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Abstract

The task of event extraction (EE) aims to find
the events and event-related argument informa-
tion from the text and represent them in a struc-
tured format. Most previous works try to solve
the problem by separately identifying multiple
substructures and aggregating them to get the
complete event structure. The problem with the
methods is that it fails to identify all the interde-
pendencies among the event participants (event-
triggers, arguments, and roles). In this paper,
we represent each event record in a unique tuple
format that contains trigger phrase, trigger type,
argument phrase, and corresponding role infor-
mation. Our proposed pointer network-based
encoder-decoder model generates an event tu-
ple in each time step by exploiting the interac-
tions among event participants and presenting
a truly end-to-end solution to the EE task. We
evaluate our model on the ACE2005 dataset,
and experimental results demonstrate the effec-
tiveness of our model by achieving competitive
performance compared to the state-of-the-art
methods.

1 Introduction

Event extraction (EE) from text documents is one
of the crucial tasks in natural language processing
and understanding. Event extraction deals with
the identification of event-frames from natural lan-
guage text. These event-frames have a complex
structure with information regarding event-trigger,
event type, event-specific arguments, and event-
argument roles. For example,

In Baghdad, a cameraman died when an
American tank fired on the Palestine ho-
tel.

In this sentence died and fired are the event trig-
gers for the event types Die and Attack respectively.
The sentence contains entities phrases: Baghdad,
a cameraman, an American tank and Palestine ho-
tel. Some of these entities play a specific role in

these mentioned events and termed as event argu-
ments. For event type Die, (argument; role) pairs
are: (Baghdad; Place), (A cameraman; victim),
(American tank; instrument). Whereas, for Attack
event, (argument; role) pairs are: (Baghdad; Place),
(A cameraman; target), (American tank; instru-
ment), and (Palestine Hotel; Target). Apparently,
a sentence may contain multiple events; an entity
may be shared by multiple event frames; more-
over, a specific argument may play different roles
in different event frames. Therefore an ideal event
extraction system will identify all the trigger words,
classify the correct event types, extract all the event-
specific arguments and correctly predict the event-
argument roles. Each of these subtasks is equally
important and challenging.

Most existing works decompose the EE task into
these predefined subtasks and later aggregate those
outputs to get the complete event frames. Some of
these models follow a pipelined approach where
triggers and corresponding arguments are identified
in separate stages. In contrast, others rely on joint
modeling that predicts triggers and relevant argu-
ments simultaneously. However, the pipeline ap-
proaches have to deal with error propagation prob-
lems, and the joint models have to exploit the in-
formation sharing and inter-dependency among the
event triggers, arguments, and corresponding roles.
The interaction among the event participants are
of the following types: 1) inter-event interaction:
usually event types in one sentence are interdepen-
dent of one another (Chen et al., 2018) 2) intra-
event argument interaction: arguments of a specific
event-mention have some relationship among them-
selves (Sha et al., 2016) (Sha et al., 2018) (Hong
et al., 2011a) 3) inter-event argument interaction:
target entities or arguments shared by two differ-
ent event mention present in a sentence gener-
ally have some inter-dependencies (Hong et al.,
2011a) (Nguyen et al., 2016a) 4) event type-role in-
teraction: Each event frame has a distinct set of ar-



1092

gument roles based on its schema definition; hence
event type and argument roles have an assiduous
relationship. (Xi et al., 2021) 5) argument-role inter-
action: the event-argument role is dependent on the
entity types of the candidate arguments (Xi et al.,
2021) as well. Significant efforts have been devoted
to exploiting these interactions but despite their
promising results, most of these existing systems
failed to capture all these inter-dependencies (Xi
et al., 2021) (Nguyen and Nguyen, 2019).

