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Abstract
With the rapid development of Natural Lan-
guage Understanding for information retrieval,
fine-tuned deep language models, e.g., BERT-
based, perform remarkably effective in pas-
sage searching tasks. To lower the architecture
complexity, the recent state-of-the-art model
ColBERT employs Contextualized Late Inter-
action paradigm to independently learn fine-
grained query-passage representations. Apart
from the architecture simplification, embed-
ding binarization, as another promising branch
in model compression, further specializes in
the reduction of memory and computation
overheads. In this concise paper, we propose
an effective post-training embedding binariza-
tion approach over ColBERT, achieving both
architecture-level and embedding-level opti-
mization for online inference. The empirical
results demonstrate the efficaciousness of our
proposed approach, empowering it to perform
online query-passage matching acceleration.

1 Introduction

The Information Retrieval community has wit-
nessed an emerging slew of BERT (Devlin et al.,
2018)-based deep ranking models that achieves
performance superiority in various retrieval bench-
marks (Dai and Callan, 2019b; MacAvaney et al.,
2019; Nogueira and Cho, 2019; Yilmaz et al.,
2019). Despite their advantage in learning deeply-
contextualized semantic representations, a major
issue however is the heavy computational complex-
ity. A recent model ColBERT (Khattab and Za-
haria, 2020) detaches the query-passage contextual
encoding in the proposed Contextualized Late Inter-
action mechanism, achieving substantial progress
in optimizing the runtime resource footprints.

Orthogonal to architecture simplification, embed-
ding binarization, i.e., another model compression
technique, has received growing attention across
various applications (Lin et al., 2017; Zhang and
Zhu, 2019; Qin et al., 2020; Chen et al., 2022a).
Despite the promising advantages, it usually suffers

from large performance degradation even with ade-
quate training supports (Bai et al., 2021), in which
the crux generally lies in:

• Inevitable semantic erosion. Compared to the
original embeddings, binarized targets are natu-
rally less informative to represent the semantics.
Consequently, this leads to a degraded model ca-
pability in distinguishing and ranking passages
for query-based requests.

• Inaccurate gradient estimation. Due to the
non-differentiability of binarizer sign(·), several
gradient estimators are proposed (Darabi et al.,
2018; Yang et al., 2019; Liu et al., 2019; Qin
et al., 2020; Gong et al., 2019). However, these
estimators usually are based on visually similar
simulation to sign(·), but not necessarily are the-
oretically relevant to it, which may lead to inac-
curate gradient estimation in backpropagation.

To tackle these issues, we propose an effective
post-training binarization approach by introducing:

1. Semantic diffusion technique to “distribute” in-
formative latent semantics to the embedding ma-
trix more uniformly (instead of to the condensed
sub-areas) to hedge the binarization information
erosion (§ 3.1).

2. Approximation of Unit Impulse Function to
approximate the derivatives of sign(·) more rig-
orously to provide the consistent optimization
direction in both forward and backward propa-
gation of the model training workflow (§ 3.2).

Related work & Future directions. There exist
several other methods to close the performance
disparity, such as knowledge distillation (Hinton
et al., 2015; Anil et al., 2018), multi-bit quanti-
zation (Li et al., 2016), and various augmenta-
tion strategies (Ning et al., 2020; Jang and Cho,
2021). In this paper, we base on ColBERT (2020)
to evaluate the proposed post-training binarization
approach, and will study its generalization to other
appropriate deep language models as future work.
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2 Preliminaries

ColBERT (Khattab and Zaharia, 2020). It com-
prises: (1) a query encoder fQ, (b) a passage en-
coder fD, and (3) a query-passage score predictor.
Specifically, given a query q and a passage d, fQ
and fD encode them into a bag of fixed-size em-
beddings Eq and Ed as follows:
Eq := Normalize(CNN(BERT(“[Q]q0q1 · · · ql## · · ·#”))),
Ed := Filter(Normalize(CNN(BERT(“[D]d0d1 · · · dn”)))),

(1)
where q and d are tokenized into tokens q0q1 · · · ql
and d0d1 · · · dn by BERT-based WordPiece (Wu
et al., 2016), respectively. [Q] and [D] indicate the
sequence types and # denotes the special padding
token when a query has fewer tokens than a pre-
defined token number.
Embedding Binarization and Optimization.
The conventional methods (Gersho and Gray, 2012;
Courbariaux et al., 2016; Lin et al., 2017; Chen
et al., 2021) generally adopt sign(·) function for
binarization mainly because of its O(1) simplic-
ity. However, as sign(·) is non-differentiable, pre-
vious visually similar gradient estimators (2018;
2019; 2019; 2020; 2019) are not necessarily the-
oretically relevant to sign(·). For example, esti-
mator 1 − tanh2(·) provides executable gradient
estimation, which however is the factual derivative
of tanh(·) (Qin et al., 2020; Gong et al., 2019).
This may distract the main direction of the factual
gradient for model optimization in forward and
backward propagation, which thus leads to perfor-
mance degradation of downstream tasks.

