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Figure 1: Consider the following two natural language queries shown in (a). Retrieving images relevant to these
queries (shown using a green bounding box) requires a model that has the ability to interpret images beyond just
what is visually apparent, such as interpreting – who are customers vs. who are tourists? Who are waiting to buy vs.
who are going to see? in other words, visual commonsense. Additionally, the model would need to interpret facts or
world knowledge, such as Häagen-Dazs is an ice cream brand and the Taj Mahal in India is an example of Mughal
architecture. This can be enabled by linking visual entities in the image to an encyclopedic knowledge source such
as Wikipedia. Our work presents such a model, namely KRAMT.

Abstract

One characteristic that makes humans supe-
rior to modern artificially intelligent models
is the ability to interpret images beyond what
is visually apparent. Consider the following
two natural language search queries – (i) “a
queue of customers patiently waiting to buy
ice cream" and (ii) “a queue of tourists going
to see a famous Mughal architecture in India."
Interpreting these queries requires one to rea-
son with (i) Commonsense such as interpret-
ing people as customers or tourists, actions as
waiting to buy or going to see; and (ii) Fact
or world knowledge associated with named vi-
sual entities, for example, whether the store
in the image sells ice cream or whether the
landmark in the image is a Mughal architecture
located in India. Such reasoning goes beyond
just visual recognition. To enable both com-
monsense and factual reasoning in the image
search, we present a unified framework, namely
*This work was done while Revant Teotia was affiliated

with Indian Institute of Technology Jodhpur.

Knowledge Retrieval-Augmented Multimodal
Transformer (KRAMT), that treats the named
visual entities in an image as a gateway to ency-
clopedic knowledge and leverages them along
with natural language query to ground relevant
knowledge. Further, KRAMT seamlessly in-
tegrates visual content and grounded knowl-
edge to learn alignment between images and
search queries. This unified framework is then
used to perform image search requiring com-
monsense and factual reasoning. The retrieval
performance of KRAMT is evaluated and com-
pared with related approaches on a new dataset
we introduce – namely COFAR. We make
our code and dataset available at https://
vl2g.github.io/projects/cofar.

1 Introduction

Retrieving relevant images for a natural language
query has been an exciting field of research in the
vision-and-language community (Johnson et al.,
2015; Wang et al., 2016a, 2020). Most of the avail-
able literature focuses on querying visually-evident

https://vl2g.github.io/projects/cofar
https://vl2g.github.io/projects/cofar
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aspects in the images, such as searching for objects
or their interactions in natural scenes. However, as
illustrated in Figure 1, users often require an image
search engine that can perform commonsense rea-
soning and leverage facts (world knowledge) about
the image content. To fill this gap, we propose a
novel image search task requiring commonsense
and factual reasoning associated with named visual
entities.

To study this problem, a suitable dataset is re-
quired. While many text-to-image search datasets
are publicly available (Lin et al., 2014; Young et al.,
2014; Sidorov et al., 2020), they have not been ex-
plicitly created to study our proposed task. Few of
the recently introduced knowledge-enabled VQA
datasets such as OK-VQA (Marino et al., 2019),
KVQA (Shah et al., 2019), text-KVQA (Singh
et al., 2019), FVQA (Wang et al., 2017) require
either factual or commonsense or a combination
of both. However, they may not be well-suited
for studying the “image search" task we are in-
terested in. Note that in the conventional VQA
task, a query (question) is evaluated against a sin-
gle image which is often directly relevant to the
query; whereas, in image search, a query needs
to be evaluated against several thousands of im-
ages, including distractors and then needs to rank
the relevant image as the top result. Moreover, to
our knowledge, there is no dataset available that in-
cludes natural scene images containing a diverse set
of visual named entities (such as business brands,
celebrities, and world landmarks), visual details
of the natural scene along with annotations that
demands commonsense and factual reasoning asso-
ciated with the images. To meet these requirements,
we present COFAR, which contains manually an-
notated English language queries for natural scenes
containing named visual entities.

A plausible approach to addressing our image
search problem on COFAR is large-scale vision-
language pretraining (Radford et al., 2021; Lu
et al., 2020) and learning the associations between
commonsense-factual concepts and images. This
can be successful in learning popular associations,
e.g., Starbucks to Coffee, Eiffel tower to Paris if
it has seen such samples during training. How-
ever, such methods often require large data and
generalize poorly to unseen or rare entities. In
contrast, we take a distinct path in this work and
ground external knowledge associated with entities
in the images to perform commonsense and fac-

tual reasoning. To this end, we present a unified
model, namely Knowledge Retrieval-Augmented
Multimodal Transformer (KRAMT), that retrieves
relevant knowledge from Wikipedia by performing
query-knowledge similarity-guided visual entity
linking. It then encodes the retrieved knowledge,
query and visual features, and learns image-query
alignment using a multimodal transformer to per-
form knowledge-aware image search.
Contributions of this paper: (i) We study the
problem of image search requiring both common-
sense and factual reasoning associated with named
visual named entities such as business brands,
celebrities, and world landmarks for the first time
and introduce a novel dataset, viz. COFAR for
this task. We firmly believe that the proposed task,
accompanying dataset, and benchmarks presented
in this paper will open up future research avenues.
(Section 3) (ii) We introduce a knowledge retrieval
augmented multimodal transformer (KRAMT) – a
unified framework that learns to align queries with
the relevant images by performing visual entity
linking, retrieving relevant knowledge, and seam-
lessly integrating it with visual content. The exper-
imental results demonstrate that KRAMT, besides
visual reasoning, can perform commonsense and
factual reasoning (Section 4 and Section 5).