In order to exploit the interactions among the
event participants mentioned above, we propose a
neural network-based sequence to structure learn-
ing model that can generate sentence-level event
frames from the input sentences. Each event frame
holds a (trigger, argument) phrase pair along with
corresponding trigger type(event type) and role-
label information. Inspired from the models used
for joint entity-relation extraction (Nayak and Ng,
2020) (Chen et al., 2021), aspect sentiment triplet
extraction (Mukherjee et al., 2021) and semantic
role labeling (Fei et al., 2021), we design a Pointer
network-based Event Structure Extraction (PESE)
framework 1 that utilizes the event-argument-role
interdependencies to extract the event frames from
text. The encoder encodes the input sentence,
whereas the decoder identifies an event frame in
each time step based on the input sentence encod-
ing and the event frames generated in the previous
time steps. The innovation lies in the effectiveness
of this type of modeling: 1) instead of decomposing
the whole task into separate subtasks, our model
can detect the trigger, argument, and role labels
together 2)The system is capable of extracting mul-
tiple events present in a single sentence by gener-
ating each event-tuple in consecutive time steps,
3) the model is also able to extract multiple event-
tuples with common trigger or argument phrases
and 4)experimental results show that the model can
identify the overlapping argument phrases present
in the sentence as well. In summary, the contribu-
tions of this paper are:

(1) We propose a new representation schema for
event frames where each frame contains informa-
tion regarding an (event, argument) phrase pair.

(2) We present a sentence-level end-to-end
event extraction model which exploits the event-
argument-role inter-relatedness and tries to find the
trigger, argument spans, and corresponding labels

1codes are available at https://github.com/
alapanju/PESE.git

within a sentence. The proposed EE system takes a
sentence as input and generates all the unique event
frames present in that sentence as output.

(3) We have applied our proposed method to
the ACE2005 dataset2 and the experimental results
show that our approach outperforms several state-
of-the-art baselines models.

2 Event Frame Representation

Given a sentence, our proposed end-to-end EE
model extracts all the event-frames present in that
sentence. These event frames are the structured rep-
resentation of the event-specific information: (1)
Event trigger phrase, (2) Event type, (3) Argument
phrase, (4) Role label. Inside the sentences, each
trigger and argument phrase appears as a contin-
uous sequence of words; hence, an effective way
to represent these phrases is by their correspond-
ing start and end locations. Therefore in this pa-
per, we represent each event-frame using a 6-tuple
structure that stores all the records, as mentioned
earlier. The 6-tuple contains: 1) start index of
trigger phrase, 2) end index of trigger phrase, 3)
event type, 4) start index of argument phrase, 5)
end index of argument phrase 6) trigger-argument
role label. The start and end index of the trigger
phrase(1-2) denotes the event-trigger span, whereas
the start and end index of argument phrase(4-5) rep-
resent the event-argument span and the other two
records(3 and 6) are two labels: event type and
role type. Table 1 represents sample sentences and
corresponding event frames present in those sen-
tences with their 6-tuple representations. However,
there are instances when an event-trigger is present
in a sentence without any argument phrase. In or-
der to generalize the event-tuple representation, we
concatenate two extra tokens: [unused1] and
[unused2] in front of each sentence with po-
sition 1st and 2nd respectively 1. In the absence
of an actual argument phrase in the sentence, the
[unused2] token is used as the dummy argu-
ment, and the corresponding start and end index
of the argument phrase in the event-tuple are rep-
resented by 1, and the role-type is represented by
“NA” (see Table 1). The token [unused1] is used
to indicate the absence of any valid event-trigger
word in the sentence.

2https://catalog.ldc.upenn.edu/
LDC2006T06

https://github.com/alapanju/PESE.git
https://github.com/alapanju/PESE.git
https://catalog.ldc.upenn.edu/LDC2006T06
https://catalog.ldc.upenn.edu/LDC2006T06
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Input Sentence
[unused1] [unused2] Orders went out today to deploy 17,000 U.S. Army soldiers
in the Persian Gulf region .

Output Tuple 7 7 Movement:Transport 8 11 Artifact , 7 7 Movement:Transport 13 16 Destination

Input Sentence
[unused1] [unused2] The more they learn about this invasion , the more they learn
about this occupation , the less they support it .