3 Bi-ColBERT Methodology

To tackle the aforementioned issue, we pro-
pose Bi-ColBERT by introducing two effective and
lightweight techniques: (1) semantic diffusion to
hedge the information loss against embedding bi-
narization, and (2) approximation of Unit Impulse
Function (Dirac, 1927; Bracewell and Bracewell,
1986) for more accurate gradient estimation.

3.1 Semantic Diffusion
Binarization with sign(·) inevitably smoothes

the embedding informativeness into the binarized
space, e.g., {-1,1}d regardless of its original val-
ues. Thus, intuitively, we want to avoid con-
densing and gathering informative latent seman-
tics in (relatively-small) sub-structures of embed-
ding bags, e.g., Eq; in other words, we seek to
diffuse the embedded semantics in all embedding
dimensions as one effective strategy to hedge the

(a) No semantic diffusion! (b) With semantic diffusion!

Figure 1: Singular value distribution example (sorted
in descending order): using semantic diffusion on MS
MARCO dataset can well balance the matrix spectrum.

inevitable information loss caused by the numeri-
cal binarization and retain the semantic uniqueness
after binarization as much as possible.

Recall in singular value decomposition (SVD),
singular values and vectors reconstruct the original
matrix; normally, large singular values can be inter-
preted to associate with major semantic structures
of the matrix (Wei et al., 2018). Hence, based on
this observation, we can achieve semantic diffusion
via normalizing singular values for equalizing their
respective contributions in constituting latent se-
mantics. To achieve this, Power Normalization (Li
et al., 2017; Koniusz et al., 2016) is one of the
solutions that tackle related problems such as fea-
ture imbalance in image processing (Koniusz et al.,
2018; Quattoni and Torralba, 2009). Inspired by
the recent approximation attempt (Yu et al., 2020),
we introduce a lightweight semantic diffusion tech-
nique as follows.

Concretely, let I denote the identity matrix, we
start from generating a standard normal random
vector p(0)∼N (0, I) where p(0) ∈ Rd. Based on
the embedding matrix for semantic diffusion, e.g.,
Eq, we compute the diffusion vector p(h) by iter-
atively performing p(h) = ET

qEqp
(h−1). Next we

can obtain the projection matrix P q of p via:

P q =
p(h)p(h)T

||p(h)||22
. (2)

Then we have the semantic-diffused embedding
bag with the hyper-parameter ε ∈ (0, 1) as:

Êq = Eq(I − εP q). (3)
We conduct similar operations to passage embed-
ding bags, e.g., Ed, for semantic diffusion. Com-
pare to the unprocessed embedding bag, i.e., Eq,
embedding Êq presents a diffused semantic struc-
ture with a more balanced spectrum (distribution
of singular values) in expectation. We theoreti-
cally explain this by Theorem 1 in Appendix A and
illustrate a visual comparison in Figure 1.
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(a) Approximation to Unit Impulse Function. (b) Cumulative distribution.

Figure 2: Proposed gradient estimation illustration.

3.2 Gradient Estimation

Rescaled Binarization. After obtaining the
semantic-diffused embedding bag, e.g., Êq, we con-
duct the rescaled embedding binarization for each
one embedding of the contextualized bag as:

Bqi := ωqi · sign(Êqi), where ωqi =
||Êqi ||1

c
.

(4)
Here i ∈ [|Êq|] and c denotes the embedding dimen-
sion. The binarized embedding bag Bq sketches
the original embeddings via (1) binarized codes
(i.e., {−1, 1}c) and (2) embedding scaler (i.e., ωqi ∈
R+), both of which collaboratively reveal the value
range of original embedding entries. Moreover,
such rescaled binarization supports the bit-wise
operations for computation acceleration in match-
scoring prediction, which will be introduced later.
Approximation of Unit Impulse Function. Al-
though previous gradient estimators are visually
similar (e.g., tanh(·)) (Gong et al., 2019; Qin et al.,
2020) to provide an executable gradient flow, it
however may lead to the inconsistent optimization
direction in forward and backward propagation.
This is because, the integral of the approximation
function (e.g., derivatives of tanh(·)) may not be
consistent with sign(·). To tackle this issue and fur-
nish the accordant gradient estimation, we utilize
the approximation of Unit Impulse Function (Dirac,
1927; Bracewell and Bracewell, 1986) as follows.

