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Abstract

We build a dual-way neural dictionary to re-
trieve words given definitions, and produce def-
initions for queried words. The model learns
the two tasks simultaneously and handles un-
known words via embeddings. It casts a word
or a definition to the same representation space
through a shared layer, then generates the other
form in a multi-task fashion. Our method
achieves promising automatic scores on pre-
vious benchmarks without extra resources. Hu-
man annotators prefer the model’s outputs in
both reference-less and reference-based evalu-
ation, indicating its practicality. Analysis sug-
gests that multiple objectives benefit learning.

1 Introduction

A monolingual dictionary is a large-scale collection
of words paired with their definitions. The main use
of such a resource is to find a word or a definition
having known the other. Formally, the task of gen-
erating a textual definition from a word is named
definition modelling; the inverse task of retrieving a
word given a definition is called reverse dictionary.
Lately, the two tasks are approached using neural
networks (Hill et al., 2016; Noraset et al., 2017),
and in turn they help researchers better understand
word sense and embeddings. Research can further
benefit low-resource languages where high-quality
dictionaries are not available (Yan et al., 2020).
Finally, practical applications include language ed-
ucation, writing assistance, semantic search, etc.

While previous works solve one problem at a
time, we argue that both tasks can be learned and
dealt with concurrently, based on the intuition that
a word and its definition share the same meaning.
We design a neural model to embed words and def-
initions into a shared semantic space, and generate
them from this space. Consequently, the training
paradigm can include reconstruction and embed-
ding similarity tasks. Such a system can be viewed
as a neural dictionary that supports two-way index-

ing and querying. In our experiments, jointly learn-
ing both tasks does not increase the total model
size, yet demonstrates ease and effectiveness. Our
code is publicly available.1

2 Related Work

Although research on the two tasks can be traced
back to the early 2000s, recent research has shifted
towards neural networks, which we describe here.

Reverse dictionary Hill et al. (2016) pioneer the
use of RNN and bag-of-words models to convert
texts to word vectors, on top of which Morinaga
and Yamaguchi (2018) add an extra word category
classifier. Pilehvar (2019) integrates super-sense
into target embeddings to disambiguate polyse-
mous words. Zhang et al. (2020) design a multi-
channel network to predict a word with its features
like category, POS tag, morpheme, sememe, etc.

Nonetheless, our work tackles the problem with-
out using linguistically annotated resources. The
proposed framework learns autoencodings for defi-
nitions and words, instead of mapping texts to plain
word vectors. From this aspect, Bosc and Vincent
(2018) train word embeddings via definition recon-
struction.

Definition modelling Noraset et al. (2017) use
RNNs for definition generation, followed by Gadet-
sky et al. (2018) who add attention and word con-
text, as well as Chang et al. (2018) whose model
projects words and contexts to a sparse space, then
generates from selected dimensions only. Mickus
et al. (2019)’s model encodes a context sentence
and marks the word of interest, whereas Bevilac-
qua et al. (2020)’s defines a flexible span of words.
Apart from generating definitions freely, Chang
and Chen (2019) take a new perspective of re-
formulating the generation task to definition re-
trieval from a dictionary.

1https://github.com/PinzhenChen/unifiedRevdicDefmod

https://github.com/PinzhenChen/unifiedRevdicDefmod
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3 Methodology

3.1 A unified model with multi-task training

A word (embedding) and its definition share the
same meaning, even though they exist in different
surface forms. When we model their semantics
using a neural method, we hypothesize that a word
and its definition can be encoded into a consis-
tent representation space. This gives rise to our
core architecture in the paper: a model that trans-
forms inputs into a shared embedding space that
can represent both words and definitions. We then
have downstream modules that convert the shared
embeddings back to words or definitions. Essen-
tially, the shared representation can be viewed as
an autoencoding of the meaning of a word and its
definition. In the learning process, definition mod-
elling and reverse dictionary are jointly trained to
aid each other; yet at inference time, only half of
the network needs to be used to perform either task.
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Figure 1: An illustration of our designed model.

The proposed architecture with four sub-task
workflows is illustrated in Figure 1. The autoen-
coding capability is accomplished through a shared
linear layer Lshare between the encoder and the
decoder networks, the output of which is the en-
coded words and definitions. We use linear layers
Lin and Lout to process words Win and Wout be-
fore and after the shared layer. Likewise, we have
definitions Din and Dout converted to and from the
shared layer, using Transformer blocks Tin and
Tout (Vaswani et al., 2017). In addition, we en-
courage the shared layer’s representations of the
input word Win and definition Din to be as close
as possible. The Transformer blocks operate on

self-attention but not encoder-decoder attention, i.e.
Transformer blocks do not attend to each other,
so as to force all information to flow through the
autoencoding bottleneck.

