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Abstract

Neural autoregressive sequence models smear
the probability among many possible sequences
including degenerate ones, such as empty or
repetitive sequences. In this work, we tackle
one specific case where the model assigns
a high probability to unreasonably short se-
quences. We define the oversmoothing rate to
quantify this issue. After confirming the high
degree of oversmoothing in neural machine
translation, we propose to explicitly minimize
the oversmoothing rate during training. We
conduct a set of experiments to study the effect
of the proposed regularization on both model
distribution and decoding performance. We use
a neural machine translation task as the testbed
and consider three different datasets of vary-
ing size. Our experiments reveal three major
findings. First, we can control the oversmooth-
ing rate of the model by tuning the strength
of the regularization. Second, by enhancing
the oversmoothing loss contribution, the prob-
ability and the rank of (eos) token decrease
heavily at positions where it is not supposed
to be. Third, the proposed regularization im-
pacts the outcome of beam search especially
when a large beam is used. The degradation of
translation quality (measured in BLEU) with
a large beam significantly lessens with lower
oversmoothing rate, but the degradation com-
pared to smaller beam sizes remains to exist.
From these observations, we conclude that the
high degree of oversmoothing is the main rea-
son behind the degenerate case of overly prob-
able short sequences in a neural autoregressive
model.

1 Introduction

Neural autoregressive sequence modeling is a
widely used scheme for conditional text genera-
tion. It is applied to many NLP tasks, including
machine translation, language modeling, and con-
versation modeling (Cho et al., 2014; Sutskever
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et al., 2014; Brown et al., 2020; Roller et al., 2021).
Despite the substantial success, major issues still
exist, and it is still an active area of research. Here
we highlight two major issues which have been
discussed extensively.

The first issue is the model assigning too high
a probability to a sequence which is unreasonably
shorter than a ground-truth sequence. Stahlberg
and Byrne (2019) report evidence of an extreme
case where the model frequently assigns the highest
probability to an empty sequence given a source se-
quence in machine translation. In addition, Koehn
and Knowles (2017) demonstrate that the length
of generated translation gets shorter with better
decoding (i.e., beam search with a larger beam.)

In the second issue, which is more often
observed in open-ended sequence generation
tasks, such as sequence completion, generated se-
quences often contain unreasonably many repeti-
tions (Holtzman et al., 2019; Welleck et al., 2020b).
This phenomenon was partly explained in a re-
cent year by Welleck et al. (2020a), as approxi-
mate decoding resulting in an infinitely long, zero-
probability sequence.

In this work, we tackle the first issue where the
model prefers overly short sequences compared to
longer, often more correct ones. We assume that
any prefix substring of a ground-truth sequence
is an unreasonably short sequence and call such
a prefix as a premature sequence. This definition
allows us to calculate how often an unreasonably
short sequence receives a higher probability than
the original, full sequence does. This value quanti-
fies the degree to which the probability mass is over-
smoothed toward shorter sequences. We call this
quantity an oversmoothing rate. We empirically
verify that publicly available, well-trained transla-
tion models exhibit high oversmoothing rates.

We propose to minimize the oversmoothing rate
during training together with the negative log-
likelihood objective. Since the oversmoothing rate
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is difficult to minimize directly due to its construc-
tion as the average of indicator functions, we de-
sign its convex relaxation, to which we refer as an
oversmoothing loss. This loss is easier to use with
gradient-based learning.

We apply the proposed regularization to neural
machine translation using IWSLT 17 and WMT
tasks and observe promising findings. We effec-
tively reduce the oversmoothing rate by minimizing
the proposed oversmoothing loss across all tasks
we consider. We see the narrowing gap between
the length distribution of generated sequences and
that of the reference sequences, even when we in-
crease the beam size, with a lower oversmoothing
rate. Finally, by choosing the strength of the pro-
posed regularization appropriately, we improve the
translation quality when decoding with large beam
sizes. We could not, however, observe a similar
improvement with a small beam size.

2 Background: Neural autoregressive
sequence modeling

We study how a neural sequence model assigns too
high probability to unreasonably short sequences
due to its design and training objective. We do
so in the context of machine translation in which
the goal is to model a conditional distribution over
a target language given a source sentence. More
specifically, we consider a standard approach of
autoregressive neural sequence modeling for this
task of neural machine translation, where the con-
ditional probability of a target sentence given a
source sentence is written down as:!