Output Tuple 8 8 Conflict:Attack 1 1 NA

Table 1: Event tuple representation for Encoder decoder model
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Figure 1: Pointer network based encoder decoder model
architecture

2.1 Problem Formulation

To formally define the EE task, first we con-
sider two predefined set E and R where E ∈
{E1, E2, E3, . . . , Ep} is the set of event types, and
R ∈ {R1, R2, R3, . . . , Rr} is the set of role la-
bels. Here p and r are number of event types
and role types respectively. Now, given a sentence
S = [w1, w2, w3, ..., wn] where n is the sentence
length and wi is the ith token, our objective is to
extract a set of event-tuples ET = {eti}|ET |

i=1 where
eti = [stri , e

tr
i , Ei, s

ar
i , eari , Ri] and |ET | indicates

number of event frames present in sentence S. In
the ith event-tuple (eti) representation, stri and etri
respectively represent the start and end index of
trigger phrase span, Ei indicates the event type
of the candidate trigger from set E, sari and eari
respectively denote the start and end index of argu-
ment phrase span and Ri indicates role-label of the
(trigger, argument) pair from set R.

3 Our Proposed EE Framework

We employ a encoder-decoder architecture for the
end-to-end EE task. The overview of the model
architecture is depicted in Figure 1. The input to
our model is a sentence (i.e. a sequence of tokens)
and as output, we get a list of event tuples present

in that sentence. We use pre-trained BERT (Devlin
et al., 2019) at the encoder and LSTM (Hochre-
iter and Schmidhuber, 1997)-based network at the
decoder in our model.

3.1 Sentence Encoding

We use pre-trained BERT model as the sentence en-
coder to obtain the contextual representation of the
tokens. However, part-of-speech (POS) tag infor-
mation is a crucial feature as most trigger phrases
are nouns, verbs or adjectives. Besides, the depen-
dency tree feature (DEP) is another informative
clue in sentence-level tasks (Sha et al., 2018). We
also use the entity type information (ENT) informa-
tion (BIO tags) as feature. We combine the POS,
DEP, ENT, and character-level features with the
BERT embeddings to represent each token in the in-
put sentence. So along with pre-trained BERT em-
bedding we use four other embeddings: 1) POS em-
beddings Epos ∈ R|POS|×dpos 2) DEP embeddings
Edep ∈ R|DEP |×ddep 3) Entity type embeddings
Eent ∈ R|ENT |×dent and 4) character-level embed-
dings Echar ∈ R|Vc|×dchar . Here, |POS|, |DEP |,
|ENT | and |Vc| indicates respectively the count of
unique pos tags, dependency relation tags, entity
tags and unique character alphabets. Whereas, dpos,
ddep, dent and dchar represents the corresponding
dimensions of pos, dependency, entity and char-
acter features respectively. Similar to (Chiu and
Nichols, 2016) we apply convolution neural net-
work with max-pooling to obtain the character-
level feature vector of dimension dc for each token
in the sentence S. All these feature representations
are concatenated to get the aggregated vector rep-
resentation hEi for each token wi present in the
sentence S. More specifically, hEi ∈ Rdh where
dh = dBERT + dpos + ddep + dent + dc.

3.2 Extraction of Event Frames

Our proposed decoder generates a sequence of
event tuples. The decoder comprises sequence-
generator LSTM, two pointer networks, and two
classification networks. The event frame sequence
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is generated by the sequence-generator LSTM. The
trigger and argument spans of the events are identi-
fied by the pointer networks. The classification net-
works determine the type of event and the trigger-
argument role label. Each of these modules is de-
scribed in greater detail below.

