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Abstract

Word associations are among the most com-
mon paradigms for studying the human mental
lexicon. While their structure and types of as-
sociations have been well studied, surprisingly
little attention has been given to the question
of why participants produce the observed asso-
ciations. Answering this question would not
only advance understanding of human cogni-
tion, but could also aid machines in learning
and representing basic commonsense knowl-
edge. This paper introduces a large, crowd-
sourced dataset of English word associations
with explanations, labeled with high-level re-
lation types. We present an analysis of the
provided explanations, and design several tasks
to probe to what extent current pre-trained lan-
guage models capture the underlying relations.
Our experiments show that models struggle to
capture the diversity of human associations,
suggesting WAX is a rich benchmark for com-
monsense modeling and generation.1

1 Introduction

Word associations (Deese, 1966; Kiss et al., 1973)
are a prevalent paradigm in cognitive science for
probing the human mental lexicon (Nelson et al.,
2004; Fitzpatrick, 2006). They reflect spontaneous
human associations between concepts. In a typ-
ical study, a participant is presented with a cue
word (e.g., bagpipe) and asked to spontaneously
produce the words that come to mind in response
(music, . . . ). Through large-scale crowd-sourcing
studies covering over 12K cues, 3M responses and
thousands of participants, a large word association
graph (SWOW; Deyne et al. (2019)) has been con-
structed, as a resource of basic human conceptual
knowledge. This repository of shared associations
can serve as a source of commonsense knowledge
as shown recently by incorporating SWOW as knowl-

1Data and code are available at https://github.
com/ChunhuaLiu596/WAX
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Figure 1: Excerpt of WAX, which consists of associ-
ations between cue words (bagpipe) and associations
(kilt, red, . . . ) together with association explanations
(speech bubbles) and discrete relation type labels (edge
labels). Some associations are supported by distinct
relation types and explanations (e.g., bagpipe→music).

edge resource into commonsense reasoning mod-
els (Liu et al., 2021).

However, existing word association data sets like
SWOW only provide cue-association pairs, but do
not further distinguish between different types of
associations. To fill this gap, we constructed a
novel data set to recover the underlying reasons by
collecting associations together with free-text ex-
planations from participants, and distill high-level
relation types from them. Our data set can enhance
our understanding of the reasons and types for con-
ceptual associations in humans, and can serve as an
explicit knowledge resource for reasoning models.

Our data set WAX (Word Association
eXplanations) encodes English word associations
with diverse explanations and high-level relation
types and is illustrated in Figure 1. In a large
crowd-sourcing study, we (a) collected human
word associations by presenting participants with a
cue word (bagpipe) and collecting the association
words that spontaneously came to mind (music,
kilt, . . . ) (Figure 1, circles); (b) asked the same
participants to explain the link between the cue and

https://github.com/ChunhuaLiu596/WAX
https://github.com/ChunhuaLiu596/WAX
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their corresponding associations in a short sentence
(Figure 1, speech bubbles); and (c) labeled
explanations with a relation type adpated from a
predefined set (McRae et al., 2012; Speer et al.,
2017) (e.g., FUNCTION, edge labels in Figure 1).
We ensure data quality through several layers of
careful annotator training and data filtering.

Compared to existing work on categorizing word
associations (Piermattéo et al., 2018; Fitzpatrick,
2006), WAX is larger in size, grounds associa-
tions in explanations, and will be released to the
research community, supporting future research
on understanding and modeling conceptual knowl-
edge. WAX complements existing commonsense
knowledge graphs, which either involved decades
of manual work (ConceptNet; Speer et al. (2017)),
rely on highly templated responses, limiting their
ability to reflect the natural diversity in human as-
sociations (ATOMIC; Sap et al. (2019)); or only
indirectly link concepts via a shared scene (Com-
monGen; Lin et al. (2020)). WAX results from a
new, scalable method of collecting general com-
monsense knowledge, while maintaining both qual-
ity and diversity of associations and explanations,
and can be cheaply extended to other languages.

We annotated a subset of WAX with high-level,
discrete relation labels, enabling us to quantify the
diversity of human mental relations, and to evaluate
machine learning models in their ability to (a) dis-
tinguish different relations; and (b) generate plau-
sible association explanations. Our experiments
using pre-trained language models demonstrate the
value of WAX as a rich and challenging data set for
a variety of commonsense modeling and generation
tasks. In sum, our main contributions are:

• A large data set of word associations with free-
text explanations, providing the justification
for the relation, and relation labels, which can
support scalable studies of the human mental
lexicon, and the development of models of
relation extraction, commonsense knowledge
and explanation generation.

• Extensive experiments demonstrating the util-
ity of WAX for commonsense relation classi-
fication and explanation generation.

• Insights into the relative ease of predictability
of different relation types, giving rise to fu-
ture development of targeted models, as well
as relation ontologies that are tailored to ‘em-
pirical’ relations emerging from the data.

2 Background

Our work relates to several research lines, includ-
ing word associations, commonsense knowledge
graphs, and explainability.

Word Associations Word associations, as reflec-
tions of human mental lexica, have been studied
extensively in psychology (Kiss et al., 1973). In
early studies, word associations were predomi-
nantly collected on a small scale from homoge-
neous participants (Nelson et al., 2004; Kiss et al.,
1973). Recently, crowd-sourcing has proved ef-
fective for collecting large-scale word association
data sets in several languages, i.e., English (Kiss
et al., 1973; Deyne et al., 2019), Dutch (Deyne and
Storms, 2008) and Japanese (Joyce, 2005). Among
them, SWOW (Deyne and Storms, 2008; Deyne et al.,
2019) is the largest multi-lingual word associa-
tion graph, covering 14 languages.2 However, the
graphs only include directed associations between
words pairs, rendering the underlying reasons for
association unknown.