]

11 p(wily<i,x;0), ()

t=1

p(ylx) =

where y~; is a sequence of tokens up to (and not
including) step t. 0 refers to the parameters of an
underlying neural network that computes the con-
ditional probability. Each of the source and target
sentences ends with a special (eos) token indicat-
ing the end of the sequence. As was demonstrated
by Newman et al. (2020), this (eos) token is used
by an autoregressive neural network to model the
length of a sequence.

Given this parameterization, we assume a stan-
dard practice of maximum likelihood learning
which estimates the parameters 6 that maximizes

'In the rest of the paper, we often omit X for brevity.

the following objective function:

L(0) = ]D\ Zlogp y'x";0) + R(0).
‘R is a regularization term that prevents overfitting,
such as weight decay.

Once training is done, we use this autoregressive
model as a translation system by approximately
solving the following optimization problem:

Ymap = arg max p(y|[x; 6).
y
We often resort to greedy decoding or beam search,
both of which belong to a family of incomplete
decoding algorithms (Welleck et al., 2020a).

3 Oversmoothing: the issue of premature
sequences

In this section, we carefully describe the issue of
premature translation or premature sequence in au-
toregressive modeling, which has more often been
referred to casually as the issue of oversmoothing
in earlier studies (see, e.g., Shi et al., 2020). To
do so, we first define formally what we mean by a
‘premature sequence’. A premature sequence is a
length-¢ prefix of an original sequence, where ¢ is
smaller than the length of the original sequence. In
other words, length-t prefix is defined as:

Definition 3.1 (Length-¢ prefix). Given an origi-
nal sequence y = (y1,¥2,---,YJy| = (eos)), the
length-¢ prefix is y<: = (y1,¥2, ..., Y—1, (€0s)),
where 1 <t < |y|.

With this definition, we make a reasonable as-
sumption that most of such premature sequences
are not valid sequences on their own. In the case
of natural language processing, for instance, these
premature sequences correspond to sentences that
suddenly terminate in the middle. Only a few of
these premature sequences may be a coherent, well-
formed text.

A good autoregressive language model should
then assign a lower probability to such an ill-
formed premature sequence than that assigned to
a well-formed original sequence. That is, it must
satisfy:

lyl t—1
11 pwely<r) > p((eos) [y<e) [ ] plvely<r)

t'=1 t'=1

=p(y) :p(;gt)

2

1116



which is equivalent to

lyl

H p(yrly<v) > p({eos) [y<t),

because of the autoregressive formulation.

In order for this inequality to hold, the probabil-
ity assigned to the (eos) must be extremely small,
as the left-hand side of the inequality is the prod-
uct of many probabilities. In other words, the dy-
namic range of the (eos) token probability must be
significantly greater than that of any other token
probability, in order for the autoregressive language
model to properly capture the ill-formed nature of
premature sequences.

It is, however, a usual practice to treat the (eos)
token just like any other token in the vocabulary,
which is evident from Eq. (1). This leads to the
difficulty in having a dramatically larger dynamic
range for the (eos) probability than for other token
probabilities. In other words, this limited dynamic
range due to the lack of special treatment of (eos)
is what previous studies (Shi et al., 2020) have
referred to as “oversmoothing”, and this leads to
the degeneracy in length modeling.

Under this observation, we can now quantify the
degree of oversmoothing? by examining how often
the inequality in Eq. (2) is violated:

Definition 3.2 (Oversmoothing rate). The over-
smoothing rate of a sequence is defined as

ly|-1 lyl

Z (Hp (yvy<v)

t'=t

< p((eos) <o) (3)

ros(y) \y\ o1

where 1 is an indicator function returning 1 if true
and otherwise 0.

With this definition, we can now quantify the
degree of oversmoothing and thereby quantify any
improvement in terms of the issue of oversmooth-
ing by any future proposal, including our own in
this paper.

Because premature sequences may be well-
formed, it is not desirable for the oversmoothing
rate to reach 0. We, however, demonstrate later
empirically that this oversmoothing rate is too high
for every system we considered in this work.