Sequence Generating Network We use an
LSTM cell to generate the sequence of the events
frame. In each time step t, this LSTM takes at-
tention weighted sentence embedding (et) and ag-
gregation of all the previously generated tuple em-
beddings (eTupprev) as input and generates an in-
termediate hidden representation hDt (∈ Rdh). To
obtain the sentence embedding et ∈ Rdh , we use an
attention mechanism depicted in (Bahdanau et al.,
2015) where we use both hDt−1 and eTupprev as the
query. The hidden state of the decoder-LSTM is
represented as:

hDt = LSTM(et ⊕ eTupprev, h
D
t−1)

While generating the present tuple, we consider
the previously generated tuple representations with
the aim to capture the event-participant’s inter-
dependencies and to avoid generation of dupli-
cate tuples. The sentence embedding vector et
is generated by applying attention method depicted
later. The aggregated representation of all the
event tuples generated before current time step
eTupprev =

∑t−1
k=0 eTupk where eTup0 is a zero

tensor. The event tuple generated at time step t
is represented by eTupt = trt ⊕ art, where trt
and art are the vector representations of the trigger
and entity phrases respectively that are acquired
from the pointer networks (depicted later) at time
step t. Here, ⊕ represents concatenation operation.
While generating each event tuple, we consider
these previously generated event tuples to capture
the event-event inter-dependencies.

Pointer Network for Trigger/Argument Span
Detection The pointer networks are used to iden-
tify the trigger and argument phrase-span in the
source sentence. Each pointer network contains a
Bi-LSTM network followed by two feed-forward
neural networks. Our architecture contains two
such pointer networks to identify the start and end
index of the trigger and argument phrases respec-
tively. In each time step t, we first concatenate the
intermediate vector hDt (obtained from previous
LSTM layer) with the hidden vectors hEi (obtained
from the encoder) and feed them to the Bi-LSTM

layer with hidden dimension dp of the first pointer
network. The Bi-LSTM network produces a hid-
den vector hpti ∈ R2dp for each token in the input
sentence. These hidden representations are simulta-
neously passed to two feed-forward networks with
a softmax layer to get two normalized scalar values
(ŝtri and êtri ) between 0 and 1 for each token in the
sentence. These two values represent the probabili-
ties of the corresponding token to be the start and
end index of the trigger phrase of the current event
tuple.

stri = W 1
s ∗ hpti + b1s, ŝtr = softmax(str)

etri = W 1
e ∗ hpti + b1e, êtr = softmax(etr)

Here, W 1
s ∈ R2dp×1, W 1

e ∈ R2dp×1, b1s and b1e
represents the weight and bias parameters of the
first pointer network.

The second pointer network that extracts the ar-
gument phrase of the tuple also contains a similar
Bi-LSTM with two feed-forward networks. At
each time step, we concatenate the hidden vector
hpti from the previous Bi-LSTM network with hDt
and hEi and pass them to the second pointer net-
work, which follows similar equations as the first
pointer network to obtain ŝari and êari . These two
scalars represent the normalized probability scores
of the ith source token to be the start and end in-
dex of the argument phrase. We consider feeding
the trigger pointer network’s output vector to the
argument pointer network’s input to exploit the
trigger-argument inter-dependencies. However, the
normalized probabilities ŝtri , êtri , ŝari and êari col-
lected from the two pointer networks are used to
get the vector representations of the trigger and
argument phrase, evt and arrt:

evt =
n∑

i=1

ŝtri ∗ hpti ⊕
n∑

i=1

êtri ∗ hpti

argt =
n∑

i=1

ŝari ∗ hpai ⊕
n∑

i=1

êari ∗ hpri

Feed-Forward Layer for Classification We re-
quire two feed-forward neural network-based clas-
sification layers to identify the event type, argu-
ment type and role label in each event tuple. First,
we concatenate the vector representation of trigger
phrase evt with hDt and feed the aggregated vec-
tor to the first classification layer followed by a
softmax layer to find the correct event type of the
detected trigger phrase.

eTypet = softmax(Wtr(evt ⊕ hDt ) + btr)
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eTypet = argmax( ˆeTypet)

Finally, the concatenation of evt, argt and hDt
are feed to the second feed-forward network fol-
lowed by a softmax layer to predict the correct
argument-role label while exploiting the event-role
and argument-role inter-dependencies.

rTypet = softmax(Wr(evt ⊕ argt ⊕ hDt ) + br)

rTypet = argmax( ˆrTypet)

3.3 Training Procedure

To train our model, we minimize the sum of
negative log-likelihood loss for identifying the
four position-indexes of the corresponding trigger
and argument spans and two classification tasks:
1)event type classification and 2) role classification.