2 Related Work

2.1 Image Search by Visio-lingual alignment

The performance of image search using natural
language query has been significantly improved
in the last few years. Typically, the methods in
this space learn the semantic visio-lingual (V-L)
alignment; during retrieval, rank the images ac-
cording to the learned similarity function. Early
works (Faghri et al., 2018; Wang et al., 2016b)
learn to project image representations and text em-
beddings into a joint space. Recently, multimodal
transformers have become a de facto model for V-L
tasks. Their different avatars (Zhang et al., 2021;
Lu et al., 2019) tackle multiple V-L tasks jointly by
using multi-headed self-attention to encode word
tokens and visual objects and are the current state of
the art for text-to-image retrieval. However, these
methods focus only on the visual cues to represent
images and do not encode any external knowledge
in their framework. Consequently, any explicit cru-
cial information associated with the image is also
ignored.
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(a) Query: Two people getting married in front of a
tower in Paris.
Commonsense: Two people in white gown and suit hold-
ing hands leads to the commonsense that they are getting
married.
Visual named entity: The Eiffel Tower
Fact: The landmark is Eiffel Tower, which is located in
Paris, France.

(b) Query: The captain of the Argentina national football
team celebrating after scoring a goal.
Commonsense: The person is running cheerfully next to
a goalpost leads to commonsense that they are celebrating
after scoring a goal.
Visual named entity: Lionel Messi
Fact: Lionel Messi is the captain of the Argentina national
football team.

(c) Query: Two people showing an interest to purchase
a watch.
Commonsense: People looking into the display of a watch
store implies they could be interested to purchase a watch
there.
Visual named entity: Rolex
Fact: The store Rolex sells watches.

Figure 2: A selection of examples from COFAR showing query, relevant image, associated visual named entity,
commonsense and fact.

2.2 Commonsense and Factual Reasoning

Bringing commonsense in vision and language
tasks is one of the exciting areas of research. The
works in this area primarily address: (i) tasks where
commonsense reasoning is purely visio-lingual
data-driven (Yin et al., 2021; Park et al., 2020;
Zellers et al., 2019; Xing et al., 2021) and (ii) tasks
where commonsense is enabled by associating the
images with external knowledge (Wang et al., 2017;
Marino et al., 2019, 2021; Shah et al., 2019; Singh
et al., 2019; Wu et al., 2016). Our proposed task
falls in the latter category. However, it is distinctly
different from others as none of these works ad-
dress image search requiring detailed visual, com-
monsense as well as factual reasoning associated
to a diverse set of named entities appearing in the
image including business brands, celebrities, and
landmarks. Concerning using named visual entities
and associated factual reasoning, the only works
closest to ours are (Shah et al., 2019; Singh et al.,
2019). However, compared to ours, these works
restrict themselves to only celebrities or business
brands and have weaker annotations for visual and
commonsense reasoning. Despite its importance
and many real-world applications on the Web such
as news-search, named visual entity linking and its
utility towards downstream tasks have been under-
explored in the literature. We aim to fill this gap.

3 COFAR: Dataset for Image Search
requiring COmmonsense and FActual
Reasoning

We introduce COFAR, a dataset for studying the
novel problem of image search that requires com-
monsense and factual reasoning. A detailed com-

COFAR in brief:
Number of queries 40,757
Number of images 25,297
Number of unique named entities 5,060
Source of images text-KVQA (Singh et al., 2019),

Celebrity in Places (Zhong et al., 2016),
Google Landmarks (Weyand et al., 2020).

External knowledge source Wikipedia
Average query length (words) 10.5
Average knowledge length (words) 43.7

Table 1: COFAR dataset statistics.

parison with related datasets is made in Table 2.
COFAR contains images of natural scenes that
include visual named entities of business brands,
celebrities, and world landmarks. We provide anno-
tations created to query commonsense and factual
knowledge pertaining to named entities present in
images. We use Wikipedia articles as the exter-
nal knowledge source for the visual named enti-
ties. The dataset contains 40,757 manually anno-
tated English language search queries for 25,297
natural images covering a diverse set of 5,060
named entities. We further provide external knowl-
edge sources for each visual entity. COFAR is
made publicly available for download: https:
//vl2g.github.io/projects/cofar.