2To be strict, this should be called the degree of ‘smooth-
ing’, but we stick to oversmoothing to be in line with how
this phenomenon has been referred to in previous studies (Shi
et al., 2020).

3.1 Minimizing the oversmoothing rate

The oversmoothing rate above is defined as the av-
erage of indicator functions, making it challenging
to directly minimize. We instead propose to mini-
mize an upper bound on the original oversmoothing
rate, that is differentiable almost everywhere and
admits gradient-based optimization:

Definition 3.3 (Oversmoothing loss). Given a se-
quence y, the oversmoothing loss is defined as

lyl

: Zmax (0 log p({eos) [y<t)

ls(y) = 137 2

lyl
= logp(ywly<r) + m) :

=t
which is an upper bound of 7o5(y) with m > 1.

We use this oversmoothing loss as a regulariza-
tion term and augment the original objective func-
tion with it. We use o € [0,1) to balance the
relative strengths of these two terms:

Z(Y) = (1 - a) : lnll(Y) +ao- los(y)a
where
ly|
an(y) = =Y log p(yely<)-
t=1

When the inequality in Eq. (2) is satisfied at step
t with the log-probability difference between the
Lh.s. and r.h.s. at least as large as m, the over-
smoothing loss disappears, implying that the step
t does not contribute to the issue of oversmooth-
ing. When this loss is activated at step ¢, we have
two terms, excluding the constant margin m, the
log-probability of incorrect (eos) given the context
1<+ and the negative log-probability of the correct
suffix given the same context.

Minimizing the first term explicitly prevents a
premature sequence y<; from being a valid se-
quence by lowering the probability y; being (eos)
even further compared to the other tokens in the
vocabulary. The second term on the other hand pre-
vents the premature sequence by ensuring that the
full sequence y = (y|y|, (€os)) is more likely than
the premature sequence y<; = (y<t, (eos)). In
short, the proposed oversmoothing loss addresses
both of these scenarios which lead to oversmooth-
ing. Finally, only when both of these factors are
suppressed enough, the loss vanishes.
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The second scenario above, i.e., increasing the
probability of a suffix at each position £, has the
effect of greatly emphasizing the latter part of the
sequence during training. This can lead to a degen-
erate case in which the earlier part of a sequence
cannot be modeled by an autoregressive sequence
modeling, if the strength of the proposed over-
smoothing loss is too large. We thus use this loss
together with the original negative log-likelihood
loss (o > 0) only after pretraining a model with
the negative log-likelihood loss only (o = 0).

4 Related work

The issue of generating sequences that are shorter
than the ground-truth one has been studied from
various aspects including model parametrization,
data collection, and decoding. Here we highlight
some of these projects in the context of our work.

On the aspect of model parametrization, Peters
and Martins (2021) suggest using sparse transfor-
mation of the next-token distribution rather than the
usual way of using softmax. Such a model is then
able to assign zero probability to short sequences
more readily and thereby reduce the oversmoothing
rate. Their approach, however, does not explicitly
encourage (eos) tokens to be assigned zero proba-
bility, unlike ours where (eos) is treated specially.
Shi et al. (2020) embed the (eos) token with a dis-
tinct vector at each position within the sequence.
This was shown to help the probability of empty
sequence, although they do not report its impact on
translation quality at all.

On data collection, Nguyen et al. (2021) analyze
data collection and show that data augmentation
techniques altering sequence length may address
the issue of oversmoothing and improve transla-
tion quality. Their work is however limited to low-
resource tasks. With respect to decoding, Wang
et al. (2020) observe the oversmoothing while
studying "look-ahead" decoding strategies. They
reduce the probability of the (eos) using the auxil-
iary loss term, similarly to the token-level unlikeli-
hood loss (Welleck et al., 2020b). Murray and Chi-
ang (2018) design a decoding algorithm that learns
to correct the underestimated length. Alternative
decoding algorithms, such as minimum Bayes risk
decoding (Eikema and Aziz, 2020; Miiller and
Sennrich, 2021), have been shown to alleviate the
length mismatch to a certain extent when compared
to beam search.

These earlier approaches do not attempt at for-

mally characterizing the cause behind the issue of
oversmoothing. This is unlike our work, where
we start by formalizing the issue of oversmoothing
and propose a way to alleviate this issue by directly
addressing this cause.