With an embedding distance embed_dist() and
a token-level loss token_loss(), canonical reverse
dictionary and definition modelling have losses:

Lrevdic =embed_dist(Wgold ,Lout(Lshare(Tin(Din))))

Ldefmod =token_loss(Dgold ,Tout(Lshare(Lin(Win))))

Our model also optimizes on the losses from word
and definition reconstruction (autoencoding):

LwordAE =embed_dist(Wgold ,Lout(Lshare(Lin(Win))))

LdefAE =token_loss(Dgold ,Tout(Lshare(Tin(Din))))

The distance between a pair of word and definition
representations from the shared layer is:

Lsim = embed_dist(Lshare(Tin(Din)),Lshare(Lin(Win)))

Finally, our training minimizes the overall loss L
that adds all above losses weighted equally:

L = Lrevdic + Ldefmod + LwordAE + LdefAE + Lsim

3.2 Word-sense disambiguation
A word is often associated with multiple definitions
due to the presence of polysemy, sense granular-
ity, etc. In our practice, the one-to-many word-
definition relationship does not harm reverse dictio-
nary, since our model can master mapping different
definitions into the same word vector. However, it
is problematic for definition modelling, as telling
the exact word sense without context is hard. Thus,
we embed words in their usage context (supplied in
the data we use) using BERT (Devlin et al., 2019).
We sum up the sub-word embeddings for each word
if it is segmented by BERT.

4 Experiments and Results

4.1 Data and evaluation
HILL: we evaluate reverse dictionary on Hill et al.
(2016)’s English data. There are roughly 100k
words and 900k word-definition pairs. Three test
sets are present to test a system’s memorizing
and generalizing capabilities: 500 seen from train-
ing data, 500 unseen, and 200 human description
(where definitions are from a human, instead of a
dictionary). The evaluation metrics are retrieval
accuracies at 1, 10 and 100, as well as the median
and standard deviation of the target words’ ranks.2

2Previous papers might use “standard deviation” and “rank
variance” interchangeably. We stick to “standard deviation”.
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CHANG: definition modelling is experimented
on Chang and Chen (2019)’s data from the Oxford
English Dictionary. Each instance is a tuple of a
word, its usage (context), and a definition. The
data has two splits: seen and unseen. The unseen
split we use consists of 530k training instances,
and the test set is 1k words paired with 16.0k defi-
nitions and context. Performance is measured by
corpus-level BLEU from NLTK, and ROUGE-L F13

(Papineni et al., 2002; Lin, 2004; Bird et al., 2009).

4.2 The questionable seen test set

Understandably, a dictionary needs to “memorize”
word entries, so both HILL and CHANG supply a
seen test drawn from training data. However, this
is impractical in deep learning, for it implicitly en-
courages overfitting. Further, the foremost function
of a neural dictionary is to deal with unseen words
and definitions; otherwise, a traditional rule-based
one suffices. We hence omit evaluation on seen
sets and request future research to not focus on it.

4.3 System configurations

Our baselines are 4-layer Transformer blocks: a
Transformer encoder for reverse dictionary, and a
Transformer decoder for definition modelling. Hy-
perparameter searches are detailed in Appendix A.
We tokenize training definitions into an open vo-
cabulary by whitespace. We use cross-entropy for
definition tokens and mean squared error (MSE) as
the embedding distance.

Our proposed model essentially connects and
trains the above two baselines with an extra shared
layer. The layer has the same size as the input
embeddings and a residual connection (He et al.,
2016). As an additional variant, we tie both Trans-
former blocks’ embedding and output layers (Press
and Wolf, 2017). This is only possible with our
multi-task framework, since a Transformer block
baseline does not have both encoder and decoder
embeddings. The unified model optimizes roughly
twice as many parameters as a single-task baseline;
in other words, when performing both tasks, our
system is of the same size as the baseline models.

For reverse dictionary, we compare with a num-
ber of existing works: OneLook.com, bag-of-
words, RNN (Hill et al., 2016), category infer-
ence (Morinaga and Yamaguchi, 2018), multi-
sense (Kartsaklis et al., 2018), super-sense (Pile-
hvar, 2019) and multi-channel (Zhang et al., 2020).

