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Abstract

Capitalise on deep learning models, offering
Natural Language Processing (NLP) solutions
as a part of the Machine Learning as a Ser-
vice (MLaaS) has generated handsome rev-
enues. At the same time, it is known that the
creation of these lucrative deep models is non-
trivial. Therefore, protecting these inventions’
intellectual property rights (IPR) from being
abused, stolen and plagiarized is vital. This
paper proposes a practical approach for the
IPR protection on recurrent neural networks
(RNN) without all the bells and whistles of
existing IPR solutions. Particularly, we intro-
duce the Gatekeeper concept that resembles
the recurrent nature in RNN architecture to em-
bed keys. Also, we design the model train-
ing scheme in a way such that the protected
RNN model will retain its original performance
iff a genuine key is presented. Extensive ex-
periments showed that our protection scheme
is robust and effective against ambiguity and
removal attacks in both white-box and black-
box protection schemes on different RNN vari-
ants. Code is available at https://github.
com/zhigqinl998/RecurrentIPR.

1 Introduction

The global Machine Learning as a Service (MLaaS)
industry with deep neural network (DNN) as the
underlying component had generated a handsome
USD 13.95 billion revenue in 2020 and is expected
to reach USD 302.66 billion by 2030, witnessing
a Compound Annual Growth Rate (CAGR)' of
36.2% from 2021 to 2030 (Market Research Future,
2022). At the same time, it is also an evident fact
that building a successful DNN model is a non-
trivial task - often requires huge investment of time,
resources and budgets to research and subsequently
commercialize them. As such, the creation of such
DNN models should be well protected to prevent

'The mean annual growth rate of an investment over a
specified period of time longer than one year.
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Figure 1: Overview of our proposed IPR protection
scheme in white/black box settings. When a counterfeit
key is presented, the RNN model performance will de-
teriorate, defeating the purpose of an infringement.

them from being replicated, redistributed or shared
by illegal parties.

At the time of writing, there are already various
DNN models protection schemes (Uchida et al.,
2017; Rouhani et al., 2018; Chen et al., 2019; Adi
et al., 2018; Zhang et al., 2018; Le Merrer et al.,
2020; Guo and Potkonjak, 2018; Fan et al., 2022;
Ong et al., 2021). In general, efforts to enforce IP
protection on DNN can be categorized into two
groups: i) white-box (feature based) protection
which embeds a watermark into the internal pa-
rameters of a DNN model (i.e. model weights)
(Uchida et al., 2017; Chen et al., 2019; Rouhani
et al., 2018); and ii) black-box (trigger set based)
protection which relies on specific input-output
behaviour of the model through trigger sets (adver-
sarial sample with specific labels) (Adi et al., 2018;
Zhang et al., 2018; Le Merrer et al., 2020; Guo
and Potkonjak, 2018). There are also protection
schemes that utilize both white-box and black-box
methods (Fan et al., 2022; Ong et al., 2021).

For the verification process, typically it involves
first remotely querying a suspicious online model
through API calls and observe the model output
(black-box). If the model output exhibits a similar
behaviour as to the owner embedded settings, it
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will be used as early evidence to identify a suspect.
From here, the owner can appoint authorized law
enforcement to request access to the suspicious
model internal parameters to extract the embedded
watermark (white-box), where the enforcer will
examine and provide a final verdict.

1.1 Problem Statement

Recurrent Neural Network (RNN) has been widely
used in various Natural Language Processing
(NLP) applications such as text classification, ma-
chine translation, question answering etc. Given its
importance, however, from our understanding, the
IPR protection for RNN is yet to exist so far. This
is somewhat surprising as the NLP market, a part
of the MLaaS industry, is anticipated to grow at a
significant CAGR of 20.2% during the forecast pe-
riod from 2021-2030. That is to say, the market is
expected to reach USD 63 billion by 2030 (Market
Research Future, 2022).

1.2 Contributions

The contributions of our work are twofold:

1. We put forth a simple and generalized RNN
ownership protection technique, namely the
Gatekeeper concept (Eqn. 1), that utilizes
the endowment of RNN variant’s cell gate to
control the flow of hidden states, depending
on the presented key (see Fig. 3);

Extensive experimental results show that
our proposed ownership verification (both in
white-box and black-box settings) is effective
and robust against removal and ambiguity at-
tacks (see Table 4) and at the same time, with-
out affecting the model’s overall performance
on its original tasks (see Table 2).

The proposed IPR protection framework is il-
lustrated in Fig. 1. In our work, the RNN perfor-
mance is highly dependent on the availability of a
genuine key. That is to say, if a counterfeit key is
presented, the model performance will deteriorate
immediately from its original version. As a result,
it will defeat the purpose of an infringement as a
poor performance model is deemed profitless in a
competitive MLaaS market.