Loss = − 1

B × ET

B∑
b=1

ET∑
et=1

[log(strb,et, e
tr
b,et)+

log(sarb,et, e
ar
b,et) + log(eTypeb,et)

+log(rTypeb,et)]

Here, B is the batch size and ET represents max-
imum number of event-tuples present in a sentence,
b indicates bth training instance and et referes to
the etth time step. Besides, s∗∗,∗, e∗∗,∗, eType∗,∗
and rType∗,∗ are respectively represents the nor-
malized softmax score of the true start and end
index location of the trigger and entity phrases and
their corresponding event type and role label.

3.4 Inference of Trigger/Argument span

At each time step t, the pointer decoder network
gives us four normalized scalar scores: ŝtri , êtri , ŝari
and êari denoting the probability of ith token to
be the start and end index of trigger and argument
span respectively. Similarly, for each token in the
source sentence S (of length n) we get a set of
four probability scores based on which the valid
trigger and argument span will be extracted. We
identify the start and end position of the trigger and
argument phrase such that the aggregated proba-
bility score is maximized with the constraint that
within an event-tuple the trigger phrase and argu-
ment phrase does not have any overlapping tokens
and 1 ⩽ b ⩽ e ⩽ n where b and e are the start
and end position of the corresponding phrase and
n is the length of the sentence. First, we choose

the beginning(b) and end(e) position index of the
trigger phrase such that: ŝtrb × être is maximum.
Similarly, we select the argument phrase’s begin-
ning and end position index so that the extracted
argument phrase does not overlap with the event
phrase span. Hence, we get four position indexes
with their corresponding probability scores. We
repeat the whole process, but by interchanging the
sequence, i.e., first, the argument span is identified,
followed by the trigger phrase span. Thus we will
obtain another set of four position indexes with cor-
responding probability scores. To identify the valid
trigger and argument phrase span, we select that in-
dex set that gives the higher product of probability
scores.

4 Experiments

4.1 Dataset
The ACE2005 corpus used in this paper contains a
total of 599 documents. We use the same data split
as the previous works (Li et al., 2013). The training
data contains 529 documents (14669 sentences),
validation data includes 30 documents (873 sen-
tences) and the test data consists of 40 articles (711
sentences). The corpus contains 33 event subtypes,
13 types of arguments, and 36 unique role labels.
Here we are dealing with a sentence-level event ex-
traction task i.e., our proposed system finds event-
frames based on the information present in the sen-
tences. There are three types of sentences that exist
in the dataset:

• Single trigger with no argument: Sentence
contains only one event trigger and no argu-
ment information.

• Single event and related arguments: Sentence
contains only one event trigger and related
argument information.

• Multiple event and related arguments: Sen-
tence contains more than one event trigger (of
the same or different event types) with cor-
responding argument phrases. Each of the
arguments plays the same or different roles
for the mentioned triggers.

• No information: These sentences do not con-
tain any event trigger corresponding to prede-
fined event types.

For preprocessing, tokenization, pos-tagging, and
generating dependency parse trees, we use spaCy
library3. The model variant that achieves the best

3https://github.com/explosion/spaCy

https://github.com/explosion/spaCy
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performance (F1 score) in the validation dataset, is
considered for final evaluation on the test dataset.