Types of mental associations were previously
studied in cognitive psychology (Read, 1993;
Sinopalnikova, 2004; Fitzpatrick, 2006; Santos
et al., 2011; Yokokawa et al., 2002). Previous work
(Fitzpatrick, 2006; Piermattéo et al., 2018) showed
that relations of word associations can be recovered
by (1) asking subjects to explain (in words or in
writing) the reasons for the produced association,
then (2) inferring a relation based on the explana-
tions. We follow the methodology from the above
works both to recover the association reasons (see
our method description in §3) and to label a subset
of our word associations with relation types. In
contrast with previous work, where collected data
sets were small (e.g., 100 cues) and were not made
available to the research community, we provide a
large-scale data set by gathering explicit explana-
tions and relation types, to encourage future work
on automatic association inference and relation la-
beling.

Several relation type ontologies have been pro-
posed (Cann et al., 2011; Estes et al., 2011; Fitz-
patrick, 2006; Wu and Barsalou, 2009; Bolognesi
et al., 2017), which typically distinguish four broad
relation categories: taxonomic (apple, pear), sit-
uational (airplane, travel), properties (sweater,
comfortable), and linguistic/form (hobby, lobby).

2https://smallworldofwords.org/en/
project/home

https://smallworldofwords.org/en/project/home
https://smallworldofwords.org/en/project/home
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McRae et al. (2012) build on the broad categories
above, and refine them into a total of 28 subtypes,
which we used as the basis for our own association
labeling scheme (§3.2).

Commonsense Knowledge In word association
graphs, cue words are typically surrounded by a
rich set of associations (60 on average in SWOW)
provided by multiple participants responding to the
same cue. Naturally, those associations could be
considered as shared, basic knowledge or a source
of commonsense knowledge. Equipping machines
with such resources has attracted substantial at-
tention (Davis and Marcus, 2015), for instance
by incorporating existing resources like Concept-
Net (Liu and Singh, 2004) into models to solve
downstream tasks like question answering.

However, acquiring such commonsense knowl-
edge is a challenge because it is vastly diverse
and not often explicit in language, leading to data
scarcity. Commonsense knowledge is typically col-
lected either in free-text format (OMCS: Singh et al.
(2002)) or structured databases (e.g., ConceptNet:
Speer et al. (2017); ATOMIC: Sap et al. (2019)).
Liu et al. (2021) showed that the associations in
SWOW (i.e., without relation labels) bring compara-
ble benefits as ConceptNet in commonsense ques-
tion answering. Enhancing word associations with
relations could increase its utility as a source of
acquiring commonsense knowledge. Association
explanations can also support research into inter-
pretable commonsense reasoning.

Recently, pre-trained language models (PTLMs)
were tested as commonsense repositories (Petroni
et al., 2019; Shwartz and Choi, 2020; Bhargava and
Ng, 2022) by probing the extent of commonsense
knowledge encoded in PTLMs or using PTLMs
to construct (or complete) commonsense knowl-
edge graphs (Malaviya et al., 2020; Zhou et al.,
2020). Integrating existing knowledge (free-text
or structured) with PTLMs has been shown effec-
tive for improved machine reasoning (Wiegreffe
et al., 2022; Moghimifar et al., 2021), and having
machines explain why a certain association exists
could bridge between structured and text represen-
tations. We explore association explanation in §5.

Explainable Commonsense Previous work used
generated explanations to improve downstream
task performance, e.g., on question answering
(Shwartz and Choi, 2020) and natural language in-
ference (Rajani et al., 2019). Less research has

attempted to generate explanations to construct
structured commonsense resources. Dognin et al.
(2020) align ConceptNet with OMCS using heuris-
tic rules and propose dual learning to transfer be-
tween a knowledge graph and free text. How-
ever, their language data is templated, and their
dataset is not public. Other work has retrieved rep-
resentative contexts from large corpora (Hendrickx
et al., 2009), or used templates to construct sen-
tences from triples (Petroni et al., 2019). In §5 we
use WAX to generate explanations that reflect the
naturalness and diversity of human explanations.
Another related data set, CommonGen (Lin et al.,
2020), consists of crowd-sourced, short sentences
describing a scene that includes a given set of con-
cepts (common objects and actions). CommonGen
is designed to test machines’ compositional abil-
ity, but relations between concepts are implicit in
the description. Compared to their work, WAX is
more explicit, eliciting concept associations from
workers directly; more specific as each explanation
focuses on a relation between an association pair;
and more general (incl. adjectives, adverbs, and
abstract concepts). WAX could hence be used to
augment knowledge graphs like SWOW with rela-
tion labels, or free-text explanations.

3 The WAX Corpus

We present our two-stage framework for collect-
ing word association relations between pairs of
concepts (words) by crowd-sourcing explicit expla-
nations of the relations (Figure 2). In Phase 1, we
collect associations and free-text explanations to
elicit the underlying reasoning. In Phase 2, we label
a subset of (cue, association, explanation)-tuples
(c, a, e)3 with relation types r to characterize the
inventory of common relation types. Appendix A
contains details on annotator instructions and pay-
ment, as well as quality control.

3.1 Phase 1: Eliciting Explanations

In phase 1, we collect (a) word associations and
(b) explanations from the same annotator, ensuring
that the explanation indeed explains the true under-
lying association.4 Following Deyne et al. (2019),
given a cue word, a worker first generates up to

3Throughout the paper, we use c, a, e, r to denote cue,
association, explanation and relation respectively.

4While we could have annotated existing word associations
with explanations, this would require inference of another
person’s reasons for the association. To remove this confound
we elicit associations and explanations from the same worker.
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Phase 1 Phase 2

Word Association Association Explanation Relation Labeling

Cue: “bagpipe”

R1: “instrument”
R2: “wood”
R3: “kilt”

The bagpipe is a very nice instrument
The bagpipe is made of wood
Men playing bagpipes often wear kilts

CategoryExemplar
MaterialMadeof
Thematic

Given the cue, which 
words  spontaneously 
come to mind?