3.1 Image collection:

We begin our dataset creation process by collecting
images containing one of the three popular named
visual entity types: business brands, famous person-
alities, and landmarks across the globe. To this end,
we first started collecting images from different
publicly available sources, i.e., we obtain natural
scene images containing business brands, person-
alities, and landmarks using text-KVQA (Singh
et al., 2019), VGG-celebrity in places (Zhong et al.,

https://vl2g.github.io/projects/cofar
https://vl2g.github.io/projects/cofar
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Dataset #Images Visual Reasoning Commonsense Reasoning Factual Reasoning Contains Named Entities External Knowledge

VQA datasets
FVQA (Wang et al., 2017) 2.1K Minimal Not a major focus Yes* ✗ Conceptnet
KVQA (Shah et al., 2019) 24K Minimal Not a major focus Yes ✓ Wikidata
text-KVQA (Singh et al., 2019) 257K Minimal Not a major focus Yes ✓ Wikidata
OK-VQA (Marino et al., 2019) 14K Minimal Not a major focus Yes* ✗ Wikipedia
VCR (Zellers et al., 2019) 110k Detailed Major Focus No ✗ ✗

GD-VCR (Yin et al., 2021) 328 Detailed
Major Focus
(geo-diverse)

No ✗ ✗

Image search datasets
MS-COCO (Lin et al., 2014) 120K Detailed Not a major focus No ✗ ✗

Flickr30k (Young et al., 2014) 30K Detailed Not a major focus No ✗ ✗

COFAR (This work) 25K Detailed Major focus Major Focus ✓ Wikipedia

Table 2: Comparison of COFAR with other related datasets. Examples of Minimal vs. Detailed visual reasoning:
‘How many chromosomes does the creature in this image have?’ (Source: OK-VQA) vs. ‘A lady wearing a blue
t-shirt going home after purchasing groceries’ (Source: COFAR). Further, Yes* under the factual reasoning column
indicates that though these datasets require factual reasoning, their facts are about common objects (such as Orange
is a citric fruit) and not about named entities (such as Lionel Messi is an Argentine professional footballer). Besides
detailed visual reasoning, commonsense and factual reasoning associated with visual named entities appearing in
the image are unique aspects of COFAR that distinguish it from other related datasets.

2016) and the Google landmarks (Weyand et al.,
2020) respectively.2 Note that these sources do not
provide any natural language queries relevant to the
images and, therefore are not directly usable for our
task. We then associate each of these images with
the Wikipedia page of the entity it contains. Note
that during training, this association is assumed to
be known, but during testing, we perform visual
entity linking. Some of the example entities in
our dataset are Rolex, Lionel Messi, and the Eiffel
Tower. As shown in Figure 3 the distribution of
visual named entities in the images of our dataset is
geographically diverse. Further, we also illustrate
the diversity in the category-wise distribution of
COFAR in Figure 4. We refer the reader to the
Appendix for further details on COFAR.

3.2 Manual annotation:

The images, along with their associated Wikipedia
summary texts, were given to three hired human an-
notators with the task of annotating queries. These
annotators were from geographically diverse loca-
tions and had proficiency in written English. In
particular, they were instructed to create queries
that include (i) factual information of the entity
present in the image, for example, captain of the
Argentina national football team, landmark located
in Paris, as well as (ii) commonsense knowledge
about events, activities, people, what is going to
happen in the scene, or what might have just oc-
curred, for example, celebrating after scoring a
goal, people in the image are getting married. An-

2Restricted by the budget, instead of choosing entire
celebrity in places and the Google landmarks, we choose
a reasonably large subset.

Figure 3: Distribution of named entities in COFAR on
the world map. COFAR contains named entities from a
diverse list of countries, with a slight unintentional bias
towards countries such as the United States of America
and Canada. Darker color indicates more entities.

notators have also been given the option to discard
those images where it is very hard to associate vi-
sual commonsense, for example, just a frontal view
image of a landmark or a signboard of a business
brand or an image without any interesting visual
activity around. The entire process of manually
coming up with queries that require commonsense
and factual reasoning, followed by a manual quality
check of the data, took approximately 800 person-
hours by three annotators. At the end of this stage,
we obtained 25K images and 40K queries involv-
ing commonsense and factual information about
the image. Table 1 summarizes the dataset statistics
of COFAR.

A selection of examples from COFAR are
shown in Figure 2. An image search model relying
exclusively on visual cues would find it challeng-
ing to retrieve the relevant images for the queries
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Figure 4: Distribution of the top fifteen categories of
named entities present in COFAR.

in COFAR. Consider search query-(c) shown in the
figure i.e., two people showing interest in purchas-
ing a watch.. In this image, two people are look-
ing at a display in a Rolex store that sells watches
(world knowledge). Therefore, even though detect-
ing watches in this image may be hard for vision
models, the matching image shown at the top of this
query is relevant. The use of visual entity recogni-
tion to associate encyclopedic knowledge and com-
monsense and factual reasoning are some of the
salient features that make COFAR distinctly differ-
ent from existing text-to-image retrieval datasets.

3.3 Train and Gallery Split:

Based on categories of named entities present,
dataset is grouped into COFAR (landmark), CO-
FAR (celeb), and COFAR (brand). All the base-
lines and our proposed method are evaluated on
them separately as well together. Further, we split
the dataset into (i) Train set: Used for learning
image-query alignment, this set contains 12,120
images and 33,800 queries. (ii) Small and large
gallery sets: We show retrieval on two gallery sets
containing 1K and 5K images for COFAR. We use
2,800, and 9,800 natural language queries in all for
1K and 5K image galleries, respectively. Please
note that retrieval on the test galleries is performed
with images containing entities that are unseen dur-
ing training.

