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Abstract

Machine translation traditionally refers to trans-
lating from a single source language into a sin-
gle target language. In recent years, the field has
moved towards large neural models translating
from or into many languages. As the input and
output languages vary, the model must be correctly
cued to translate into the correct target language.
This is typically done by prefixing language tokens
onto the source or target sequence. A single token’s
content can denote the source language, target lan-
guage, or language pair. The location and content
of the prefix varies and many approaches exist with-
out much justification towards one method or an-
other. As guidance to researchers and directions for
future work, we present a series of comprehensive
experiments that show how the positioning and type
of a target language prefix token affects translation
performance. We show that source-side prefixes
consistently improve performance. Further, we find
that best language token content varies dependent
on the supported language set.

1 Introduction

Machine translation (MT) started as a basic
sequence-to-sequence problem. Confined to a sin-
gle input and output language, the model was only
responsible for learning the mapping between these
two languages. Multilingual neural machine trans-
lation (MNMT) shifted the paradigm to consider
many input and output languages (Ha et al., 2016).
Language tokens, or tokens that signify the source
language and the desired target language, became
common prefixes on source and target sequences.
In Table 1, we display the typical combinations
of prefixing techniques. In the simplest form, a
neural multilingual model can be trained with the
same pipeline as a bilingual model by prepending a
single token to the source. One token can represent
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Label Example (en-1id)
9T & <en2id> In the beginning, ...

Pada mulanya, waktu ...

<en> <id> In the beginning, ...
ST @

Pada mulanya, waktu ...
Tl o <id> In the beginning, ...

Pada mulanya, waktu ...

In the beginning, ...
alsat <en2id> Pada mulanya, waktu ...
SlsT In the beginning, ...

<en> <id> Pada mulanya, waktu ...
1T In the beginning, ...

<id> Pada mulanya, waktu ...
ST <en> In the beginning, ...

<id> Pada mulanya, waktu ...

Table 1: Examples of using language tokens as pre-
fixes to denote input and output languages. Blue (top
sequence) tags denote the source and the red (bottom
sequence) denote the target sequences.

both the source and target in the language pair (as
in s21 | @). Alternatively, the single token can be
separated into two sequential tokens (s T | @). The
model requires a signal for the target, but the source
is optional so a single target-only token could be
used (1| ). The same variety of tokens can also be
prepended to the target sequence. It is also common
to prepend the source language tag on the source
and the target on the target (s | T).

Considerations for the placement of token may
be convenience—prefixing on the source makes
off-the-shelf training pipelines quickly deployable.
Source-side prefixing obviously affects encodings,
and there has been recent interest in making the en-
codings of a multilingual model language agnostic
with evidence to suggest it makes the model more
robust in zero-shot settings (Pan et al., 2021).

We focus on supervised directions—language
pairs seen during training—which has not been
thoroughly evaluated to the best of our knowledge.
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We find differences in conclusions in supervised
directions over previous results on zero-shot (Wu
et al., 2021). In this work, we show that source side
prefixing is preferable to target side prefixing, but
the best token-type varies on language set. Adding
source language information is beneficial for many
language pairs—contrary to zero-shot conclusions.
We also vary encoder and decoder dpeths to de-
termine if the source-side tokens are successful as
result of strong encodings and find similar results
in both source and target side prefixing.

2 Related Work

Ha et al. (2016) introduced the first methodology
to train a multilingual neural model that shared
both encoder and decoder. They signaled source
and target language to the model by prepending
language tokens to each input (and output)
token—creating inputs of the form “@de@darum
@de@geht @deles @de@in (@de@meinem
@de@Vortrag" to convey German (de) tokens.
They also used prefixing and appending of the
target language to “target-force" the language.
Work compared these strategies (Ha et al., 2017)
and subsequent work used single tokens as tags.