In a short sentence, explain why you linked the 
cue with your response. 

Assign the most appropriate 
label to the cue-response 
relation expressed in the 
explanation

Figure 2: Overview over the data collection framework for WAX.

Full WAX Relation Labelled

# unique a 6,128 453
# unique (c, a) 15,337 520
# unique (c, a, e) 19,228 725
Vocab size 10,180 1,656
Avg len(e) 9.71 10.1

Table 1: The statistics of the full WAX, and its manu-
ally relation-labeled subset. Avg len(e) is the average
explanation length (in words).

three spontaneous associations (Figure 2, left), and
immediately after provides a one-sentence explana-
tion of why they linked the cue and each association
(Figure 2, center). The resulting explanations will
serve as our text corpus of sentences expressing
relations between concept pairs.

We used a set of 1,100 single-token cues, sam-
pled from SWOW, ensuring a balanced distribution
over the POS tags noun, verb, adjective and adverb;
as well as abstract and concrete concepts. Each
annotation batch consisted of 5 randomly sampled
cues, each cue was labeled by 10 different workers
on Amazon Mechanical Turk (MTurk). The final
data set includes the annotations of 258 workers
and comprises 15K unique cue-association pairs
along with 19K explanations (Table 1, left).

3.2 Phase 2: Relation Labelling

Phase 2 augments the dataset above with explicit
relation labels (Figure 2, right), as (a) a lens into
the distribution of underlying association types;
and (b) a testbed to examine machines’ ability to
extract or generate word association relations or
explanations. Given a triple of cue, association and
explanation (c, a, e), annotators choose the most
appropriate relation type from a fixed relation in-
ventory. We first introduce the relation inventory,
before describing the process of relation labeling.

Relation Inventory We adapt an established se-
mantic relatedness taxonomy of 28 relation types
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Figure 3: Relation distribution of WAX labeled data,
including human labeled subset (bottom, blue), and auto-
augmented subset (top, orange).

from cognitive studies of the human mental lexi-
con (Wu and Barsalou, 2009; McRae et al., 2012)
and from ConceptNet (Speer et al., 2017). In
multiple pilot annotations, we assessed the con-
fusability and applicability of the relations to our
association data. We conflated associations which
were (i) similar (e.g., ACTION and BEHAVIOR),
(ii) rare (e.g., ORIGIN), (iii) of opposite direction-
ality (e.g., PARTOF and LARGERWHOLE), as this
nuance was often not reflected in the explanations.
The final label set consists of 16 relation types,
which are listed in Figure 3 and, in more detail in
Appendix A.1.

Relation labeling We sampled 757 instances
from the data from Phase 1, excluding recurring
template-like explanations (e.g., “A is a type of B”)
to create a challenging test set. We included cues
with all POS from §3.1 except for adverbs.5

MTurk annotators were given the 16 relation
types, their definitions, and examples. Each batch
consisted of 30 (c, a, e) tuples, and a worker se-
lected the most appropriate relation per tuple. Each
batch was labeled by 5 workers and we derived

5Associations with adverbs have received little attention
and are not well-covered by existing relation ontologies.
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Criteria WAX Random

Q1: e valid explanation for (c, a) 0.98 -
Q2: r valid relation for (c, a) 0.79 0.26
Q3: r valid relation for (c, a, e) 0.76 0.20

Table 2: Manual validation accuracy for assessing ex-
planations and their relation labels, as well as whether
they are concordant with the cue and association pair.
Also shown is the judged accuracy of instances with
randomly corrupted relation labels.

gold labels for each (c, a, e) by majority vote.6

The final labeled data set consists of 725 (c, a, e)-
tuples, covering 520 unique (c, a) pairs, labeled
with one of 16 relations. The corresponding rela-
tion distribution is shown in Figure 3 (blue), show-
ing that the relations are present in the data to vary-
ing degrees (e.g., the top 4 relations cover 52% of
overall labeled data). Table 1 presents the full statis-
tics of WAX. Examples are provided in Figure 1
and Tab 4. The collection of WAX was efficient
(200 hours of crowd-sourcing), and hence can be
scaled up, or extended to other languages.

3.3 Corpus Analysis

Quality In a final round of quality control, we
examined the overall consistency of WAX. We
designed three questions to manually examine its
key elements: explanations, relations, and their
alignment (Table 2). Q1 asks whether the generated
explanation expressed a valid relation for the (c, a)
pair. Q2 verifies the relation label quality by asking
whether the given relation is valid for the (c, a) pair.
Q3 looks into the alignment between explanations
and relations by asking whether the explanation e
indeed expresses the relation label r.7

We presented a random sample of 100
(c, a, e, r)-tuples from WAX to two qualified anno-
tators8 to answer the three questions. We addition-
ally mixed in 50 (c, a, e) with a randomly assigned
relation label r, as a reference point for random
performance.9 Table 2 shows the results. We can
see that almost all explanations are a valid link be-
tween cue and association (Q1), demonstrating the
validity of explanations from Phase 1. Close to

6Annotator agreement (pair-wise Cohen’s κ) was κ =
0.42, indicating moderate agreement. 28 (c, a, e)-triples were
removed, for which no majority could be reached.

7Table 8 (Appendix) shows examples for each question.
8One native speaker who was not involved in the project,

and one of the authors.
9Note that the explanation for (c, a) was not randomized

as this would have resulted in a trivial baseline.