S Experimental Setup

We follow a standard practice to train our neural
machine translation models, following (Ott et al.,
2018a), using the FairSeq framework (Ott et al.,
2019). We use BPE tokenization via either fastBPE
(Sennrich et al., 2016) or SentencePiece (Kudo
and Richardson, 2018), depending on the dataset.
Although it is not required for us to use state-of-
the-art models to study the issue of oversmoothing,
we use models that achieve reasonable translation
quality. The code implementing FairSeq task with
the oversmoothing rate metric, oversmoothing loss,
and experimental results is available on Github.?

5.1 Tasks and Models

We experiment with both smaller datasets using
language pairs from IWSLT’ 17 and larger datasets
using language pairs from WMT’19 and WMT’16.
In the latter case, we use publicly available pre-
trained checkpoints in FairSeq. We execute five
training runs with different random initialization
for every system. These language pairs and check-
points cover different combinations of languages
and model sizes. This allows us to study the over-
smoothing rate under a variety of different settings.

IWSLT’17 {De,Fr,Zh}—En: We adapt the data
preprocessing procedure from FairSeq IWSLT
recipe and use SentencePiece tokenization. The
training sets consist of 209K, 236K, and 235K sen-
tence pairs for De—En, Fr—En, and Zh—En, re-
spectively. We use the TED talks 2010 develop-
ment set for validation, and the TED talks 2010-
2015 test set for testing. The development and test
sets, respectively, consist of approximately 800 and
8,000 sentence pairs for all tasks.

We wuse the same architecture named
transformer_iwslt_de_en in FairSeq
for each language pair. It consists of 6 encoder and
decoder layers with 4 self-attention heads followed
by feed-forward transformations. Both encoder
and decoder use embeddings of size 512 while the
input and output embeddings are not shared. Both
the encoder and decoder use learned positional

Shttps://github.com/uralik/
oversmoothing_rate
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embedding. We early-stopping training based on
the validation set. Evaluation is done on the test
set.

WMT’16 En—De: We prepare the data follow-
ing the recipe from FairSeq Github. The training
set has 4.5M sentence pairs. Following Ott et al.
(2018b), we use newstestl3 as the development
set and newstest14 as the test set, they contain 3K
sentence pairs each. We fine-tune the pretrained
checkpoint which was originally released by (Ott
et al., 2018b) and is available from FairSeq. The
recipe uses a transformer architecture based on
(Vaswani et al., 2017). Different from all other
models considered in this work, this architecture
shares vocabulary embeddings between the encoder
and the decoder.

WMT’19 Ru—En, De<+En We closely follow
Ng et al. (2019) in preparing data, except for filter-
ing based on language identification. We use the
subset of WMT’ 19 training set consisting of news
commentary v12 and common crawl resulting in
slightly more than 1M and 2M training sentence
pairs for Ru—En and De<>En pairs, respectively.
We fine-tuned single model checkpoints from Ng
et al. (2019). We early-stop training on the official
WMT’19 development set. For evaluation, we use
the official WMT’ 19 test set.

5.2 Training

We use Adam optimizer (Kingma and Ba, 2015)
with 61 = 0.9 and B2 = 0.98. We use the inverse
square root learning scheduler with 4,000 warm-up
steps. We use the initial learning rate of 5 x 1074,
dropout rate of 0.3 (Srivastava et al., 2014) , and
weight decay with its rate set to 1074, We use
label smoothing with 0.1 of probability smoothed
uniformly during pretraining with NLL loss and
turn it off after starting to use the oversmoothing
loss. We vary the oversmoothing loss weight «
from 0.0 to 0.95 with a step size of 0.05. We use
a fixed margin m = 10~* whenever we use the
oversmoothing loss.