Johnson et al. (2017) use target language tags
on the source sentence while focusing on low-
resource and zero-shot directions. M2M100 (Fan
et al., 2021), a pre-trained multilingual model, use
a source-side source token and a target-side target
token (s |1 T). mBART (Liu et al., 2020) uses a simi-
lar method, but appends the token after the </ s>
at the end of the sequence rather than prepending it.
The new TS5 models (Raffel et al., 2019) leverage a
natural language structure and train for many tasks.
mT5 (Xue et al., 2020) supports multilingual ma-
chine translation and uses an approach similar to
“s 2" by prepending phrases such as “translate
German to English:" to the source.

Investigation in these techniques has been lim-
ited to studying the effects on zero-shot translation.
Ha et al. (2017) considered combinations of these
techniques to target zero-shot translation but ul-
timately found that constraining the decoding by
filtering for the target language is more produc-
tive. Conversely, Wu et al. (2021) has investigated
zero-shot translation and found that “t | " out-
performs other approaches. N ElNokrashy et al.
(2022) find that “s T I T" can beat “T | @" in zero-
shot settings. The preferred prefixing technique
may be dependent on use-case and the set of sup-

Family  Script ISO Sentences
Latin en 107M
Indo- hr 23.TM
% Fopen Cyrillic mk L.aM
< Y sr 11.3M
Uralic Latin et 20.4M
hu 50.1M

Indo-
European Latin en 18.0M
id 12.7TM
g Malay<_)— Latin jv 1.4k
ﬁ Polynesian ms 3.3M
tl 1.1IM
Dravidian Tamil ta 879k

Table 2: Amount of training data used for the two tracks,
broken down by individual language, script, and lan-
guage family.

ported languages. We focus on supervised settings
to complement these works in search of a more
thorough understanding of prefixing tokens.
Token prefixing pitfalls can be mitigated by hav-
ing multiple decoders responsible for a subset of
languages. Shallow decoders have been shown
to be ineffective in MNMT compared to bilingual
equivalents but multiple shallow decoders can com-
pensate for these differences (Kong et al., 2021;
Sen et al., 2019). We use a single unified decoder.

3 Experimental Design

Language tokens are typically additional vocabu-
lary items where the content designates the source
language, the target language or a combination of
the two (i.e., <src>, <tgt>, and <src2tgt>,
respectively). Designating the target language is
necessary and many choose to add source informa-
tion as well as an additional signal to the encoder.
These tokens can be prepended onto either the
source or target—directly affecting the encodings
of either the encoder or decoder. In order to com-
pare across these techniques, we train models with
seven prefixing strategies outlined in Table 1 in
three different datasets (described in Section 3.1).

3.1 Data

We consider the two small tracks for the Workshop
on Machine Translation’s (WMT21) Large-Scale
Multilingual Shared Task. The small tracks focus
on regional language groups which covers linguisti-
cally diverse languages and are relatively balanced
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S2tlog STl TIO agls2t glIsT IIT siT 2T STIO Tl OI1S2T BI

TASK| TASK| TASK| TASK| TASK| TASK| TASK| TASK| o TasKy,  TASKj o TASK] 2
en-et 19.9 201 199 19.6 18.5 19.5 195 19.1 194 18.9 184 | 21.3
en-hr 24.3 243  24.6 24.4 235 234 243 24.0 23.5 23.6 233 | 25.7
en-hu 21.5 224 217 22.1 219 213 220 21.8 21.5 21.5 214 | 224
en-mk 21.9 229 226 22.6 219 216 224 224 21.4 21.4 20.7 | 30.3
en-sr 14.3 164 153 15.2 12.9 12.0 119 15.7 14.1 12.6 13.1 | 21.8
et-en 27.7 279  28.1 28.3 28.0 269 283 279 27.1 27.2 27.3 | 30.6
hr-en 29.7 30.7 30.2 309 295 295 30.1 29.8 29.7 29.7 29.8 | 31.3
hu-en 27.7 284 28.0 28.2 27.8 274 282 27.8 27.7 27.6 27.6 | 28.6
mk-en 28.9 299 295 29.7 292 291  29.6 29.5 28.7 28.3 29.0 | 244
sr-en 29.9 31.0 30.7 30.8 30.1 29.7 302 30.7 30.3 30.0 29.7 | 35.6
AVG. 24.6 254 25.1 25.2 24.3 240 247 - - - - -
TASK) TASK» TASK» TASK» TASK) TASKy  TASKj - - - - -
en-id 42.4 432 440 43.1 433 434 431 39.5 38.9 39.2 38.6 | 43.6
en-jv 1.3 0.9 3.9 4.0 4.0 3.2 4.2 4.1 1.7 3.9 3.2 0.1
en-ms 37.6 38.0 389 37.9 38.2 383  38.1 34.2 34.1 33.6 33.0 | 375
en-ta 8.8 9.5 9.7 8.0 7.7 8.2 8.7 54 5.0 5.1 44 | 11.2
en-tl 27.8 279 @ 284 27.5 27.4 27.8 282 24.1 23.1 23.3 232 | 29.2
id-en 35.7 372 369 36.5 36.5 367 37.0 339 33.5 334 333 | 364
jv-en 8.6 8.6 8.3 6.9 7.9 8.3 8.4 8.6 6.3 6.4 5.9 0.1
ms-en 34.8 359  36.2 35.4 358 357 356 33.2 32.6 32.3 322 | 334
ta-en 15.5 16.5 16.7 15.7 15.8 152 158 13.1 12.2 12.5 12.5 | 18.2
tl-en 30.8 325 332 31.8 314 322 325 27.8 26.7 26.9 26.7 | 35.1