Cluster Representative TF/IDF 3-grams

LOCATION ‘keep my in’ ‘my in my’ ‘put my in’ ‘on
my face’ ‘many in my’

{SYNONYM,
ANTONYM }

‘the opposite of’ ‘opposite of is’ ‘is the op-
posite’ ‘is synonym for’ ‘another word for’

FUNCTION ‘be used to’ ‘can be used’ ‘when you have’
‘there is usually’ ‘in order to’

TIME ‘am about something’ ‘if am about’ ‘if
something will’ ‘something will happen’

ACTION ‘in charge of’ ‘charge of the’ ‘was in charge’
‘the helped the’

SIMILAR ‘has similar meaning’ ‘similar meaning as’
‘as has similar’ ‘meaning as has’

GENERIC1 ‘when you are’ ‘if you are’ ‘something you
are’ ‘it when you’

GENERIC2 ‘referred to as’ ‘associated with being’
‘think of as’ ‘in the past’

TOPICAL1 ‘in movie called’ ‘starred in movie’ ‘was in
movie’ ‘books and movies’

TOPICAL2 ‘the game the’ ‘of the game’ ‘the ball in’
‘to catch the’ ‘the game was’ ‘to win the’

Table 3: Representative sample of explanation clusters,
as the top TF/IDF 3-grams. Clusters were labeled man-
ually. Top: clusters aligning with predefined relations;
center: topic-like clusters; bottom: generic clusters.

80% of relations are deemed valid for (c, a) (Q2)
and (c, a, e) (Q3). To put this in perspective, the
respective accuracy on the random sample were
significantly lower. To the best of our knowledge,
WAX is the first large-scale data set with explana-
tions of conceptual associations.

Clustering Explanations While classifying as-
sociative relations into a pre-defined ontology is an
important task, both for comparability with prior
cognitive work, and for model development and
evaluation, it is informative to also group explana-
tions in a purely data-driven way and compare the
result against established relation inventories. To
this end, we cluster all 19K WAX explanations us-
ing K-means in to 75 clusters.10 In order to abstract
away from signals specific to cue and association
words, and focus on the general ‘linking informa-
tion’, we masked cue and association tokens in the
explanations and embedded the result with BERT-
base (mean pooling over the final layer). We visu-
alized each cluster by its top TFIDF trigrams.

Table 3 summarizes the clustering results.
Some clusters capture relations in our ontology
(LOCATION), although some relations are conflated

10We experimented with smaller numbers of cluster but
found that this number produced the most nuanced represen-
tations, and tried TFIDF instead of BERT embeddings which
lead to highly skewed cluster memberships.
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(grater, cheese) (1) “a grater is great to make shredded
cheese.”; (2) “he shredded the cheese with the grater”; (3)
“i use a grater to grate cheese for my meal.” (all FUNCTION)

(flowing, water) (1) “the water is flowing down the gutter.”;
(2) “water flows when you turn on the faucet.”; (3) “water is
often seen flowing through hills and valleys.” (all ACTION)

(reading, glasses) (1) “he needs his reading glasses.”; (2)
“my father needs reading glasses.”; (3) “the old man had to
use reading glasses as it was difficult to see up close.” (all
COMMONPHRASE)

(igloo, cold) (1) “an igloo is very cold to the touch.”
(HASPROPERTY); (2) “the igloo is a cold place”
(HASPROPERTY); (3) “when it’s cold, you can build an
igloo out of snow.” (HASPREREQUISITE)

(heaven, god) (1) “heaven is where god lives.”
(LOCATION); (2) “heaven is the place where one can be
with god.” (LOCATION); (3) “it is said that heaven and hell
were created by god.” (ACTION)

(goalie, save) (1) “another job of the goalie is to save the
shots on the goal” (FUNCTION); (2) “the goalie reached his
glove out and made a big save” (ACTION)’ (3) “the goalie
had a great night, making a save on all but one of the shots
he faced.” (ACTION)

Table 4: Example WAX (c, a) pairs produced by >1
annotators, each with three explanations (1)–(3) and
corresponding relation labels. The first three examples
are unambiguous associations, where all explanations
describe the same relation, while the last three are am-
biguous, with explanations covering distinct relations.

(SYNONYM, ANTONYM). One general ‘similarity’-
focused cluster emerged, confirming previous find-
ings on Enlgish native speakers’ tendency to as-
sociate words based on general meaning similar-
ity (Fitzpatrick, 2006). A second set of clusters cap-
tures ‘generic associations’ (GENERIC 1-2) such
as ‘If you are c then you a’ or ‘c is associated with
a’. The third (smallest) set is topical, with explana-
tions referring to GAMES (sports) or ENTERTAIN-
MENT (movies and music). Overall, we find that
taxonomic and event-related (HASPREREQUISITE,
RESULTIN) relations are well-captured, while prop-
erty relations (MATERIALMADEOF, HASPROP-
ERTY) are reflected to a lesser extent. This obser-
vation aligns with research showing that personal
experiences (events and scenarios) inform word
associations as well as conceptual representations
more broadly (Barsalou, 1983).

Diversity Conceptual associations may result
from factual knowledge, cultural or societal norms,
or individual experiences. Here, we analyze the
extent to which different annotators produced di-
vergent associations and/or explanations (cf., the
(bagpipe → music) association in Figure 1). The

presented numbers are a lower bound on diversity,
because WAX was collected from a small number
of MTurk annotators, which were themselves not
screened for diversity and are likely a homogeneous
group of (western) English native speakers.11

15% (N=2358) of the (c, a) pairs in the full
WAX12 were produced by more than one anno-
tator (3.5 times on average), raising the question
whether a single typical relation or multiple distinct
ones connect these concepts. We look into this by
examining the labeled subset. For 59% (N=51)
of these ambiguous (c, a) pairs, all annotators ex-
pressed the same underlying relation. Examples
include (grater, cheese, FUNCTION), (flowing, wa-
ter, ACTION) and (reading, glasses, COMMON-
PHRASE). For the remaining 41% (N=36) annota-
tors expressed between 2 and 5 different relations.
An example is the pair (goalie, save) produced by
three annotators, with relations FUNCTION (1×)
and ACTION (2×). Table 4 presents the above
examples together with WAX explanations.