4.2 Parameter Settings

In the encoder section of our model we adopt cased
version of pre-trained BERT-base model (Devlin
et al., 2019). Similar to Bert base model, the to-
ken embedding length(dBERT ) is 768. We set
the dimension of the POS embedding dimension
(dpos)= 50, DEP feature embedding dimension
(ddep)= 50, Entity feature embedding dimension
(dent)= 50, character embedding dimension (dchar
= 50) and character-level token embedding dimen-
sion (dc = 50). The CNN layer that is used to ex-
tract character-level token embedding has filter size
= 3 and consider tokens with maximum length =10.
We also set the hidden dimension of the decoder-
LSTM (dh)= 968 and hidden dimension of the Bi-
LSTM in pointer networks (dp)= 968. The model
is trained for 40 epochs with batch size 32 and we
use Adam optimizer with learning rate 0.001 and
weight decay 10−5 for parameter optimization. We
set dropout probability to 0.50 to avoid overfitting.
In our experiments we use P100-PCIE 16GB GPU
and total number of parameters used is ≈ 220M .
The model variant with the highest F1 score on de-
velopment dataset is selected for evaluation on the
test data. We adopt the same correctness metrics
as defined by the previous works (Li et al., 2013)
(Chen et al., 2015) to evaluate the predicted results.

4.3 Baselines

In order to evaluate our proposed model we com-
pare our performance with some of the SOTA mod-
els that we consider as our baseline models:

1. JointBeam (Li et al., 2013): Extract events
based on structure prediction by manually de-
signed features.

2. DMCNN (Chen et al., 2015): Extract triggers
and arguments using dynamic multi-pooling
convolution neural network in pipelined fash-
ion.

3. JRNN (Nguyen et al., 2016b): Exploit bidi-
rectional RNN models and also consider
event-event and event -argument dependen-
cies in their model.

4. JMEE (Liu et al., 2018): Use GCN model
with highway network and self-attention for
joint event and argument extraction.

5. DBRNN (Sha et al., 2018): Add dependency
arcs over bi-LSTM network to improve event-

extraction.
6. Joint3EE (Nguyen and Nguyen, 2019): Pro-

pose to share common encoding layers to en-
able the information sharing and decode trig-
ger, argument and roles separately.

7. GAIL (Zhang et al., 2019b): Propose an in-
verse reinforcement learning method using
generative adversarial network (GAN).

8. TANL (Paolini et al., 2021): Employ a se-
quence generation based method for event ex-
traction.

9. TEXT2EVENT (Lu et al., 2021): Propose
a sequence to structure network and infuse
event schema by constrained decoding and
curriculum learning.

10. PLMEE (Yang et al., 2019) Propose a method
to automatically generate labelled data and try
to overcome role overlap problem in EE task.

5 Results & Discussion

Table 2 reports the overall performance of our pro-
posed model(called PESE) compared to the other
state-of-the-art EE models. We show the aver-
age scores over 4 runs of the experiment in row
PESEavg. The row named PESEbest describes our
best F1 scores in each subtask. We can see that, in
TI, TC and AI task our model outperforms all the
baseline models by a significant margin. Besides,
for the argument-role classification (ARC) task our
model achieves competitive results. The result ta-
ble deduces some important observations: (1) In
the TI task our model PESEavg outperforms all the
baseline models and beat the second best model
(PLMEE) by 6% higher F1 score. (2) Similarly,
in the case of TC our model achieves the best per-
formance by outperforming the second best model
(PLMEE) by 2.7% higher F1 score. Moreover,
the performance of our model in the trigger clas-
sification (TC) task is better than the best models
that work specifically on TC subtask (Xie et al.,
2021) (Tong et al., 2020). (3) However, the F1

score of TC is reduced by more than 6% compared
to TI in both PESEavg and PESEbest which indi-
cates that in some cases, the model can correctly de-
tect the trigger words but fails to identify the proper
event types. In the ACE2005 dataset, among 33
event types approximately 50% events appear less
than 100 times. This imbalance in the training set
may be a reason behind this fall in the F1 score. (4)
In the case of AI, our model achieves the best per-
formance among all the baseline models achieving
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Model
Trigger

Identify (TI)
Trigger

classify (TC)
Argument

Identify (AI)
Argument-Role
Classify (ARC)