AVG. 24.3 25.0 25.6 24.7 248 249 252 23.6 22.9 22.9 22.7

Table 3: BLEU scores for each TASK; (top left), TASK; (bottom left) and TASK; » (right) with each prefixing
technique. Bold indicates highest score; green highlighting indicates models are not statistically worse compared to
best model. We include bilingual models’ scores (right-most column) to help contextualize these scores.

in data quantity. We use language pairs contain-
ing English for training. Each track contains five
languages from the same region which gives sig-
nificant overlap between language families making
them ideal candidates for MNMT.

The first task (TASK) contains Croatian (hr),
Hungarian (hu), Estonian (et), Serbian (sr),
Macedonian (mk), and English (en). This set is
comprised of two Uralic languages and four Indo-
European languages. Despite some language pairs
with significant similarity, a mixture of both Latin
and Cyrillic script across the languages confounds
the problem. The second task (TASK;) contains
Javanese (jv), Indonesian (1d), Malay (ms), Taga-
log (t 1), Tamil (ta), and English. With the excep-
tion of Tamil, the remaining languages are all part
of the Malayo-Polynesian language family (sub-
family of Austronesian) written with a Latin script.
Tamil is a Dravidian language written with Tamil
script. We also consider a combined set (TASK| »)
of all languages from both tasks. The breakdown
of languages, size, family, and script is in Table 2.

When training MNMT models , training data is
often balanced via upsampling (Wang et al., 2020).
Upsampling helps improve performance in low-
resource pairs. We are concerned with differences
between techniques overall rather than optimizing
model performance across pairs so we do not up-

sample the bitext and acknowledge that the model
will underperform with some pairs.

3.2 Training

We train bilingual Transformer (Vaswani et al.,
2017) models with 16k vocabularies to contextu-
alize BLEU score ranges. The vocabularies are
trained using SentencePiece! BPE (Sennrich et al.,
2016). Multilingual vocabularies have been studied
to optimize performance, manage model capacity,
and help under-resourced languages (Chung et al.,
2020; Zheng et al., 2021). These tasks have some
differences in script and data balance so we used
both a traditional BPE training method with no
sampling and also used the union of the bilingual
models as the vocabulary for the multilingual mod-
els?. The union of these vocabularies results in a
combined 65k and 75k for the TASK; and TASK»
languages respectively. Using these numbers, we
choose to train the multilingual models with a 64k
vocabulary. For hyperparameters, please see Table
5 in the Apendix.