4 Knowledge Retrieval-Augmented
Multimodal Transformer (KRAMT)

Given a natural language query and a large gallery
of images each containing a visual named entity,
our goal is to retrieve relevant images. To this
end, we present Knowledge Retrieval-Augmented
Multimodal Transformer (KRAMT) – an unified
framework that contains two major modules: (i)
visual entity and query-aware knowledge retrieval

and (ii) knowledge-infused multimodal transformer
as illustrated in Figure 5.

4.1 Visual Entity and Query-Aware
Knowledge Retrieval:

We posit that visual entities appearing in the im-
age act as a gateway to the encyclopedic knowl-
edge, and its integration to an image retrieval sys-
tem has the potential to bring commonsense and
factual reasoning ability. Therefore, to associate
visual entities appearing in the given image to
their corresponding Wikipedia page, we perform
visual entity linking or Image Wikification which
is an analogous task to Wikification (Shnayderman
et al., 2019) of text corpora, i.e. linking entity
mentions in text documents to their corresponding
Wikipedia page. More formally, given an image, a
set of m candidate entities E = {e1, e2, · · · , em}
containing business brands, celebrities, and world
landmarks, and associated knowledge text (ob-
tained from Wikipedia articles of these entities)
K = {k1, k2, · · · , km}; Image Wikification aims to
rank these entities with respect to their image wiki-
fication likelihood (siw). Here, for an image, suiw
denotes likelihood of uth entity in that image. We
obtain these likelihood scores by using off-the-shelf
approaches such as CRAFT+CRNN (Baek et al.,
2019; Shi et al., 2017) for detecting and recogniz-
ing business brand mentions in the image, VGG
face (Parkhi et al., 2015) for comparing celebrity
faces appearing in the images against a set of ref-
erence faces, and landmark recognition (Weyand
et al., 2020) for recognizing world landmarks.

If we link images to only that entity which corre-
sponds to the highest likelihood score, linking may
be incorrect (especially due to look-alike faces or
similar world landmarks or noisy text recognition).
This is also evident from the experiment, which
clearly shows the gap between top-1 and top-K
performance of visual entity linking (Refer to Ta-
ble 5). To resolve any error in visual entity linking
and subsequently retrieving relevant knowledge,
we further leverage the natural language query. To
this end, we compute the similarity between query
and knowledge text associated with top-K entities
using a trainable BERT model f and denote these
similarity scores as sqk where suqk denotes the sim-
ilarity between query and knowledge text corre-
sponding to uth entity. Further, relevance of each
entity with respect to image and given query is
computed as follows: s = Ψ(αsiw + βsqk), here
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Figure 5: Overview of proposed Knowledge Retrieval Augmented Multimodal Transformer (KRAMT): Given
a query and a ranked list of visual entities identified in the image, KRAMT grounds the relevant knowledge. This
grounded knowledge, along with visual objects and natural query, is fed to a multimodal transformer that learns to
align query and relevant image. Please refer Section 4 for more details. [Best viewed in color].

Ψ is argmax. The choice of argmax over softmax
is intuitive as only one knowledge text is relevant
for a given query and image in our task. Once we
obtain s, we perform element-wise multiplication
to K = {k1, k2 · · · kK} and feed this knowledge to
a multimodal transfer as described next.

4.2 Knowledge-infused Multimodal
Transformer:

Once we obtain relevant knowledge from our
knowledge retrieval module, we use Knowledge-
infused Multimodal Transformer – a simple and
effective architecture to learn alignment between
natural language search queries and images along
with their associated external knowledge. KRAMT
seamlessly integrates these three input modalities
in a unified end-to-end trainable architecture. To
achieve this, we first encode the query text, knowl-
edge text, and visual regions as three sequences of
features. We then project these features to a shared
embedding space before using them as input to the
KRAMT. These features then attend to each other
through multiple self-attention layers (Vaswani
et al., 2017). The output of a special class token
from the final layer’s output is then used to predict
the alignment between the query and image along
with its knowledge text.

4.3 Pretraining:

We learn a strong vision-language grounding ca-
pability in KRAMT through pretraining on MS-
COCO (Lin et al., 2014) with the objective tasks

of masked language modelling (MLM) and image
text matching (ITM).

4.4 Query and Knowledge Encoder:

We fine-tune pretrained BERT (Devlin et al., 2019)
to encode the text of the query and external knowl-
edge. For a given search query Q containing
L words and a given knowledge ki containing
M words, we embed them into sequences of d-
dimensional BERT feature vectors {ql}Ll=1 and
{kij}Mj=1 respectively.

4.5 Image Encoder:

Given an image, we detect a fixed set of N visual
objects using Faster R-CNN (Ren et al., 2015) pre-
trained on Visual Genome (Krishna et al., 2017).
Each image I is represented as an unordered se-
quence of the N object proposals {Ri}Ni=1 where
each Ri is represented as (Rcnn

i , Rbbox
i ), which

denote 2048-dimensional region feature and 4-
dimensional spatial feature, respectively.

We project regional feature Rcnn
i and spatial fea-

ture Rbbox
i into the same d-dimensional space as

the search query and the knowledge text using two
different learnable transformation matrices Wcnn

and Wbbox. We apply layer normalization L(·) (Ba
et al., 2016) to each transformed feature, and add
them to get the final visual object feature FRi .