Analysis revealed that in cases where differ-
ent relations emerged for the same (c, a) pair,
these relations were predominantly event-related
(HASPREREQUISITE, RESULTIN, ACTION, FUNC-
TION, CATEGORYEXEMPLAR). In §4 we explore
the task of association relation classification, and
evaluate our models on the challenging, ambigu-
ous subsets described above to gauge the extent to
which associative ambiguity is captured in different
transformer-based classifiers.

4 Relation Classification

Automatic prediction of relation types or gener-
ation of explanations can support commonsense
knowledge graph completion, enhance our under-
standing of such knowledge in pre-trained lan-
guage models, or inform explainability research.
In the following sections, we present a series of
experiments to demonstrate how WAX can sup-
port progress towards some of these goals. This
section addresses relation classification, before we
study explanation generation in §5. We construct a
relation classification task using our relation type
ontology as ground truth, as a 16-way classifica-
tion problem to predict a single relation type r

11We removed another layer of potential ambiguity in Phase
2, where we assigned a single label to each association by
majority voting, even though some explanations may support
several underlying relations.

1216%(N=87) in the labeled proportion, accounting for 43%
(N=312) of the labeled (c, a, e, r) tuples.
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Model Overall (N=312) Ambiguous relations (N=131) Unambiguous relations (N=181)

P R F1 Acc P R F1 Acc P R F1 Acc

Majority-Class 1.1 6.7 1.9 16.3 0.5 7.1 0.9 6.9 1.9 8.3 3.1 23.2

-E
X

P LR 5.4 8.4 4.5 18.6 2.0 7.7 1.8 7.6 9.6 11.0 7.7 26.5
BERT-base 24.8 26.8 20.7 32.8 23.9 23.2 18.8 26.2 22.6 25.1 21.0 37.6
BART-large 34.5 48.0 35.9 47.8 30.9 35.5 29.4 38.2 37.4 42.8 37.3 54.7

+E
X

P LR 29.9 17.7 16.0 22.1 23.1 14.5 10.9 16.0 32.3 16.5 16.1 26.5
BERT-base 34.2 40.2 32.7 45.5 33.2 34.7 29.7 40.7 34.0 35.1 31.7 48.8
BART-large 49.6 57.7 48.1 56.2 41.9 47.2 37.7 48.9 47.2 50.5 46.1 61.5

Table 5: Experimental results on relation classification, as macro precision, recall and F1, and accuracy for models
with access to the full explanation (+EXP) or to cue and association only (-EXP). We report performance overall test
instances (left), only relation-ambiguous (center), and only relation-unambiguous (right) instances.

from either only (c, a)-pairs (we call this model
-EXP) or the full explanation e, which by construc-
tion includes c and a (+EXP).13 We can thus test
whether access to explanations, which lay out why
two concepts are associated, improves relation pre-
diction over and above the knowledge available
to PTLMs via large-scale pre-training. For exam-
ple, predicting a relation (e.g., FUNCTION) for the
pair (bagpipe, music) is arguably simplified (or
constrained) with access to an explicit explanation
such as “Bagpipes are used to play music”.

4.1 Dataset

As the labeled portion of WAX is both small in
size and skewed in relation distribution (Figure 3),
we augment its training portion with data from
Wu and Barsalou (2009) and ConceptNet (Speer
et al., 2017), which include concept pairs and their
relation, but no explanations. To create labelled ex-
planations, we find (c, a, r′) edges in these external
resources that are also in the unlabelled portion of
WAX, (c, a, e), and then map the known relation
label into our inventory, r′ → r, thus constructing
full (c, a, e, r) tuples. In addition, we identified
frequent patterns in the WAX explanations, and
devised a small set of templates to extract the corre-
sponding relations (e.g., ‘a is part of c’, indicates a
PARTOF relation).14 Those relations were verified
independently by two authors of this paper, and we
retained only instances where both agreed on their
validity. We obtained 835 additional labeled expla-
nations, as shown in Figure 3 (orange bars). The
final data is split into 948, 300 and 312 (c, a, e, r)-
tuples for train, dev and test sets, respectively.

13Another natural formulation is multi-class classification
given as input a (c, a) pair with all produced explanations,
which we leave for future work.

14All templates are shown in Appendix B.

4.2 Models
We experimented with discriminative and genera-
tive seq-to-seq methods for relation prediction. We
fine-tuned BERT-base-cased (Devlin et al., 2019)15

to embed the full explanation e (for explanation-
aware models +EXP), or the simple template
“c,[SEP], a” (for explanation-agnostic models
-EXP); and use the hidden representation of the
[CLS] token as input to a discriminative classifica-
tion layer. In addition, we followed Huguet Cabot
and Navigli (2021) and framed relation predic-
tion as a sequence to sequence generation problem
by generating (c, a, r) given (c, a, e) for +EXP, or
given (c, a) for -EXP, using teacher forcing. While
less direct, the approach is motivated by recent
successes in formulating classical (structured) pre-
diction problems as seq-to-seq (Bevilacqua et al.,
2021; Nayak and Ng, 2020). Including c and a in
the output lead to more focused r predictions, but
also supports the prediction of entity-pair relations
for explanations involving more than two entities.
We fine-tuned BART-large (Lewis et al., 2020) as
the generative model.16 We compared against a
logistic regression (LR) classifier with TF-IDF fea-
tures, and a majority baseline. All models were
trained on the training set, and hyper-parameters
(Appendix C) were selected based on the dev set.