It has been proved that Unit Impulse Function
defined in the right-hand side of Equation (5) is the
derivatives of Unit Step function u(t)1, where u(t)
= 0 for t ≤ 0 and u(t) = 1 otherwise.

∂u(t)

∂t
=

{
0 t 6= 0

∞ t = 0.
(5)

It is obvious to take a translation by sign(t) = 2u(t)
- 1, and theoretically ∂ sign(t)

∂t
= 2 ∂u(t)

∂t
. Furthermore,

∂u(t)
∂t

can be introduced with zero-centered Gaus-
sian probability density function as:

∂u(t)

∂t
= lim
β→∞

|β|√
π
exp(−(βt)2), (6)

1
https://en.wikipedia.org/wiki/Heaviside_step_function

which implies that:

∂ sign(t)

∂t
≈ 2γ√

π
exp(−(γt)2). (7)

As shown in Figure 2, hyper-parameter γ ∈ R+

determines the curve sharpness to approximate
sign(·). Intuitively, this estimator in Equation (7)
follows the main direction of factual gradients of
sign(·), which produces a coordinated embedding
optimization for inputs with diverse value ranges.
Its performance superiority over other recent esti-
mators is demonstrated in experiments later.

3.3 Online Query-passage Matching

Similarly to ColBERT (Khattab and Zaharia,
2020), we employ its proposed Late Interaction
Mechanism for matching score computation, which
is implemented by a sum of maximum similarity
computation with embedding dot-products:

Sq,d :=
∑

i∈[|Bq|]

max
j∈[|Bd|]

Bqi ·B
T
dj , (8)

Which can be equivalently implemented with bit-
wise operations as follows:
Sq,d :=

∑
i∈[|Bq |]

max
j∈[|Bd|]

ωqiωdj · count
(
xnor

(
sign(Bqi) · sign(BT

di
))
)
,

(9)
Equation (9) replaces most of floating-point arith-
metics with bit-wise operations, providing the po-
tentiality of online computation acceleration. We
plan to develop hardware-adapted computation op-
erators (e.g., “bit-wise tensors”) in future. Lastly,
Bi-ColBERT adopts the training paradigm of Col-
BERT (2020) that is optimized via the pairwise soft-
max cross-entropy loss over the computed scores
of positive and negative passage samples.

4 Experimental Evaluation

We now evaluate our approach with the aim of
answering the following research questions:
• RQ1. How does Bi-ColBERT perform in the

fine-grained Top-K passage searching task?
• RQ2. Is the proposed semantic diffusion tech-

nique effective to hedge the information loss?
• RQ3. How does the proposed gradient estimator

compare to the previous counterparts?
We implement our embedding binarization ap-

proach directly on pretrained ColBERT, denoted as
ColBERTpretrain. To give a fair comparison, we use
the same dataset (i.e., MS MARCO) and evaluation
metric (i.e., MRR@10) with ColBERT. Detailed
experimental setups and baseline introduction are
attached in Appendix B.

https://en.wikipedia.org/wiki/Heaviside_step_function
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Table 1: Top-1000 Reranking results on MS MARCO.
Model MRR@10
BM25official (Robertson et al., 1995) 16.7
KNRM (Xiong et al., 2017; Dai et al., 2018) 19.8
Duet (Mitra et al., 2017) 24.3
FT+ConvKNRM (Hofstätter et al., 2019) 29.0
BERTbase (Nogueira and Cho, 2019) 34.7
BERTlarge (Nogueira and Cho, 2019) 36.5
ColBERTofficial (Khattab and Zaharia, 2020) 34.9

ColBERTpretrain 32.8
Bi-ColBERT (rs = 15.1×, rt = 7.3×) 31.7

4.1 Overall Performance (RQ1)

Similar to ColBERT (2020), we evaluate the fine-
grained searching capability via the official Top-
1000 reranking on MS MARCO w.r.t. MRR@10.
From Table 1, we have the following observations:

(1) Bi-ColBERT works better than prior non-
BERT-based models, owing to the power of fine-
tuned BERT-based methods in learning deep con-
textualized semantic representations.