FRi = L(WcnnR
cnn
i ) + L(WbboxR

bbox
i ). (1)
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4.6 Query-Image Alignment Learning:
Besides learning d-dimensional embeddings for
the three inputs, we also learn it for three special
tokens, namely [SEP ] to separate the input modal-
ities, [CLS] to calculate the final alignment score
and [MASK] to replace the text tokens during
MLM. We then allow all the L+M +N +3 input
token features to attend to each other through T
transformer encoder layers to obtain a joint repre-
sentation.

As the final step, a multi-layer perceptron that
takes d-dimensional [CLS] output feature and pro-
duces an alignment score Out[CLS] indicating if
the given pair of a search query and the image with
associated knowledge are aligned or not, is used.
During training, we create positive pairs by select-
ing images and their corresponding queries from
the dataset and negative pairs by randomly chang-
ing either the image or the query of the selected pair
with another random choice in the dataset. We train
the model using binary classification loss. Further,
to make the image-query alignment robust, we also
train the model with the MLM objective wherein
each iteration of training, we replace text input to-
kens at random with a special token [MASK] with
a probability of 0.15 and predict the masked tokens
based on the context of image, query, and knowl-
edge. During retrieval, for a given query, we rank
all the images in the gallery based on the predicted
alignment scores. Further implementation details
of KRAMT are provided in the Appendix.

5 Experiments and Results

We group image retrieval baseline approaches into
three categories: (i) Knowledge-only, (ii) Vision-
only, and (iii) Knowledge-aware vision and lan-
guage (V-L) models to investigate the following
questions respectively:

• How much impact does external knowledge
have? Can it alone drive performance in CO-
FAR without any visual cues?

• Is there a need for integrating external knowl-
edge in COFAR?

• How do other knowledge-aware baselines per-
form on COFAR?

Under Knowledge-only, we utilize BERT (De-
vlin et al., 2019) to perform query-knowledge
sentence-matching. In VL models, we use
modern text-to-image retrieval methods, namely
VSE++ (Faghri et al., 2018), and competitive

vision-and-language transformers such as Visual-
BERT (Li et al., 2020), ViLBERT (Lu et al., 2019),
and VinVL (Zhang et al., 2021). Knowledge-
aware VL models: As there are no directly compa-
rable knowledge-aware image-retrieval methods in
current literature, we implement a few knowledge-
aware visual question answering-based models
with appropriate modifications to make them com-
patible for our task: (i) Modified Memory Net-
work: Memory networks, and their variations
have shown to yield state-of-the-art performance on
knowledge-aware VQA benchmarks (Shah et al.,
2019; Su et al., 2018). We implement this base-
line by using top-K knowledge texts. These
texts are scored with a query, and the weighted
sum of this representation, CNN features of the
image, and query representation are passed to
a binary classifier that classifies if the image
is relevant to the query. (ii) KRISP-inspired
model: KRISP (Marino et al., 2021) addresses
open knowledge-based VQA using implicit and
symbolic knowledge stored in a graph data struc-
ture. In our setting, we use unstructured knowledge
text in place of symbolic knowledge. We model
implicit knowledge using MM-BERT, similar to
KRISP, and for unstructured text, we use BERT
embedding of the knowledge text. The output of
these representations along with BERT-based query
representation is fed to an MLP for learning align-
ment. (iii) KQIA: Here, knowledge text, along
with queries and images, are encoded using gated
recurrent units and CNN, respectively, and are then
projected into a common space to learn alignment.
All baselines are pretrained on the COCO dataset
unless mentioned otherwise.

5.1 Ablations:
To evaluate the effect of different components
of KRAMT, we present the following ablations:
KRAMT (w/o Knowledge): where knowledge
text is omitted, KRAMT (w/o vision): where
only query and retrieved knowledge is used, and
KRAMT (Oracle) that assumes ground-truth
knowledge is available to the model.

5.2 Results and Discussions
We quantitatively evaluate KRAMT on COFAR
and compare it against related approaches in Ta-
ble 3. We report recall (R1, R5 and, R10) and me-
dian rank (MdR) averaged over all the test queries.
Note that higher values for recall and lower val-
ues for median rank are desired. The poor perfor-
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COFAR (Unified) COFAR (Brand) COFAR (Celeb) COFAR (Landmark)

Method R1 R5 R10 MdR R1 R5 R10 MdR R1 R5 R10 MdR R1 R5 R10 MdR

1K Gallery

Knowledge-only
Sentence similarity 3.1 8.7 19.0 84 2.4 9.3 18.8 68 3.0 8.2 16.9 143 4.2 9.1 19.3 97

Vision-only
VSE++ (Faghri et al., 2018) 7.4 19.2 23.8 68 6.9 19.5 27.6 60 6.0 25.1 38.5 27 21.8 48.0 59.0 9
VisualBERT (Li et al., 2020) 22.7 50.0 62.5 5 24.0 50.9 63.3 5 8.0 29.3 37.3 22 32.4 64.5 70.0 4
ViLBERT (Lu et al., 2019) 29.8 57.9 71.0 5 28.1 55.4 68.6 4 16.5 34.4 42.0 15 36.0 66.9 74.0 4
VinVL (Zhang et al., 2021) 30.5 62.1 74.3 4 31.2 64.8 75.7 4 18.3 38.9 46.5 10 38.7 68.0 76.3 3