4.3 Results
Main results Table 5 (left block) presents the
results. The fine-tuned LMs outperform the base-
line models by a large margin, and BART per-

15It outperformed other BERT versions, incl. BERT-large.
16We represent the encoder input as “e <subj> c POSc <obj>

a POSa”, and the decoder input (with teacher forcing at train-
ing time) as “<triplet> c <subj> a <obj> r”. <. . . > are sentinel
token, and POSx the POS tag of argument x. We use the
code base from https://github.com/Babelscape/
rebel.

https://github.com/Babelscape/rebel
https://github.com/Babelscape/rebel
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darkness-light ×#

pocket-wallet ×#

skunk-smell ×# ×

printer-ink × # ×

casino-money ×# ×#

contact-phone × # ×# ×

lesson-learn #× # × ×#

discuss-talk #× # × × #

Table 6: Selected relation classification results on un-
ambiguous (top) and ambiguous WAX test instances,
where each row shows the types of true (#) and pre-
dicted (×) relations when applied to the explanations
for a cue-association pair.

forms better than BERT, suggesting the promis-
ing direction of modeling word association rela-
tions with seq-to-seq frameworks. We further ex-
plore this direction in §5. +EXP models (fine-tuned
on full explanations) performed substantially bet-
ter than -EXP models (fine-tuned on (c, a) pairs
with no context), suggesting that explanations pro-
vide signal over and above the knowledge already
encoded in PTLMs. This is confirmed by com-
paring against a BERT zero-shot model, which
consistently performed worse than the majority
class baseline (Overall accuracy of 5.6%). A class-
wise performance analysis of the best model BART
revealed that it was accurate for taxonomic rela-
tions and well-defined attributes (e.g., {SYNONYM,
ANTONYM, PARTOF, LOCATION }), which are
well-established in the literature, while situational
associations (e.g., RESULTIN, HASPREREQUI-
SITE) are not captured by the -EXP model, but are
predicted at much higher quality by +EXP. Full
details are in Appendix D. This concurs with the
open challenge of event representations in NLP
(Sap et al., 2019) and points to future work on tai-
loring models and relation sets. We estimate human
accuracy at 76-79% (Table 2), leaving a substantial
gap between model and human performance to be
addressed in future work.

Relation diversity We evaluated our models sep-
arately on two challenging data subsets to investi-
gate whether models capture the relation diversity
discussed in §3.3: (1) (c, a) pairs with multiple ex-
planations that all refer to the same relation type
(Table 5, right block); and (2) (c, a) pairs with mul-
tiple relations that refer to different relation types
(Table 5, center block). Transformer-based models

outperform LR, with BART performing best. The
difference between BART +EXP vs BART -EXP

increases compared to Overall for both F1 and Acc,
confirming the value of explicit explanations for
these challenging subsets. Unsurprisingly, the am-
biguous relation scenario is the most challenging.

We further analyze how model predictions differ
from human labels on both relation-ambiguous and
unambiguous (c, a) pairs. We inspect predicted
labels from the best-performing model BART. Ta-
ble 6 shows representative examples comparing
human and model-predicted relations for unam-
biguous instances (one true relation, top) and am-
biguous ones (multiple true relations, bottom). Al-
though predictions diverge from gold labels, espe-
cially for the challenging ambiguous subset, the
model labels are often reasonable. Consider (dis-
cuss, talk) with the explanation “to discuss some-
thing you must talk about it” and gold label CATE-
GORYEXEMPLAR, was predicted by the model as
HASPREREQUISITE. It is not uncommon that taxo-
nomic (CATEGORYEXEMPLAR) and associative or
situational associations (HASPREREQUISITE, AC-
TION) relations are both valid for an explanation
(Santos et al., 2011), leading to confusions by both
our human annotators and model predictions. Our
raw relation annotations include at least 5 anno-
tations per (c, a, e) tuple, and hence capture this
ambiguity which can be leveraged for model devel-
opment and evaluation in future work. 17

5 Generating Relation Explanations

Natural language inference or commonsense rea-
soning is often framed as mapping a free text input
(e.g., a paragraph) to a structured output (e.g., a re-
lation, (c, a, r) triple, or a multiple-choice answer).
The underlying reasoning steps typically remain
obscure. Constructing intuitive and faithful expla-
nations for model predictions is an active research
area of increasing impact. Mapping structured rep-
resentations to natural language explanations is one
approach, which has been limited by a lack of suit-
able training data sets. WAX is a parallel data set
of structured relational data, aligned with diverse,
human-generated free text explanations. Here, we
show that it can support models to generate ex-
planations which capture the diversity of human

17Our analysis also raises the question of how well the pre-
defined relation ontology captures the relations encoded in
the explanations. We clustered the explanations and observed
it broadly aligns with our our relation ontology. See more
details in Appendix 3.3.
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Prompt
Relation

Generated Explanation
(a

)

PARTOF cowgirls wear boots as part of their outfits
EMOTION if someone is weeping they are likely sad.
PROPERTY lights are very bright when they are on
PROPERTY a shark has teeth that are very sharp
RESULTIN a hurricane can cause a major disaster in a com-

munity.
ACTION when trying to decipher a code, you need to first

decipher the words

(b
)

FUNCTION i use money to make a payment for my car
HASPREREQ when you want to make a payment, you need to

make money
FUNCTION casinos make money by selling alcoholic drinks
LOCATION casinos have lots of money

(c
)

HASPREREQ money is needed to operate a casino.
RESULTIN angles can bend in a triangle.
FUNCTION angles can be used to make triangle
MADEOF i prefer my light that is made of very bright glass
LOCATION water is flowing in a stream

(d
) TIME water is a river that is flowing

CATEXEMP baked goods are a type of baked goods.
EMOTION i like to clench my fist when i am angry

Table 7: Illustrative examples of BART generated expla-
nations in response to relation prompts of the form “c
and a have a r relation.” For each example, r is shown
on the left and c and a are underlined in the generated ex-
planation. Outputs are grouped to illustrate: (a) general
quality, (b) diversity in generation for same (c, a) with
ambiguous relations, and (c,d) unseen relation types
with (c) plausible versus (d) nonsensical outputs.

reasoning. We fine-tune a generative PTLM to
generate e given (c, a, r), noting that other tasks
definitions are conceivable, including jointly gener-
ating structured predictions and explanations, e.g.,
predict (r, e) from (c, a).