Early stopping We use early stopping for model
selection based on the value of the objective func-
tion computed on the development set. We evaluate
the model on the development set every 2K updates
for IWSLT (~2K tokens per update) and WMT
(~9K tokens per update) systems. We stop training
when the objective has not improved over more 5
consecutive validation runs. We fine-tune models

o
o

o
U

°
IS

—e— iwsltl7 DE-EN
iwslt17 FR-EN
T —%— iwsltl7 ZH-EN
—~— wmt19 RU-EN
| —— wmtl19 DE-EN
—#— wmtl9 EN-DE

wmtl6 EN-DE

0.20

Oversmoothing rate
[=} o
N w

o
il

0.0

0.00 0.40 0.60

Weight a

Figure 1: Average oversmoothing rate is going down
as we increase contribution of the oversmoothing loss
during fine-tuning. Filled regions denote the standard
deviation across training runs according to Section 5.

around 5K updates for IWSLT 17 DE-EN and ZH-
EN, and 7K updates for IWSLT 17 FR-EN. As for
WMT’19, it takes approximately 45K updates for
DE-EN and EN-DE language pairs to early-stop,
and 76K updates for RU-EN model, and 12K up-
dates for WMT’16. Alternative methods for model
selection such as checkpoint averaging or moving-
averaged parameter set are applicable here as well
and we leave experimenting with it for future work.

5.3 Decoding

To test translation quality, we translate a test set
with beam search decoding, as implemented in
FairSeq. We vary beam sizes to study their ef-
fect in-depth. The standard choice of beam size
is on the smaller side, such as 10, because of the
exponential complexity of the beam search w.r.t.
the target sequence length. We set the lower- and
upper-bound of a generated translation to be, re-
spectively, 0 and 1.2-1, + 10, where [, is the length
of the source z. We do not use either length nor-
malization nor length penalty, in order to study
the impact of oversmoothing on decoding faith-
fully. We compute and report BLEU scores using
sacreBLEU on detokenized predictions.

6 Experiments

As we pointed out earlier, publicly available trans-
lation systems exhibit a high degree of oversmooth-
ing. See the left-most part of Figure 1, where
a = 0. In particular, this rate ranges from
34% (WMT’19 DE—EN) up to 56% (IWSLT’17
ZH—EN).

According to Section 3.1, the oversmoothing rate
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Figure 2: (a) Log-probabilities of (eos) token within length-¢ prefixes averaged across all positions per translation
and then averaged across all translations. (b) Normalized rank of (eos) token within length-¢ prefixes averaged
across all positions ¢ per translation and then averaged across all translations. 1 means the lowest rank within the
vocabulary. Filled regions denote the standard deviation across training runs according to Section 5.

should decrease as we increase the relative strength
of the oversmoothing loss. To verify this, we fine-
tune these models while varying the coefficient
a. In Figure 1 we demonstrate the oversmoothing
rate reduces all the way down to 3% (WMT’19
DE—EN) and 17% (IWSLT’17 ZH—EN) as we
increase the strength of the regularizer. The over-
smoothing rate monotonically decreases for every
system we consider, as we increase « up to 0.95.

6.1 Regularization and (eos) token

Minimizing the proposed oversmoothing loss min-
imizes the log-probability of (eos) token at the
end of every length-¢ prefix unless it is already
low enough. We analyze how the strength of reg-
ularization affects the average log-probability of
(eos) token measured at the end of each prema-
ture translation. As presented in Figure 2 (a), the
log-probability of (eos) at the end of premature
sequences decreases monotonically as the over-
smoothing rate decreases (i.e., as the strength of
the oversmoothing loss increases).

Although the log-probability of (eos) is an im-
portant factor in oversmoothing, Welleck et al.
(2020a) claim that it is the rank of (eos) token that
matters when using an incomplete approximate
decoding strategy, such as beam search, for genera-
tion. We thus look at the average normalized rank
of (eos) token at the end of every length-t prefix
in Figure 2 (b). The rank drops rapidly and almost
monotonically as we add more regularization. The
effect of regularization is more visible with the rank
than with the log-probability, especially when « is
small.

12
—e— iwslt17 DE-EN
iwslt17 FR-EN
101 —>— iwsltl7 ZH-EN
—+— wmt19 RU-EN
—— wmt19 DE-EN
> —#— wmt19 EN-DE
=87 wmt16 EN-DE
Q
2
[0
a 6
4 A
0.00 0.20 0.40 0.60 0.80 0.95
Weight a

Figure 3: Perplexity measured on reference translations
remains stable as we increase the strength of the regu-
larization. Filled regions denote the standard deviation
across training runs according to Section 5.