3https://github.com/pltrdy/rouge

Following Zhang et al. (2020) we embed target
words with 300d word2vec (Mikolov et al., 2013),
but definition tokens are encoded into 256d embed-
dings to train from scratch, instead of pre-trained
embeddings.

For definition modelling, words are embedded
by 768d BERT-base-uncased, while definition to-
ken embeddings are initialized randomly. We
include RNN (Noraset et al., 2017) and xSense
(Chang et al., 2018) for reference but not Chang
and Chen (2019)’s results from an oracle retrieval
experiment.

Our choice of word embedders aligns with pre-
vious works, which ensures that comparison is fair
and improvement comes from the model design.
It is also worth noting that we train separate mod-
els on HILL and CHANG data to evaluate reverse
dictionary and definition modelling performances
respectively.

4.4 Results

Reverse dictionary results in Table 1 show a
solid baseline, which our proposed models signifi-
cantly improve upon. Compared to previous works,
we obtain the best ranking and accuracies on un-
seen words. On human descriptions our models
yield compelling accuracies with the best standard
deviation, indicating a consistent performance.

One highlight is that our model attains a superior
position without linguistic annotations, other than
a word embedder which is always used in previous
research. Consequently, ours can be concluded as
a more generic framework for this task.

Definition modelling results are reported in Ta-
ble 2. On the unseen test, our model with tied
embeddings achieves state-of-the-art scores. The
model without it has performance similar to the
baseline. Admittedly, while ROUGE-L scores look
reasonable, the single-digit BLEU might hint at the
poor quality of the generation. We conduct human
evaluation and discuss that later.

5 Analysis and Discussions

5.1 Shared embeddings and the vocabulary

For definition modelling, a shared embedding and
output layer brings significant improvement to our
proposed approach, but in reverse dictionary, our
models arrive at desirable results without it. This
is reasonable as well-trained embedding and out-
put layers particularly benefit language generation

https://github.com/pltrdy/rouge
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unseen human description
median

rank
acc@

1/10/100
rank
std.†

real
std.

median
rank

acc@
1/10/100

rank
std.†

real
std.

OneLook.com - - - - 5.5 .33/.54/.76 332 -
bag-of-words 248 .03/.13/.39 424 - 22 .13/.41/.69 308 -
RNN 171 .03/.15/.42 404 - 17 .14/.40/.73 274 -
category inference 170 .05/.19/.43 420 - 16 .14/.41/.74 306 -
multi-sense 276 .03/.14/.37 426 - 1000 .01/.04/.18 404 -
super-sense 465 .02/.11/.31 454 - 115 .03/.15/.47 396 -
multi-channel 54 .09/.29/.58 358 - 2 .32/.64/.88 203 -
Transformer 79 .01/.14/.59 473 125 27 .05/.23/.87 332 49
unified 18 .13/.39/.81 386 93 4 .22/.64/.97 183 30
+ share embed 20 .08/.36/.77 410 99 4 .23/.65/.97 183 32

Table 1: Reverse dictionary results on the HILL data with past results from Zhang et al. (2020)’s re-run. †They force-set a word
rank larger than 100 to 1000 which affected std.; we follow suit for comparison, and also include the real std.

unseen
BLEU ROUGE-L

RNN 1.7 15.8
xSense 2.0 15.9
Transformer 2.4 17.9
unified 2.2 18.5
+ share embed 3.0 20.2

Table 2: Definition modelling results on the CHANG data, with
past numbers from Chang and Chen (2019)’s replicate.

(Press and Wolf, 2017). It further indicates the
usefulness of our unified approach whereby all em-
bedding and output layers can be weight-tied, en-
abled by concurrently training the two Transformer
sub-models for the two tasks.

We have used an open vocabulary, which has
weaknesses like being oversized and vulnerable to
unknown tokens. Therefore, we add a model with
a 25k unigram SentencePiece vocabulary (Kudo
and Richardson, 2018) to definition modelling. All
other configurations remain the same as the best-
performing model. BLEU and ROUGE-L drop to
2.5 and 18.7, proving that an open vocabulary is
not an issue in our earlier experiments.