(2) Furthermore, ColBERT and Bi-ColBERT
make the tradeoff between passage searching qual-
ity and retrieval cost, where ColBERT aims to
simplify the neural architecture and our proposed
methods focus on effective embedding binariza-
tion. We use rs and rt to denote the ratios of Bi-
ColBERT over ColBERT w.r.t. embedding size
compression and online score computation accel-
eration on CPUs (details are in Appendix B). Con-
sidering the advantages in memory reduction and
inference acceleration, i.e., rs=15.1×, rt=7.3×,
Bi-ColBERT provides an alternative option for Col-
BERT, especially in resource-limited scenarios.

(3) Despite the performance gap between Col-
BERT and our approach, we argue that it is mainly
caused by the inevitable information loss in numer-
ical binarization, which is unfortunately common
in prior work (Lin et al., 2017; Darabi et al., 2018;
Gong et al., 2019; Qin et al., 2020). To narrow the
gap, as briefly introduced in § 1, several indepen-
dent yet advanced methods can be further studied
and deployed for model improvement. We provide
a detailed discussion later in § 5.

4.2 Analysis of Semantic Diffusion (RQ2)

In this section, we study the effectiveness of our
proposed semantic diffusion (SD) by setting two
groups of ablation experiments. From Table 2(A),

(1) We first disable the embedding binarization
(EB) and check the effect of SD on our model. Re-
sults show that simply using SD will not negatively
affect the holistic model performance. This vali-
dates our analysis in Appendix A that SD aims to
balance the spectrum of embedding matrix (e.g.,

Table 2: (A) Ablation study of Semantic Diffusion. (B)
Gradient estimator comparison.

Components Results
SD (7) + EB (7) 32.8
SD (3) + EB (7) 32.9

SD (7) + EB (3) 30.3
SD (3) + EB (3) 31.7

Estimator Results
STE 29.7
PBE 30.4
Sigmoid 30.8
SignSwish 31.1
Tanh 31.2

Bi-ColBERT 31.7

Eb) with its associated orthonormal bases for ma-
trix reconstruction intact.

(2) In the second experiment group, we trigger
EB and the results demonstrate that SD together
with our proposed gradient estimation can effec-
tively approach our target to hedge the information
loss for representation binarization.

4.3 Gradient Estimator Comparison (RQ3)

Lastly, the experimental results in Table 2(B)
show the consistent performance superiority of our
proposed gradient estimator over all prior coun-
terparts. This generally follows our observation
explained in § 2. On the contrary, our approach
to approximate Unit Impulse Function follows the
main optimization direction of factual gradients
with sign(·); and different from previous solutions,
this guarantees the coordination in both forward
and backward propagation of model optimization.

5 Discussion for Future Work

We summarize five promising future directions.
1. It is pragmatic to evaluate the adaptability of our

approach to other BERT-based models.
2. A promising direction could be using embed-

ding binarization for other scenarios with effi-
ciency demands (Zhang and Zhu, 2020; Chen
et al., 2022b; Zhang et al., 2022; Chen et al.,
2022c; Yang et al., 2021).

3. ColBERT also employs faiss (Johnson et al.,
2019), a tool for large-scale vector-similarity
search. Thus, it is worth developing a similar
index-based data structure specifically for re-
trieval in the discrete embedding space.

4. Data augmentation, e.g., feature-based augmen-
tation (Wang et al., 2019), is another effective
technique to boost embedding informativeness
before and after the binarization.

5. If the training resource is adequate, quantization-
aware training (Zafrir et al., 2019) resembles
the standard fine-tuning and thus is promising
to compensate for the performance degradation.
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A Semantic Diffusion Analysis
Theorem 1 (Semantic Diffusion). For each pair
of unprocessed and processed embedding bags, i.e.,
(Ê, E), E =UΣV T, where U and V are unitary
matrices and descending singular value matrix Σ
= diag(σ1, σ2, · · · , σd). Then E(Ê) =UΣΣµV

T

where Σµ = diag(µ1, µ2, · · · , µd)0<µ1···d<1 is in
the ascending order.

Proof. Conducting SVD decomposition on E, we
have E = UΣV T, where U and V are uni-
tary matrices of singular vectors. Then follow-
ing p(h) = ETEp(h−1), we shall have p(h) =
(ETE)hp(0). Replacing E with its SVD decom-
position, we get the following equation:

p(h) = (V Σ2hV T)p(0). (10)
Then we transform the projection matrix computed
in Equation (2) as follows:

P =
p(h)p(h)T

p(h)Tp(h)
=

(V Σ2hV T)p(0)p(0)T(V Σ2hV T)

p(0)T(V Σ2hV T)(V Σ2hV T)p(0)

= V Σ2h V Tp(0)p(0)TV

p(0)TV Σ4hV Tp(0)
Σ2hV T.