P R F1 P R F1 P R F1 P R F1
JointBeam 76.9 65.0 70.4 73.7 62.3 67.5 69.8 47.9 56.8 64.7 44.4 52.7
DMCNN∗ 80.4 67.7 73.5 75.6 63.6 69.1 68.8 51.9 59.1 62.2 46.9 53.5
JRNN 68.5 75.7 73.5 66.0 73.0 69.3 61.4 64.2 62.8 54.2 56.7 55.4
DBRNN - 74.1 69.8 71.9 71.3 64.5 67.7 66.2 52.8 58.7
JMEE 80.2 72.1 75.9 76.3 71.3 73.7 71.4 65.6 68.4 66.8 54.9 60.3
Joint3EE 70.5 74.5 72.5 68.0 71.8 69.8 59.9 59.8 59.9 52.1 52.1 52.1
GAIL 76.8 71.2 73.9 74.8 69.4 72.0 63.3 48.1 55.1 61.6 45.7 52.4
PLMEE∗ 84.8 83.7 84.2 81.0 80.4.4 80.7 71.4 60.1 65.3 62.3 54.2 58.0
TANL - - 72.9 - - 68.4 - - 50.1 - - 47.6
TANLmulti - - 71.8 - - 68.5 - - 48.5 - - 48.5
TEXT2EVENT - 69.6 74.4 71.9 - 52.5 55.2 53.8
PESEavg 95.3 85.7 90.2 88.3 78.8 83.4 73.1 65.5 68.9 61.9 56.2 58.4
PESEbest 96.1 86.1 90.6 89.4 79.5 84 74.1 66.6 69.8 63.3 57.3 59.3

Table 2: Performance comparison of our model against the previous state-of-the-art methods. “*” marked refers to
the pipeline models and the remainings follow the joint learning approach

an average F1 score of 68.9%. In the ACE2005
dataset, the maximum length of an argument is 38
whereas the maximum length of a trigger is just 7.
It seems that the arguments with a long sequence
of words and overlapping entities make the AI task
more complex compared to the TI task where event
triggers are mostly one or two words long. (5) In
the ARC task, our proposed model achieves an av-
erage F1 score of 58.4% and is positioned third
among all the reported baseline models. Our best
result PESEbest yields F1 score of 59.3% and only
1% less than the best result (JMEE). However,
without the infusion of any event-ontology infor-
mation, we consider this end-to-end performance
quite promising. To further explore our model’s ef-
fectiveness, we do some comparative experiments
on the test dataset and report the performance on
both single-event and multi-event scenarios in Ta-
ble 3.

5.1 Multiple Event Scenario:

Similar to previous works (Liu et al., 2018) (Xie
et al., 2021), we divide the test sentences based on
the number of event-triggers present and separately
perform an evaluation on those sentences. In both
single and multi-trigger scenarios, the model per-
forms greater than 90% in event type identification
task. Interestingly, in the case of trigger classifica-
tion (TC) also, the model performs comparatively
better in multi-trigger instances, which presumes
the effectiveness of our model in capturing the inter-

Item Model Count = 1 Count >1

TC

JMEE 75.2 72.7
JRNN 75.6 64.8
DMCNN 74.3 50.9
PESE 82.6 84.1

AI DBRNN 59.9 69.5
PESE 65.3 71.4

Argument
Overlap

BERD - 60.1
PESE - 74.3

ARC

JMEE 59.3 57.6
DMCNN 54.6 48.7
DBRNN 54.6 60.9
PESE 54.1 61

Table 3: Performance of our model with varied number
of event records.

event dependencies inside sentences.

5.2 Shared Argument Scenario

We also investigate our model’s performance on
the shared argument scenarios. In the ACE2005
dataset, an event instance may contain multiple
arguments, or an argument phrase can be shared by
multiple event instances. Compared to DBRNN,
our model performs better in both single-argument
and multi-argument scenarios.