Knowledge-aware V-L Models
Modified Memory Network 15.2 35.0 50.3 5 14.4 34.9 48.6 18 6.1 26.8 39.4 23 24.5 51.1 60.3 5
KQIA 22.0 52.4 64.5 5 19.9 48.2 57.5 9 10.1 29.2 40.5 19 31.9 57.8 67.0 5
KRISP-inspired model 28.1 53.8 69.0 4 26.8 51.5 67.6 5 13.6 32.5 39.8 17 34.3 65.9 74.2 3
Ours

KRAMT (w/o Vision) 1.9 6.6 12.6 57 1.1 7.4 12.4 35 2.6 6.6 17.1 164 2.7 10.9 14.5 100
KRAMT (w/o Knowledge) 19.8 39.1 49.8 14 19.4 38.3 49 15 11.8 26.3 35.5 25 35.5 67.3 74.5 2
KRAMT 31.6 64.4 76.2 3 32.9 66.5 78.6 3 19.7 44.7 51.3 8 40.0 69.1 80.0 2
KRAMT (Oracle) 40.0 73.2 84.5 2 38.5 72.0 83.3 2 26.3 48.7 61.8 6 42.7 76.4 87.3 2

5K Gallery

Vision-only
VSE++ (Faghri et al., 2018) 4.7 11.2 18.0 119 3.9 9.2 17.4 128 2.9 9.1 12.5 274 8.8 20.4 33.6 49
VisualBERT (Li et al., 2020) 11.4 28.6 40.0 19 11.1 28.0 38.8 20 6.7 13.3 20.0 95 13.6 31.0 40.1 18
ViLBERT (Lu et al., 2019) 13.6 31.7 43.5 12 13.0 30.8 41.5 10 9.1 15.8 25.0 67 12.2 43.6 54.0 8
VinVL (Zhang et al., 2021) 15.9 35.6 49.2 10 14.9 33.6 44.5 9 11.2 17.7 30.4 31 14.2 44.9 58.0 6

Knowledge-aware V-L Models
Modified Memory Network 7.3 21.8 34.6 40 6.8 19.9 30.1 46 3.8 10.1 14.6 143 9.3 26.8 37.9 38
KQIA 9.8 25.3 36.2 21 9.1 24.9 35.4 24 7.7 14.9 20.8 79 10.8 28.1 37.4 28
KRISP-inspired model 14.1 36.6 45.9 10 13.3 32.4 43.7 10 8.8 14.1 23.9 61 12.0 41.4 53.7 7
Ours

KRAMT 17.1 42.9 57.2 8 16.7 42.2 56.5 8 11.8 18.4 34.2 28 12.7 45.5 58.2 6
KRAMT (Oracle) 18.9 45.8 59.9 8 18.5 45.0 58.9 7 15.8 25 38.2 18 18.2 52.7 65.5 5

Table 3: Comparison of retrieval performance on COFAR (with 1K and 5K gallery each) with baselines and
ablations. We report mean recall (R) at top 1, 5, and, 10 retrievals and median rank (MdR) over all the test queries.

KRAMT
(w/o knowledge)

KRAMT

(a) “Lady handling a financial transaction inside a bank” (b): “People protesting outside the world’s most visited museum”

Figure 6: Top-3 retrieved images using proposed KRAMT(w/o Knowledge) and KRAMT on COFAR-1K for two
queries. We see that models without access to external knowledge often fail to interpret commonsense such as a
financial transaction or protest, and factual information, such as the world’s most visited museum, present in the
query. On the contrary, KRAMT retrieves semantically more coherent images. Here green colored bounding box
indicates the ground truth image.

mance of knowledge-only models confirms that
image search in COFAR is non-trivial and exter-
nal knowledge about the entities in images alone
is insufficient. Further, we observe that the vision-
only models such as VisualBERT, ViLBERT, and
VinVL, without access to external knowledge, do
reasonably well solely through visual reasoning.
However, it falls short to KRAMT. By virtue of
its seamless integration of search query, visual

content, and unstructured knowledge, KRAMT
clearly outperforms other baselines, including other
Knowledge-aware V-L baselines. These results
show the effectiveness of transformer-based meth-
ods in COFAR task. The results of ablations are
also reported in Table 3. Here, we observe that
KRAMT that leverages harvested knowledge for
enabling commonsense and factual reasoning is sig-
nificantly superior to KRAMT (w/o knowledge).
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# of COFAR-1K

Method Pre-train Images R1 R5 R10 MdR

CLIP (Radford et al., 2021) 400M 26.4 58.1 72.8 6
12-in-1 (Lu et al., 2020) 6.3M 30.2 59.9 74.3 4
KRAMT 125K 31.6 64.4 76.2 3

Table 4: Using external knowledge over very large-scale
pretraining on COFAR 1K.

COFAR Category Top 1 (%) Top 5 (%)

Brand 60.8 79.6
Landmark 63.5 70.2
Celeb 80.1 83.0

Table 5: Results of Image Wikification (visual entity
linking) on different categories of COFAR test data.