(11)
Let t = V Tp(0), we can further simplify the above
equation to:

P = V Σ2h ttT

tTΣ4ht
Σ2hV T, (12)

where scalar tTΣ4ht is defined as:
tTΣ4ht =

∑d
j=1 t

2
jσ

4h
j . (13)

Recalling that Ê = E(I − εP ), E(Ê) = E − ε ·
E(EP ). Then we focus on the term E(EP ):

E(EP ) = 1
tTΣ4ht

UΣ2h+1 · E(ttT) ·Σ2hV T. (14)

Since p(0)∼N (0, I) and V is a unitary matrix,
thus t∼N (0, I). This indicates that each element
of t, e.g., tj ∈ t, is i.i.d. random variable. Thus,
E(tj · tk) = 0 for j 6= k and E(ttT) is a diagonal
matrix, i.e., E(ttT) = diag(t21, t

2
2, · · · , t2d). We

then have:

E(EP ) = U · diag
( σ1t

2
1σ

4h
1∑d

j=1 t
2
jσ

4h
j

, · · · , σdt
2
dσ

4h
d∑d

j=1 t
2
jσ

4h
j

)
· V T.

(15)
Therefore,

E(Ê) = U · diag
(
σ1 − ε

σ1t
2
1σ

4h
1∑d

j=1 t
2
jσ

4h
j

, · · · , σd − ε
σdt

2
dσ

4h
d∑d

j=1 t
2
jσ

4h
j

)
· V T.

(16)
Let µk = 1 − ε t2kσ

4h
k∑d

j=1 t
2
jσ

4h
j

, with ε ∈ (0, 1), obviously,
0 < µk < 1. Furthermore, ∀k1 ≥ k2, we have:

µk1 − µk2 = εE(
t2k1σ

4h
k1∑d

j=1 t
2
jσ

4h
j

−
t2k2σ

4h
k2∑d

j=1 t
2
jσ

4h
j

)

≥ εσ4hk1 · E(
t2k1 − t2k2∑d
j=1 t

2
jσ

4h
j

) = 0,

(17)

as σ4h
k2
≥ σ4h

k1
, and tk1 and tk2 are i.i.d. random vari-

ables with same normal distribution. Equation (17)

proves that µk is monotone non-decreasing in ex-
pectation, which completes the proof.

Intuitively, given the same orthonormal bases,
compared to unprocessed embedding bag E, it is
harder in expection to reconstruct Ê with informa-
tive semantics being diffused out in larger matrix
sub-structures, which however hedges the informa-
tion loss in numerical binarization.

B Experiment Setup

Dataset and Metric. Similar to work (2019a;
2019a; 2019b; 2020), we evaluate our model on
the MS-MARCO Ranking (2016) dataset. It is a
collection of 8.8M passages from 1M real-world
queries to Bing. Each query is associated with
sparse relevance judgments of one (or a small num-
ber of) documents marked as relevant and no doc-
uments explicitly marked as irrelevant. Similar
to ColBERT (2020), we use metric MRR@10 for
performance evaluation.
Baselines. We include baselines for compar-
ison from prior (1) learn-to-rank models, i.e.,
BM25 (offical) (1995), KNRM (2018; 2017),
Duet (2017), FastText+ConvKNRM (2019) (de-
noted as FT-ConvKNRM), and (2) BERT-based
models, i.e., BERTbase (2019), BERTlarge (2019)
and ColBERT (2020). We use subscripts, i.e., official,
base and large, to denote respective refered versions.
ColBERTpretrain denotes the pretrained version.
Implementations. Our model is implemented
under Python 3.7 and PyTorch 1.6.0. We ini-
tialize our model by using the pretrained Col-
BERT model under its reported default settings, i.e.,
ColBERTpretrain. Then we fine-tune our proposed
model with: the same learning rate - 3 × 10−6,
the batch size - 32, and embedding dimension -
128, iteration number for diffusing vector compu-
tation h - 2, and hyper-parameter γ = 0.5. For
other evaluation settings, we directly follow Col-
BERT (2020). We train our model in a Linux ma-
chine with 4 GPUs, each of which is a NVIDIA
V100 GPU, 4 Intel Core i7-8700 CPUs, 32 GB of
RAM with 3.20GHz. For Top-K reranking tasks,
we use CPUs per query for the passage retrieval.
To evaluate the embedding compression ratio rs,
we measure the size of embeddings produced by
Bi-ColBERT and ColBERT per query. For embed-
dings from ColBERT, we use float32 as the default.
Then to measure online score computation time
cost ratio rt, based on the computed embeddings,
we conduct experiments on CPUs with the vanilla
NumPy (2022) implementation.
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