5.2 Human evaluation on definitions

Supplementary to the automatic evaluation for
definition generation, we run reference-less and
reference-based human evaluation, on the Trans-
former baseline and the best-performing unified
model. In a reference-less evaluation, a human
is asked to pick the preferred output after seeing
a word, whereas in a reference-based setting, a
human sees a reference definition instead. Test in-

stances are sampled, and then the models’ outputs
are presented in a shuffled order. Two annotators
in total evaluated 80 test instances for each setting.
Table 3 records the number of times each model is
favoured over the other.

Regardless of the evaluation condition, evalu-
ators often regard the unified model’s outputs as
better. Especially in the reference-less scenario,
which resembles a real-life application of defini-
tion generation, our unified model wins notably.

reference-less reference-based
Transformer 25 (31%) 32 (40%)
unified 50 (63%) 42 (53%)

Table 3: Chances a model’s output is preferred by human
evaluators. Columns do not add up to 80 (100%) because we
do not count when both models generated the same output.

5.3 Ablation studies on the objectives

Our models are trained with five losses from five
tasks: definition modelling, reverse dictionary, two
reconstruction tasks and a shared embedding simi-
larity task. In contrast to the full 5-task model, we
try to understand how multiple objectives influence
learning, by excluding certain losses.

We first remove reconstruction losses to form a
3-task model that learns reverse dictionary, defini-
tion modelling and embedding similarity. This is
the minimum set of tasks required to train the full
architecture and to ensure words and definitions
are mapped to the same representation. Then we
designate 1-task models to learn either reverse dic-
tionary or definition modelling depending on the
baseline it is compared to. Such a model is deeper
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than the baseline Transformer but partly untrained.
We run the ablation investigation on both reverse

dictionary and definition modelling tasks. We log
training dynamics in Figure 2: embedding MSE
against epochs for reverse dictionary, and gener-
ation cross-entropy against epochs for definition
modelling. The curve plotting stops when valida-
tion does not improve.
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Figure 2: Validation losses (y-axis) against epochs (x-axis).

As Figure 2a shows, the single-task HILL model
does not converge, probably because in reverse
dictionary the Transformer block is far away from
the output end, and only receives small gradients
from just one loss. The 3-task and 5-task models
display similar losses, but the 3-task loss curve is
smoother. In Figure 2b for definition modelling, the
3-task model trains the fastest, but 1-task and 5-task
models reach better convergence. It implies that
learning more than one task is always beneficial
compared to single-task training; reconstruction is
sometimes helpful but not crucial.

6 Conclusion

We build a multi-task model for reverse dictionary
and definition modelling. The approach records
strong numbers on public datasets. Our method
delegates disambiguation to BERT and minimizes
dependency on linguistically annotated resources,
so it can potentially be made cross-lingual and mul-
tilingual. A limitation is that the current evaluation
centers on English, without exploring low-resource
languages, which could be impactful extensions
that benefit the community.
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A Hyperparameters and Computation

Our model configuration search is summarized
here. We adjusted the hyperparameters for the base-
line using the validation set, and kept the values
unchanged for the proposed model which joins two
baseline Transformer blocks. We list all hyperpa-
rameters in Table 4, and highlight the selected ones
in bold if multiple values were tried out. The trial is
carried out one by one for each hyperparameter. On
a single Nvidia GeForce GTX 1080 Ti, it takes 60
hours for a reverse dictionary model to converge; a
definition modelling model converges after 6 hours
on a single Nvidia GeForce RTX 2080 Ti.

word embed. HILL: word2vec
CHANG: BERT-base-uncased

word embed. dim. HILL: 300
CHANG: 768

definition tokenizer whitespace
def. token embed. none, trained from one-hot
def. token embed. dim. 256
training toolkit PyTorch (Paszke et al., 2019)
stopping criterion 5 non-improving validations
learning rate 1e-3, 1e-4, 1e-5 and 1e-6
optimizer Adam (Kingma and Ba, 2015)
beta1, beta2 0.9, 0.999
weight decay 1e-6
embedding loss MSE, cosine (failed to converge)
token loss cross-entropy
training batch size HILL: 256

CHANG: 128
decoding batch size 1
decoding beam size 6, 64
Transformer depth 4, 6
Transformer head 4, 8
Transformer dropout 0.1, 0.3
def. token dropout 0, 0.1
linear layer dropout 0.2
linear layer dim. HILL: 256

CHANG: 768
shared layer dim. HILL: 256

CHANG: 768
trainable parameters HILL: 35.1M

CHANG: 62.7M

Table 4: Model and training configurations.
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