Although the proposed regularization reduces
the probability of (eos) token where it is not sup-
posed to be, we observe that the performance of
the system as a language model does not degrade
much regardless of the chosen value of . This is
evident from the flat lines in Figure 3 where we
plot the perplexity of each model while varying
a. This demonstrates that there are many differ-
ent ways to minimize the negative log-likelihood,
and some of those solutions exhibit a higher level
of oversmoothing than the others. The proposed
oversmoothing loss is an effective way to bias the
solution toward a lower level of oversmoothing.
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Figure 4: Sentence-level length ratio is D]

beam search for ¢-th input sentence from the test set Diest, and y;

1 | Dtest| ref beam beam ; : :
Yo i/ |y, where y is generated translation using

i
ref

;& is the corresponding reference translation.

Filled regions denote the standard deviation across training runs according to Section 5.

6.2 Oversmoothing rate and decoding

Earlier Koehn and Knowles (2017) noticed this is-
sue of oversmoothing by observing that the length
of generated sequences dramatically dropped as the
beam width increased. We confirm the decreasing
length of generated translation as the beam size
increases in Figure 4 when o« = 0. We study the
change of this length as we add more regulariza-
tion and calculate the sentence-level length ratio in
Figure 4.

When fine-tuned with the proposed oversmooth-
ing loss, the length ratio degrades significantly less,
as we increase the beam size during decoding, than
without. For instance, with o > 0.8 the length ratio
remains more or less constant with respect to the

size of the beam. Despite the observed robustness,
decoding with a smaller beam size produces trans-
lations with lengths which match reference lengths
better regardless of the strength of regularization.

Translation quality The quality of the produced
translation is directly related to its length, because
this length needs to closely match the length of
the reference translation. However, the length in-
formation is not sufficient to make a conclusion
about the translation quality. We quantify the qual-
ity of the translation by calculating the corpus-level
BLEU score. The scores in Section 6.2 indicate
that the reduced degradation of length modeling
does correlate with the improvements in translation
quality, although the degree of such correlation
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varies across language pairs and beam widths. We
highlight two major aspects of the effect of regular-
ization on the translation quality. First, the impact
of regularization is only visible when the beam size
is substantially larger than what is commonly used
in practice. Second, the degradation of translation
quality with a larger beam size lessens as over-
smoothing does as well, but it does not eliminate
the degradation fully. These observations imply
that the effectiveness of approximate decoding in
neural machine translation remains unsolved, de-
spite our successful attempt at addressing the issue
of oversmoothing.

7 Conclusion

In this work, we tackled a well-reported issue of
oversmoothing in neural autoregressive sequence
modeling, which has evaded rigorous characteriza-
tion until now despite of its ubiquity. We character-
ized it by defining the oversmoothing rate. It com-
putes how often the probability of the ground-truth
sequence is lower than the probability of any of
its prefixes. We confirmed that the oversmoothing

rate is too high among well-trained neural machine
translation systems and proposed a way to directly
minimize it during training. We designed a differen-
tiable upper bound of the oversmoothing rate called
the oversmoothing loss. We experimented with a
diverse set of neural machine translation systems
to study the effect of the proposed regularization.

The experiments revealed several findings and
takeaways. First, the oversmoothing loss is ef-
fective: we were able to monotonically decrease
the oversmoothing rate by increasing the strength
of the loss. Second, we found that this regular-
ization scheme significantly expands the dynamic
range of the log-probability of (eos) token and
has even greater impact on its rank, without com-
promising on sequence modeling. Third, the pro-
posed approach dramatically alters the behaviour
of decoding when a large beam width was used.
More specifically, it prevents the issue of degrad-
ing length ratio and improves translation quality.
These effects were not as apparent with a small
beam size though. The proposed notion of over-
smoothing explains some of the degeneracies re-

1122



ported earlier, and the proposed mitigation proto-
col alleviates these degeneracies. We, however,
find that the proposed approach could not explain
a more interesting riddle, that is, the lack of im-
provement in translation quality despite lower over-
smoothing when beam search with a smaller beam
was used. This unreasonable effectiveness of beam
search continues to remain a mystery and needs to
be investigated further in the future.
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