5.3 Models Pretrained on large-scale datasets

We note it may not be fair to compare our model
with those which use very-large-scale datasets for
pretraining due to significant differences in size
of training data. Moreover, there is possibility
of overlap of images in their train sets and CO-
FAR-test set; for the sake of a comprehensive com-
parison, we compare KRAMT with two modern
transformer-based models namely CLIP (Radford
et al., 2021) and 12-in-1 (Lu et al., 2020) in Table 4.
Please note that they use 400M and 6.3M images,
respectively, for pretraining as compared to 125K
images (COCO) in our model. We see KRAMT
surpasses CLIP and 12-in-1 despite being a smaller
model.

We show a selection of visual results for top-
3 retrievals for two queries in Figure 6. The re-
trieved images by KRAMT (w/o knowledge) may
contain the relevant image, but often ranked lower
due to their inability to recognize the entities and
perform factual reasoning. On the contrary, the
proposed KRAMT consistently retrieves relevant
images, confirming our hypothesis.

5.4 Limitations and Future Scope

We observe the following limitations of our work:
(i) for the introduction of COFAR, we have chosen
natural scenes that contain only one visual named
entity. This may not be the case in a real-world set-
ting, (ii) restricted by the budget, current version of
COFAR contains only 25K images of 5K named
entities in all. However, in an open-set scenario, a
much larger and diverse set of visual named entities
can be considered, and Image Wikification can be
a promising research challenge. In fact a contem-
porary work (Zheng et al., 2022) poses this as a
stand-alone task, and (iii) explicit external knowl-

edge associated with common objects has not been
leveraged. We leave addressing these limitations
as a future work of this paper.

6 Conclusion

In Information Retrieval and NLP community,
knowledge bases are instrumental in enabling com-
monsense and semantic search. However, their
utility in semantic image search has not been ex-
tensively explored in the literature. We have drawn
the attention of the vision and language commu-
nity towards this issue through our work and pre-
sented a novel multimodal transformer namely
KRAMT which seamlessly combines image, query,
and knowledge encoding to learn alignment be-
tween the image with associated knowledge and
query. We firmly believe that image search requir-
ing commonsense and factual reasoning and the
new dataset viz. COFAR introduced in this work
will open up several future research avenues.

7 Ethical Considerations

One caveat of COFAR is that the images have
been collected from various publicly available
sources that may contain geographical bias inher-
ently present in them that were undetected in this
work. This problem is common with many public
vision benchmarks. A more rigorous inspection
is indeed required before deploying the proposed
model for real-world applications.
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Appendix

KRAMT Pre-training
To train our full KRAMT model, we initially pre-
train on the COCO captions dataset (Lin et al.,
2014) for the objective task of image-caption align-
ment and masked language modelling. COCO
presents a huge diversity of visual content and
serves as a good dataset for improving visual rea-
soning abilities in KRAMT. Further, the model is
finetuned on the trainset of COFAR.

KRAMT Implementation Details
We implement the code in PyTorch (Paszke et al.,
2019). The transformer layers of KRAMT are im-
plemented using Hugging Face’s transformers li-
brary (Wolf et al., 2020). We use three transformer
encoder layers, with 8 attention heads. The hidden
dimension of each block of the transformer layer,
as well as the input token feature dimension, is the
same as the standard BERT (Devlin et al., 2019)
model’s hidden dimension of 768.

To encode the query, we use pretrained BERT
(‘bert-base-uncased’) provided by Hugging Face.
We keep the sequence length of query text to 40,
by truncating the longer sequences and padding the
shorter ones. To encode knowledge text, we use
the same pretrained BERT, however, this time we
keep the sequence length to 80 to accommodate the
Wikipedia summary of a page (typically at most 70
words long). This BERT is further fine-tuned dur-
ing the training of KRAMT with 0.1 times smaller
learning rate than that of the KRAMT layers.

To encode images, we extract visual objects us-
ing Faster R-CNN (Ren et al., 2015) pretrained
on Visual Genome (Krishna et al., 2017). We use
top-50 most confident visual object proposals for
each image, and represent the visual object’s ap-
pearance features using Faster R-CNN’s ‘fc6’ fea-
tures of 2048 dimensions. For spatial features, we
use 4-dimensional normalized bounding box rep-
resentation as mentioned in our approach in the
main paper. To represent special tokens [CLS] and
[SEP ] we learn 768-dimensional embedding for
each of them during training.

To get alignment scores from the output embed-
ding of the [CLS] token, we learn a multi-layer-
perceptron (MLP) with one hidden layer of size
512 and a ReLU activation. For pretraining on
COCO, the knowledge text input is masked and
trained for 42 epochs using Adam (Kingma and
Ba, 2014) optimizer, with a constant learning rate

Figure 7: Knowledge word cloud

of 1e-4. Before we finetune KRAMT on COFAR
for the task of query-image alignment, we fine-
tune KRAMT on text of COFAR with just masked
language modelling objective for 10 epochs using
Adam (Kingma and Ba, 2014) optimizer, with a
constant learning rate of 5e-5. Finally, we finetune
KRAMT on COFAR with the task of query-image
alignment for 15 epochs using Adam (Kingma and
Ba, 2014) optimizer, with a constant learning rate
of 0.00002. The model is trained with the binary
cross-entropy loss for query-image alignment task,
and cross-entropy loss over vocabulary for masked
language modelling task. The model was trained
using two Nvidia RTX 5000 GPUs (each having
16GB of GPU memory) with a batch size of 64
while training and 128 while testing. KRAMT pre-
training takes approximately four days on the two
GPUs, whereas KRAMT finetuning on COFAR
takes lesser time.