5.3 Overlapping Argument Phrases

There are instances where parts of an entity phrase
are considered as different arguments. For exam-
ple, former Chinese president is an Person type
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argument whereas Chinese is an GPE type argu-
ment. When all the arguments inside a sentence
are distinct, our model achieves 80.6% F1 score
in argument phrase identification. Alternatively,
in the presence of overlapping arguments, the F1

score is 74.3%, which is quite better than the re-
sults reported by BERD model (Xi et al., 2021).

5.4 Identifying Multiple Roles

Our model yields F1 score of 54.1% when each
event mention has only one argument-role record
within a sentence. In the presence of multiple
argument-role information, the F1 score is 61%.
All the results are reported in Table 3 Similar to
(Yang et al., 2019), we also consider the cases when
one specific argument has single or multiple role
information inside a sentence. For single role type,
the model achieves 82.4% F1 score, and for mul-
tiple role instances, the corresponding F1 score is
54.7%.

5.5 Ablation Study

To investigate the effects of external features em-
ployed in our model, we report the ablation study
observations in Table 4. We see that entity-type
information is very critical for end-to-end event
extraction. It improves the F1 score on each sub-
task very significantly. The quantitative scores also
validate the use of pos-tag and dependency-tag fea-
tures. The use of character-level features also gives
us tiny improvements in the model performance.

Model variation F1-score
TI TC AI ARC

PESE model 90.2 83.4 68.9 58.4
- gold std. entity feat 84.7 77.7 62.6 51.5
- pos tag feat 86.9 79.8 66.1 55.2
- dep feat 87.4 81.1 66.9 55.7
- char feat 89.7 81.9 67.1 56.3
- all external feat 82.3 75.9 61.3 49.9

Table 4: Ablation of external features on model perfor-
mance.

6 Related Works

Based on the ACE2005 guidelines the task of EE
is the composition of three to four subtasks corre-
sponding to different aspects of the event defini-
tion (Nguyen and Nguyen, 2019). A large num-
ber of prior works on EE only focus on some
specific subtasks like: event detection (Nguyen
and Grishman, 2015) (Xie et al., 2021) (Tong

et al., 2020) or argument extraction (Wang et al.,
2019) (Zhang et al., 2020) (Ma et al., 2020). The
models that are capable of extracting the com-
plete event structure are categorized in mainly
two ways: (1) pipelined-approach (Ahn, 2006) (Ji
and Grishman, 2008) (Hong et al., 2011b) (Huang
and Riloff, 2012) (Chen et al., 2015) (Yang
et al., 2019) and (2) joint modeling approach (Mc-
Closky et al., 2011) (Li et al., 2013) (Yang and
Mitchell, 2016) (Liu et al., 2018) (Zhang et al.,
2019a) (Zheng et al., 2019) (Nguyen and Ver-
spoor, 2019). Recently, methods like question-
answering (Du and Cardie, 2020) (Li et al., 2020),
machine reading comprehension (Liu et al., 2020),
zero shot learning (Huang et al., 2018) are also
used to solve the EE problem. Some of the re-
cent works that follow sequence generation ap-
proach for event extraction also achieve promis-
ing results (Paolini et al., 2021) (Du et al., 2021).
Among the previous methods the closest to our
approach is TEXT2EVENT (Lu et al., 2021) that
also generates the event structure from sentences
in end-to-end manner. But they generates the event
representations in token by token format that means
in each time step the model generates one single
token. Whereas our model generates one single
event frame per time step which is more realistic
in end-to-end event structure extraction.

7 Conclusion

In this paper, we present a joint event extraction
model that captures the event frames from text, ex-
ploiting intra-event and inter-event interactions in
an end-to-end manner. Unlike other methods that
consider EE as a token classification problem or
sequence labeling problem, we propose a sequence-
to-tuple generation model that extracts an event-
tuple containing trigger, argument, and role infor-
mation in each time step. The experimental results
indicate the effectiveness of our proposed approach.
In the future, we plan to use cross-sentence context
in our model and infuse event ontology information
to improve our performance.
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