"https://github.com/google/sentencepiece

We do not find significant differences between the
unioned vocabulary and the regular vocabulary with respect to
prefixes so we only present the traditional vocabulary models
here.
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TIO gIT

10E-2D 8E-4D 6E-6D 4E-8D 2E-10D | 10E-2D 8E-4D 6E-6D 4E-8D 2E-10D
en-et 20.1 19.2 19.9 19.3 19 17.9 18.9 19.5 18.7 18.9
en-hr 24.1 23.3 24.6 24 23.1 22.5 23.8 23.4 23 234
en-hu 22 209 21.7 21.3 20.5 21 21.3 21.3 20.7 21
en-mk 214 21 22.6 22.6 21.4 18 21.3 21.6 21.4 22.2
en-sr 14 13.1 15.3 15.4 14.7 11.4 13.1 12 13.9 13.6
et-en 28.2 27 28.1 272 25.8 27.5 28.7 26.9 272 26.9
hr-en 30.7 29.8 30.2 29.3 28.3 30.1 30.9 29.5 294 29.1
hu-en 27.9 27 28 274 26.9 27.5 284 27.4 27.6 272
mk-en 29.8 28.5 29.5 28.5 27.3 29 30.1 29.1 27.9 27.5
sr-en 30.4 29.4 30.7 29.4 28.3 30.3 31.3 29.7 28.7 28.7
Seen LID 90% 90% 91% 91% 91% 90% 90% 90% 91% 91%
Unseen LID 63% 52% 54% 57% 25% 0.10% 0.20% 2% 5% 16%

Table 4: BLEU scores of models trained with varying depths—the number of encoder and decoder layers. Correct
LID reports the percent the output was in the correct language (based on a CLD3 LangID model) in seen (supervised)
and unseen (zero-shot) directions. Zero-shot directions are all non-English language pairs in TASK;.

4 Results

4.1 Prefixing

With the three data settings (TASK;, TASK;, and
TASK1,2), we train models for each prefixing tech-
niques. In Table 3, we present the BLEU? scores
for the individual tasks (TASK;, TASK>) and select
prefixing techniques from the combined (TASK; )
setting. We also compute statistical significant tests
using paired bootstrapping (Koehn, 2004).

Prior work on zero-shot translations found that
only “11 2" improved performance Wu et al. (2021).
In supervised settings, we find that “s T1 " often
performs as well if not better than “r 1 2." As the
number of languages scale, “s2t1 12" takes a remark-
able edge over both of these methods—though this
prefix has no equivalent in zero-shot translation. In
general, the model benefits from source language
tokens in supervised settings. It is logical that spec-
ifying both the source and target is better in super-
vised settings as the model has already seen these
combinations of language tokens during training.

This all supports that source-side prefixing per-
forms better than target-side. In TASK; (the upper-
left section of the table), we see the source-side “s T
2", and “T1 2" perfoming well with “o | s21" being
the only target-side equivalent. In TASK, (bottom
left section), none of the target-side prefixes are
competitive with “t 1 @" or “s T1 @." In TASK; »
(right section), we display the source-side prefixes
against the best-performing target-side prefix (& |
s21) which underperforms all source-side methods.
Beyond performance, source-side prefixing is also
desirable for speed as Transformer decoding times
increase with target sequence length.

3scored using SacreBLEU

Lastly, we not that the form of the token (whether
it denotes source, target, or language pair) depends
on language set. “s2t | @” significantly outper-
formed alternatives in the TASK| ; setting but was
outperformed by both “s 112" and “r 1 &” in the sin-
gle tasks. This effect may be due to the increased
number of languages which are more diverse in
both family and script than the original sets. Fu-
ture work should consider how prefixing scales
language sets increase to different quantities of lan-
guages.

4.2 Encoder and Decoder Depths

As the source-side prefixing techniques have an
advantage, we additionally study whether these
effects are multiplied by a strong decoder. We
train additional models with twelve total layers,
varying the depth of encoders and decoders with
one source-side (T | @) and one target-side (& | T)
prefixing strategy. Results are in Table 4.

We find that models with deeper encoders or an
even-balance do better with both prefixes. Both pre-
fixes benefited from deeper encoders, though depth
varied. Neither benefited from deeper decoders—
implying the prefixing technique is not heavily de-
pendent on the depth of the encoder/decoder.

