represents an action. The schema for an event
aims to include all relevant roles to the action (e.g.,
verbs and object) and filter trivial details for rep-
resentation. Inspired by the work of Rusu et al.
(2014) and Bjorne and Salakoski (2018) which
used dependency parsing to capture dependencies
between words belonging to different clauses, we
extract event mentions from sentences according to
the hierarchy of typed dependencies (De Marneffe
and Manning, 2008) (see details in Appendix. A.1).
In this way we can obtain more informative and

191

https://doi.org/10.18653/v1/2021.acl-long.499
https://doi.org/10.18653/v1/2021.acl-long.499
https://doi.org/10.18653/v1/2021.acl-long.499
https://doi.org/10.18653/v1/2020.findings-emnlp.325
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/N16-1014
https://doi.org/10.18653/v1/N16-1014
https://aclanthology.org/W04-1013
https://aclanthology.org/W04-1013
https://doi.org/10.18653/v1/N16-1098
https://doi.org/10.18653/v1/N16-1098
https://doi.org/10.18653/v1/N16-1098
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://doi.org/10.3115/v1/W14-2905
https://doi.org/10.3115/v1/W14-2905
https://aclanthology.org/2020.ccl-1.83
https://aclanthology.org/2020.ccl-1.83

unambiguous events compared to single-verb rep-
resentations used in previous work (Jhamtani and
Berg-Kirkpatrick, 2020; Guan et al., 2020). The
schema is shown in Figure 5.

Attributes | Dependencies Examples
Trigger root the predicate e.g. drive
Arguments | Role=modifier | prt, neg Bill does not drive
—Xmed/
Role=agent agent killed by the crime
NagenTs
Role=comp dobj, acomp, | gave me a raise
ccomp, Xxcomp \c;,p/"i

Figure 5: The schema of event shows the relations with
event arguments and word dependencies. We offer some
examples to indicate these dependencies, e.g., in "Bill

does not drive", "not" is a negation (neg) of "drive", so

it is an event modifier.

As shown in Figure. 5, event arguments are ex-
tracted according to selected dependencies between
words. Here, we give the details of these depen-
dencies, and Table. 3 indicates the roles of these
dependencies in a sentence (for more details of de-
pendencies see De Marneffe and Manning (2008)).

Dep. Full Name Example

prt phrasal verb particle [shut]-prt->[down]
neg negation modifier [drive]-neg->[not]
agent agent [killed]-agent->[police]
dobj direct object [gave]-dobj->[raise]
acomp adjectival complement [looks]-acomp->[beautiful]
ccomp clausal complement [says]-comp->[like]
xcomp open clausal complement [like]-xcomp->[swim]

Table 3: Details of dependencies in Event Schema. Ex-
amples are extracted with the format [head]-dependency-
>[tail].

The schemas of events are required to consider
performance with respect to both generalisation
and representation. The more dependencies in-
cluded, the more potentially informative an event
may become, at the cost of reduced generalisation.
For instance, the Subject (e.g. 1, you, Kent, etc.) is
useful to identify the protagonist of an event, but
stories usually have different characters, making
it challenging to reuse events from one story in
another. For example, "Kent is driving" and "He
is driving" refer to the same semantic event, but
if "Kent" is extracted as an event unit, it is very
hard to predict the same event for another story,
which means generalisation is impaired. Accord-
ing to a similar criterion, we select key roles as the
arguments of events with the consideration of both
generalisation and representation.

A.2 Details of Event Extraction

We extract events from the text of the training
dataset including reference stories and leading con-
texts. The data structure of an event is a set in-
cluding the relevant triggers and arguments in a
sentence. We firstly use spaCy to parse dependen-
cies between words in a sentence, and then annotate
the event trigger and arguments according to their
dependencies. An event e contains attributes in-
troduced in Figure 5, in which the event trigger is
usually the predicate. Before encoders accept text
as the input, the extracted events are serialised to
text format to pass to the model.

Since existing story datasets do not have the
reference storylines paired with reference stories,
we develop an event extractor that extracts event
sequences from reference stories to act as the sto-
rylines. We follow the approach of representing
events as verb phrases. Verbs, as the anchor of
sentences, can be seen as the event trigger, so our
primary goal is to extract all key roles (as event
arguments) related to the event trigger. The neigh-
bourhood of extracted events will be considered as
temporal relations.

With the temporally related events from the train-
ing stories, we construct an event graph denoted G,
which is an isomorphic graph with a single event
type and a single relation type. We suppose GG
is a data structure composed of triples in ey, r, e;
format. The workflow of the extraction process is
explained as follows:

192

Algorithm 2: Extract Event Sequence F

10
11

Input: A story S with m sentences
QOutput: Event Sequence E for S

containing m event objects

Initialise &/ < & and
roles < {trigger, mod, agent, comp}
foreach s’ in S do

Initialise e; < @
Normalise s’ and get dependencies dep;
with spaCly
Extract event trigger ¢ and position p
from dep;
ei.trigger <—t
foreach role in role do
ift € dep,.heads and
role € dep;.tails then
Extract (role, p,) from dep;
L e;.role < (role,p,)

e;.string <— r € roles aligned by p, T
FE append e;

193

	Introduction
	Methodology
	Event Graph Construction
	Graph-based Event Planning
	Neural Advisor
	Overall Event Planning Process

	Experiment
	Experiment Setup
	Evaluation Metrics
	Experimental Results

	Conclusion
	Appendix
	Details of Event Schema
	Details of Event Extraction