5.1 Prompting Relation Explanations
Most relatedly, BART has been used to generate
relational triples from sentences (Huguet Cabot
and Navigli, 2021). Here, we investigate the more
challenging, reverse, direction: generate a free-text
explanation from a given (c, a, r)-triple encoded
into the sentence prompt “c and a have a r rela-
tion”. The output is a short sentence supporting the
prompt. For example, the input “bucket and wash
have a function relation”, could elicit the output “I
use a bucket to wash my car”.

Setup Similar to §4.1, we augment the labeled
training portion of WAX to increase its size and
balance: for each (c, a, e, r) instance in the training
data, we mask either c or a in the explanation and
fill the blank with the top 10 candidates generated
by BERT-large.18 We down-sampled generated

18We inspected a sample of 80 prompts for validity.

instances of overrepresented relation types, result-
ing in a balanced dataset of 12K (c, a, e, r) tuples,
which are used to fine-tune BART. The original val-
idation data is used for model selection. Table 11
(Appendix) lists the key hyper-parameters.

We explored the model explanations under four
conditions: (a) prompting with human created
(c, a, r)-triples from WAX (dog, bark, ACTION);
(b) a version of (a) focused on ambiguous (c, a)-
pairs, e.g., (dog, guard, ACTION) and (dog, guard,
FUNCTION); (c) prompted as in (a) but with a rela-
tion unseen in WAX. These triples are often non-
sensical (dog, bark, SYNONYM).

Results Qualitative results in Table 7 show that
(a) explanations are overall relevant, factual and of
high quality; (b) using nucleus sampling (Holtzman
et al., 2020), we can generate different meaningful
explanations for the same prompt; (c) the high qual-
ity extends to inputs that were not seen in WAX;
and (d) for nonsensical triples, the model can still
link the concepts with the given relation (2 and 3
in (d)) possibly leading to tautological outputs; or
ignoring of the relation (1 in (d)). Our analyses
suggest that WAX can be used for fine-tuning and
probing commonsense knowledge in PTLMs, sup-
port future research into explanation generation,
or bridging structured and free-text commonsense
representations. We leave development of a quanti-
tative benchmark to future work.

6 Conclusion

Word associations have been used as a lens into
human conceptual representations for a long time,
however, the types and reasons of these associa-
tions have not been studied at scale. We presented
WAX, a large data set of word associations with
explanations and relation labels. WAX is both an
opportunity better understand the human mental
lexicon, and a repository of relational common-
sense knowledge both structured as (c, a, r) tuples,
and free-text through the associated explanations.
We demonstrated the utility of WAX for supervised
relation classification and explanation generation;
and presented a detailed data set analysis includ-
ing association diversity and data-driven relation
types. In future work, we plan to use WAX in tasks
such as automatically labelling edges in common-
sense knowledge graphs, commonsense question
answering, and natural language inference.
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Limitations We acknowledge that our dataset
is collected from a limited number of English na-
tive speakers, and it can serve as an initial work
to understand the underlying associative reasons
within this group. Caution should be exercised
when drawing general conclusions about human
conceptual knowledge, and an important direction
for future work is an extension to other languages.
Reasons for associations are likely more diverse
than reflected in our data set.

Data Privacy and Usage Our collected data does
not include any personal information except the
worker ID, which we redact from the data set. Our
collected data will be made public for research
purposes.
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A Dataset Collection Details for WAX

Our study received ethics approval with the appli-
cation reference number of 2021-22495-22206-5
from the The University of Melbourne ethics re-
view board.

We collect the WAX dataset by crowdsourcing
via Amazon Mechanical Turk. Participants were
informed what data will be collected, how the data
will be processed and used, and asked for their
explicit consent. To avoid potential confronting
content, we removed profane words19 before sam-
pling cue seeds in Phase 1 (§3.1). The payment for
both experiments was calculated based on the min-
imum wage in the authors’ home country, which is
higher than that of our workers.

Phase 1 collects word associations and corre-
sponding explanations. Next we describe the col-
lection details.

HIT and Payment Each batch (of 5 cue words)
is assigned to 10 workers. Each worker (1) pro-
duces up to three associated words for each cue,
and (2) writes an explanation for each association.
Workers can skip cues, if their meaning is unknown,
or provide fewer than three responses, if they can-
not think of more. Each batch is paid with $0.66
reward with extra bonus up to $1, depending on
the number of known cues, associations and expla-
nations. This task takes approximately 5 minutes,
as estimated in a pilot study. We paid an average
of $1.48 per batch, resulting in an hourly wage of
$17.76 (all amounts in US dollars).

Quality Control Word associations and underly-
ing reasoning are subjective, hence standard quality
assessment via annotator agreement does not apply.
Instead, we introduced a number of strategies to
control quality: clear guidelines,20 careful selec-
tion of workers, and filtering of explanations. A
valid explanation must (1) include the cue and asso-
ciation words, or a morphological variant (e.g., plu-
ral); (2) be a single sentence of 5 to 20 words. We
removed explanations which did not meet the crite-
ria above or follow trivial templates, and batches
where more than 3 of the 5 cues were marked un-
known.

Phase 2 labels explanations with relations. Next
we describe the HIT design and quality control.

19https://www.cs.cmu.edu/~biglou/
resources/bad-words.txt

20The full guidelines will be released as part of the dataset.

HIT and Payment Each batch of 30 (c, a, e)
triples is assigned to five workers. For each triple,
workers select the most appropriate relation label
from a given list (see Table 9 for list of labels and
definitions provided to the workers). This task
takes approximately 22 minutes, based on a pilot
study. Each batch is paid at a minimum $1 with
extra bonus up to $8, depending on the annotation
quality. We paid an average of $5.92 per batch,
resulting in an hourly wage of $17.36.