5 Conclusion

Prefixing strategies are wide and varied. Previ-
ous work focused on zero-shot settings while our
work complements that by investigating supervised
performance. Source-side prefixing performs bet-
ter than target-side irrespective of encoder/decoder
depth. Further, researchers should consider the
number of languages in their set as the quantity,
diversity, and balance of pairs may make some
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prefixes more beneficial than others. Future work
should consider more forceful prompting method-
ologies and experiment with how prefixes function
with respect to language set scaling.

References

Hyung Won Chung, Dan Garrette, Kiat Chuan Tan, and
Jason Riesa. 2020. Improving multilingual models
with language-clustered vocabularies. In Proceed-
ings of the 2020 Conference on Empirical Methods
in Natural Language Processing (EMNLP), pages
4536—4546, Online. Association for Computational
Linguistics.

Angela Fan, Shruti Bhosale, Holger Schwenk, Zhiyi
Ma, Ahmed El-Kishky, Siddharth Goyal, Mandeep
Baines, Onur Celebi, Guillaume Wenzek, Vishrav
Chaudhary, Naman Goyal, Tom Birch, Vitaliy
Liptchinsky, Sergey Edunov, Michael Auli, and Ar-
mand Joulin. 2021. Beyond english-centric multilin-
gual machine translation. Journal of Machine Learn-
ing Research, 22(107):1-48.

Thanh-Le Ha, Jan Niehues, and Alex Waibel. 2016.
Toward multilingual neural machine translation with
universal encoder and decoder. In Proceedings of the
13th International Conference on Spoken Language
Translation, Seattle, Washington D.C. International
Workshop on Spoken Language Translation.

Thanh-Le Ha, Jan Niehues, and Alexander Waibel. 2017.
Effective strategies in zero-shot neural machine trans-
lation. In Proceedings of the 14th International Con-
ference on Spoken Language Translation, pages 105—
112, Tokyo, Japan. International Workshop on Spo-
ken Language Translation.

Melvin Johnson, Mike Schuster, Quoc V. Le, Maxim
Krikun, Yonghui Wu, Zhifeng Chen, Nikhil Thorat,
Fernanda Viégas, Martin Wattenberg, Greg Corrado,
Macduff Hughes, and Jeffrey Dean. 2017. Google’s
multilingual neural machine translation system: En-
abling zero-shot translation. Transactions of the As-
sociation for Computational Linguistics, 5:339-351.

Philipp Koehn. 2004. Statistical significance tests for
machine translation evaluation. In Proceedings of the
2004 Conference on Empirical Methods in Natural
Language Processing, pages 388-395, Barcelona,
Spain. Association for Computational Linguistics.

Xiang Kong, Adithya Renduchintala, James Cross,
Yuqing Tang, Jiatao Gu, and Xian Li. 2021. Mul-
tilingual neural machine translation with deep en-
coder and multiple shallow decoders. In Proceedings
of the 16th Conference of the European Chapter of
the Association for Computational Linguistics: Main
Volume, pages 1613—1624, Online. Association for
Computational Linguistics.

Yinhan Liu, Jiatao Gu, Naman Goyal, Xian Li, Sergey
Edunov, Marjan Ghazvininejad, Mike Lewis, and

Luke Zettlemoyer. 2020. Multilingual denoising
pre-training for neural machine translation. CoRR,
abs/2001.08210.

Muhammad N ElNokrashy, Amr Hendy, Mohamed Ma-
her, Mohamed Afify, and Hany Hassan. 2022. Lan-
guage tokens: Simply improving zero-shot multi-
aligned translation in encoder-decoder models. In
Proceedings of the 15th biennial conference of the
Association for Machine Translation in the Americas
(Volume 1: Research Track), pages 70-82, Orlando,
USA. Association for Machine Translation in the
Americas.

Xiao Pan, Mingxuan Wang, Liwei Wu, and Lei Li. 2021.
Contrastive learning for many-to-many multilingual
neural machine translation. In Proceedings of the
59th Annual Meeting of the Association for Compu-
tational Linguistics and the 11th International Joint
Conference on Natural Language Processing (Vol-
ume 1: Long Papers), pages 244-258, Online. Asso-
ciation for Computational Linguistics.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. 2019. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. CoRR, abs/1910.10683.