Further details of the implementation can be
found in the code which we provide in the project
page.
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Figure 8: Overview of Image Wikification (visual entity linking) method in KRAMT. To recognize named
visual entities in images, we use available methods such as CRAFT+CRNN, VGG-Face, and Landmark ArcFace
for brands, celebrities, and landmarks respectively. Using these experts, we measure similarity against several
thousands of reference entities to obtain a set of high ranking candidates. This open-set recognition approaches
allow for addition or removal of any number of reference entities without a need to re-train.

Image 
Wikification

Honeywell 
International

Honey Dew 
Donuts

“Honey Dew Associates, Inc., is a 
… Massachusetts-based 
coffeehouse chain selling donuts 
and other breakfast foods…”

“Honeywell International Inc. is 
an American publicly traded, 
multinational conglomerate 
corporation…”

“A donut shop employee 
waiting to take an order”

Query:
“A donut shop employee waiting to take 

an order”

Query-Knowledge
Sentence-Similarity

Honey Dew 
Donuts

0.85

0.81

Wikified Entities Knowledge

Figure 9: Using query-based guidance in knowledge-retrieval for KRAMT. Taking the set of top-ranked
candidate entities, we use the search query to select the most appropriate entity by measuring sentence-similarity
between the query and entity’s knowledge text.

Image 2

Query: Visitors standing in rain admiring a temple dedicated to the Greece goddess Athena

Visual Named Entity: Parthenon

Knowledge Text: The Parthenon is a former temple on the Athenian Acropolis, Greece, dedicated to the goddess Athena, 
whom the people of Athens considered their patroness. 

Query: A young fan asking the author of the Harry Potter series for an autograph

Visual Named Entity: J. K. Rowling

Knowledge Text: Joanne Rowling (born 31 July 1965), also known by her pen name J. K. Rowling, is a British author and 
philanthropist. She wrote a seven-volume children's fantasy series, Harry Potter, published from 1997 to 2007. 

Query: A white truck parked outside a grocery store waiting to pick up orders

Visual Named Entity: Walmart

Knowledge Text: Walmart Inc. is an American multinational retail corporation that operates a chain of hypermarkets (also 
called supercenters), discount department stores, and grocery stores from the United States, headquartered in Bentonville, 
Arkansas. 

Figure 10: A selection of examples from COFAR along with the ground truth visual named entities present in the
images and the associated knowledge texts extracted from their respective Wikipedia articles.
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Named Entity Category # Entities Belongs to Examples

Actor 660 Celebrity Sean Connery, Kim Hyun-joong
Restaurant 237 Business Brand Panda Express, KFC
Church 215 Landmark Wolvendaal Church, Innvik Church
Television actor 157 Celebrity Simon Cowell, Whitney Port
Politician 149 Celebrity Boris Johnson, Barack Obama
Singer 146 Celebrity Seun Kuti, Shreya Ghoshal
Football Player 143 Celebrity Marco Reus, James Milner
Bank 130 Business Brand DBS Bank, Lloyds Bank
Airline 130 Business Brand Air Tahiti, Zambezi Airlines
Supermarket 128 Business Brand Mercadona, Piggly Wiggly
Retail Store 124 Business Brand Spencer’s Retail, Conad
Film Actor 116 Celebrity Paul Rudd, Anil Kapoor
Mountain 88 Landmark Mount Majura, Mount Uhud
Museum 74 Landmark Louvre Museum, Bapu Museum
Apparel Store 65 Business Brand Quiksilver, Zara
Singer-songwriter 59 Celebrity Joey Tempest, Tuomas Holopainen
Lake 49 Landmark Lough Key, Qinghai Lake
Model 47 Celebrity Lily Cole, Tyson Beckford
Mosque 47 Landmark The Fatih Mosque, Ahl Fas Mosque
Castle 46 Landmark Dunsany Castle, Egeskov Castle
Park 45 Landmark Cove Island Park, Baishamen Park
Auto showroom 38 Business Brand Honda, Volkswagen
Petrol Station 35 Business Brand Petrobras, Petro-Canada
Comedian 34 Celebrity Kapil Sharma, Ken Jeong
Building 33 Landmark De Bazel, ASEM Tower

Table 6: Distribution of the top 25 most frequent categories of named entities present in the COFAR dataset.

Type Number of Avg. Length of Avg. Length of Number of Number of
Named Entities Knowledge (words) Queries (words) Countries Entity types

Brand 1060 44.2 11.7 79 39
Celeb 2000 39.0 14.0 92 150

Landmark 2000 41.7 13.6 40 463

Table 7: Statistics about the three categories of data in COFAR.

COFAR-1K (Unseen entities) COFAR-1K (Seen entities)

Method R1 R5 R10 MdR R1 R5 R10 MdR

KRAMT 31.6 64.4 76.2 3 35.1 72.6 88.6 3

Table 8: Performance of KRAMT on two COFAR-1K versions comprising of entities previously unseen during
training and entities seen during training. We observe that performance of KRAMT is higher for already-seen
entities.
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Figure 11: A selection examples from COFAR