Quality Control We ensure high quality through
(a) detailed instructions; (b) a training phase; (c) se-
lection of 10 reliable crowd workers who achieved
accuracy > 0.5 in training; (d) continuing feedback
to annotators throughout annotation; (e) collecting
labels from five workers for each (c, a, e). If a la-
bel has 3 or more votes it is selected; otherwise the
instance is labeled by two experts (authors of the
paper), and the voting test is re-applied.21 We ob-
tained an annotator agreement (pair-wise Cohen’s
κ) of κ = 0.42, indicating moderate agreement.

Final quality check Table 8 illustrates the ques-
tions used in our final WAX quality check, as de-
scribed in Section 3.3 in the main paper.

Questions and Examples
Q1: Does the explanation express a valid reason for
associating (c, a)?
Example: raspberries can be made into jam.
Q2: Does the relation label express a valid relation for
(c, a)?
Example: (nature, beautiful, hasproperty)
Q3: Does the relation label express the relation for (c, a)
that is described in the explanation?
Example: (space, stars, partof, space has a lot of stars
in it.)

Table 8: Examples of dataset quality check.

A.1 Relation inventory

Table 9 displays the relation ontology used in phase
2 of data collection, including a definition of each
relation as presented to the crowd workers.

B Relation Templates

Table 10 lists trigger words and phrases used to
automatically map recurring, templated WAX ex-
planations to relations.

21After this, 32 instances are still not assigned a label with
three votes, and are discarded.

https://www.cs.cmu.edu/~biglou/resources/bad-words.txt
https://www.cs.cmu.edu/~biglou/resources/bad-words.txt
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Broad Category Relation Definition

Concept-Properties HASPROPERTY Cue has association as a property; or the reverse. Possible prop-
erties include shape, color, pattern, texture, size, touch, smell,
and taste; or inborn, native or instinctive properties.

PARTOF A part or component of an entity or event.
MATERIALMADEOF The material of something is made of.
EMOTIONEVALUATION An affective/emotional state or evaluation toward the situation

or one of its components.
Situational TIME A time period associated with a situation or with one of its

properties.
LOCATION A place where an entity can be found, or where people engage

in an event or activity.
FUNCTION The typical purpose, goal or role for which cue is used for

association. Or the reverse way.
HASPREREQUISITE In order for the cue to happen, association needs to happen or

exist; association is a dependency of cue. Or the reverse way.
RESULTIN The cue causes or produces the association. Or the reverse way.

A result (either cue or association) shoud be involved.
ACTION An action that a participant (could be the cue, association or

others) performs in a situation. Cue and association must be
among the (participant, action, object).

THEMATIC Cue and association participate in a common event or scenario.
None of the other situational properties applies.

Taxonomic CATEGORYEXEMPLAR The cue and association are on different levels in a taxonomy.
SAMECATEGORY The cue and association are members of the same category.
SYNONYM The cue and association are synonyms.
ANTONYM The cue and association are antonyms.

Linguistic COMMONPHRASE The cue and association is a compound or multi-word expression
or form a new concept with two words.

None-of-the-Above None-of-the-Above Use this label only if other labels can not be assigned to the
instance or you don’t understand the cue, association or explana-
tion.

Table 9: The definition of associative relations used for labelling WAX.

Relation Trigger phrase

ANTONYM opposite
PARTOF part of
FUNCTION used
CATEGORYEXEMPLAR type of, form of
HASPREREQUISITE require, need to
MATERIALMADEOF make of/by/with
LOCATION grow on, grown in,

live in, on the, find
SYNONYM similar, synonym,

another word, define

Table 10: Templates used to automatically label ex-
planations. Trigger word is the text between cue and
association in the explanation.

C Hyperparameters

Table 11 lists the core hyperparameters used in the
relation classification and generation experiments.

D BART class-wise relation prediction
performance

Table 12 shows the class-wise relation classification
performance of BART when fine-tuned on minimal
templates (-EXP) and on full explanations (+EXP).

Classification Generation
BERT BART BART

Optimizer AdamW_hf AdamW AdamW
Max Steps 500 1000 2000
Learning Rate 5E-05 2E-05 2E-05
Batch Size 8 8 4

Table 11: Experimental hyper-parameters.

The final column indicates whether access to expla-
nations improved performance.
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Relation
BART -EXP BART +EXP

P R F1 P R F1 ∆ F1

(a) SYNONYM 100.0 83.3 90.9 77.1 72.6 74.8 ↓
ANTONYM 100.0 100.0 100.0 75.0 100.0 85.7 ↓
ACTION 84.6 61.1 71.0 85.7 55.6 67.4 ↓
PARTOF 55.0 100.0 71.0 100.0 33.3 50.0 ↓
EMOTIONEVALUATION 50.0 100.0 66.7 42.9 60.0 50.0 ↓

(b) LOCATION 76.9 71.4 74.1 69.7 85.2 76.7 ↑
TIME 27.3 100.0 42.9 33.3 100.0 50.0 ↑
FUNCTION 23.5 26.7 25.0 63.6 48.3 54.9 ↑
HASPROPERTY 70.0 38.9 50.0 63.9 82.1 71.9 ↑
COMMONPHRASE 11.1 3.7 5.6 47.6 26.3 33.9 ↑

(c) THEMATIC 0.0 0.0 0.0 17.7 21.4 19.4 ↑
RESULTIN 0.0 0.0 0.0 50.0 33.3 40.0 ↑
HASPREREQUISITE 0.0 0.0 0.0 22.2 60.0 32.4 ↑
MATERIALMADEOF 0.0 0.0 0.0 16.7 100.0 28.6 ↑
CATEGORYEXEMPLAR 0.0 0.0 0.0 27.8 45.5 34.5 ↑

Table 12: Class-wise performance of BART -EXP and BART +EXP. Relations are grouped by change in F1 after
adding explanations (∆ F1): (a) relations well predicted without explanations, (b) relations can be further improved
when explanations are used, (c) relations cannot be captured without context but some signals from explanations are
learnt to assist the model make correct predictions.
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