Sukanta Sen, Kamal Kumar Gupta, Asif Ekbal, and
Pushpak Bhattacharyya. 2019. Multilingual unsu-
pervised NMT using shared encoder and language-
specific decoders. In Proceedings of the 57th Annual
Meeting of the Association for Computational Lin-
guistics, pages 3083-3089, Florence, Italy. Associa-
tion for Computational Linguistics.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Neural machine translation of rare words with
subword units. In Proceedings of the 54th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 1715-1725,
Berlin, Germany. Association for Computational Lin-
guistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. CoRR, abs/1706.03762.

Xinyi Wang, Yulia Tsvetkov, and Graham Neubig. 2020.
Balancing training for multilingual neural machine
translation. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 8526-8537, Online. Association for Computa-
tional Linguistics.

Liwei Wu, Shanbo Cheng, Mingxuan Wang, and Lei
Li. 2021. Language tags matter for zero-shot neural
machine translation. In Findings of the Association
for Computational Linguistics: ACL-IJCNLP 2021,
pages 3001-3007, Online. Association for Computa-
tional Linguistics.

152


https://doi.org/10.18653/v1/2020.emnlp-main.367
https://doi.org/10.18653/v1/2020.emnlp-main.367
http://jmlr.org/papers/v22/20-1307.html
http://jmlr.org/papers/v22/20-1307.html
https://aclanthology.org/2016.iwslt-1.6
https://aclanthology.org/2016.iwslt-1.6
https://aclanthology.org/2017.iwslt-1.15
https://aclanthology.org/2017.iwslt-1.15
https://doi.org/10.1162/tacl_a_00065
https://doi.org/10.1162/tacl_a_00065
https://doi.org/10.1162/tacl_a_00065
https://aclanthology.org/W04-3250
https://aclanthology.org/W04-3250
https://doi.org/10.18653/v1/2021.eacl-main.138
https://doi.org/10.18653/v1/2021.eacl-main.138
https://doi.org/10.18653/v1/2021.eacl-main.138
http://arxiv.org/abs/2001.08210
http://arxiv.org/abs/2001.08210
https://aclanthology.org/2022.amta-research.6
https://aclanthology.org/2022.amta-research.6
https://aclanthology.org/2022.amta-research.6
https://doi.org/10.18653/v1/2021.acl-long.21
https://doi.org/10.18653/v1/2021.acl-long.21
http://arxiv.org/abs/1910.10683
http://arxiv.org/abs/1910.10683
http://arxiv.org/abs/1910.10683
https://doi.org/10.18653/v1/P19-1297
https://doi.org/10.18653/v1/P19-1297
https://doi.org/10.18653/v1/P19-1297
https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.18653/v1/P16-1162
http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1706.03762
https://doi.org/10.18653/v1/2020.acl-main.754
https://doi.org/10.18653/v1/2020.acl-main.754
https://doi.org/10.18653/v1/2021.findings-acl.264
https://doi.org/10.18653/v1/2021.findings-acl.264

Linting Xue, Noah Constant, Adam Roberts, Mihir
Kale, Rami Al-Rfou, Aditya Siddhant, Aditya Barua,

and Colin Raffel. 2020. mt5: A massively multi-

lingual pre-trained text-to-text transformer. CoRR,

abs/2010.11934.

Bo Zheng, Li Dong, Shaohan Huang, Saksham Singhal,
Wanxiang Che, Ting Liu, Xia Song, and Furu Wei.

2021. Allocating large vocabulary capacity for cross-

lingual language model pre-training. In Proceedings
of the 2021 Conference on Empirical Methods in Nat-
ural Language Processing, pages 3203-3215, Online
and Punta Cana, Dominican Republic. Association

for Computational Linguistics.

A Appendix

Parameter

Framework
Encoder Layers
Decoder Layers
Model Size

Feed Forward
Attention Heads
Dropout

Label Smoothing
Update Interval

Validation Interval 750 updates
Early Stopping 10 validations

Table 5: Hyperparameters. We use Sockeye Recipes 2
to create reproducible training scripts. Recipes will be

released upon publication.
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