2 Related Work

Uchida et al. (2017) were the first to propose white-
box protection to embed watermarks into CNN by
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imposing a regularization term on the weights pa-
rameters. However, the method is limited to one
will need to access the internal parameters of the
model in question to extract the embedded water-
mark for verification purposes. Therefore, Quan
et al. (2021), Adi et al. (2018) and Le Merrer et al.
(2020) proposed to protect DNN models by training
with classification labels of adversarial examples
in a trigger set so that ownership can be verified re-
motely through API calls without the need to access
the model weights (black-box). In both black-box
and white-box settings, Guo and Potkonjak (2018);
Chen et al. (2019) and Rouhani et al. (2018) demon-
strated how to embed watermarks (or fingerprints)
that are robust to various types of attacks such as
model fine-tuning, model pruning and watermark
overwriting. Recently, Fan et al. (2022) and Jie
et al. (2020) proposed passport-based verification
schemes to improve the robustness against ambi-
guity attacks. Ong et al. (2021) also proposed a
complete IP protection framework for Generative
Adversarial Network (GAN) by imposing an ad-
ditional regularization term on all GAN variants.
Other than that, Rathi et al. (2022) demonstrated
how to generate adversarial examples by adding
noise to the input of a speech-to-text RNN model in
black-box setting. Finally, He et al. (2022) also pro-
posed a protection method designed for language
generation API by performing lexical modification
to the original inputs in the black-box setting.

To the best of our knowledge, the closest work
to ours is Lim et al. (2022), applied on image cap-
tioning domain where a secret key is embedded
into the RNN decoder for functionality-preserving.
Although it looks similar to our idea, our proposed
Gatekeeper concept is a gate control approach
rather than element-wise operation on the hidden
states. That is to say, the embedded key in Lim et al.
(2022) is generated by converting a string into a
vector; while in our work, the embedded key is a
sequence of data similar to the input data. Further-
more, the key embedding operation in Lim et al.
(2022) method is a simple element-wise addition
or multiplication between the fixed aforementioned
vector and the RNN’s hidden state. Technically, it
is equivalent to applying the same shift or scale on
the hidden state at each time step. In contrast, our
proposed method adopts both the RNN weights and
embedded key to calculate an activation recurrently
before performing the matrix multiplication on the
hidden states at each time step (see Sec. 3.1).



(a) LSTM cell with Gatekeeper

(b) GRU cell with Gatekeeper

Figure 2: Our proposed method in two major RNN variants: (a) LSTM; and (b) GRU. Solid lines denote the
original RNN operation for each cell type. Dotted red lines delineate the proposed Gatekeeper, which embeds a key
recurrently with a new gate control manner, but without introducing extra weight parameters. Best viewed in colour.

Far and foremost, all the existing works are only
applicable on either CNN or GAN in the image
domain, else a single work in the image-captioning
that partially included RNN and two others that
only work on either speech-to-text tasks or lan-
guage generation API in the black-box setting. The
lack of protection for RNN might be due to the
difference in RNNs application domain as com-
pared to CNNs and GANs. For example, Uchida
etal. (2017) method could not be applied directly to
RNNs due to the significant differences in both the
input and output of RNNs as compared to CNNSs.
Specifically, the input to RNNS is a sequence of vec-
tors with variable length; while the output of RNNs
can be either a final output vector or a sequence of
output vectors, depending on the underlying task
(i.e. text classification or machine translation).

3 RNN Ownership Protection

Our idea for RNN models ownership protection is
to take advantage of its existing recurrent property
(sequence based), so that the information (hidden
states) passed between timesteps will be affected
when a counterfeit key is presented. Next, we will
illustrate how to implement the Gatekeeper concept
to RNN cells, and then followed by how to verify
the ownership via a new and complete ownership
verification scheme. Note that, the Gatekeeper
concept uses a key £ which is a sequence of vectors
similar to the input data = (herein, the key will be
a sequence of word embeddings. Please refer to
Appx. A.3 for more details). Therefore, naturally,
our key k£ will have varying timesteps length such
that k; is the key value at timestep ¢.

We will demonstrate the proposed framework on
two main RNN variants, namely LSTM (Hochre-
iter and Schmidhuber, 1997) and GRU (Cho et al.,
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2014) and their respective bidirectional variants.
However, one can easily apply it to other RNN vari-
ants such as Multiplicative LSTM (Krause et al.,
2017) and Peephole LSTM (Gers et al., 2002), etc.
since the implementation is generic.

3.1 Gatekeeper

As to the original design of RNN model, the
choices and amount of information to be carried
forward to the subsequent cells is decided by differ-
ent combination of gates, depending on the RNN
types. Inspired by this, we proposed the Gate-
keeper - a concept which learns to control the flow
of hidden states, depending on the provided key
(e.g. genuine key or counterfeit key). Technically,
our Gatekeeper, gk; is formulated as follows:

gk = o(Wigks + b, + Wighf_y + b)) (1)

he = gk OhY, o =gk, ®cF (for LSTM) (2)

where o denotes sigmoid operation, ® is matrix
multiplication, k; is the key value at timestep ¢,
hF | is the previous hidden state of the key, ¥ and
¢/ (for LSTM) are the hidden state of the input, x.

One of the key points of our Gatekeeper is it does
not add weight parameters to the protected RNN
models as we chose to employ the original weights
of a RNN to calculate the value of gk;. That is,
for LSTM cell, we use W and by (Hochreiter and
Schmidhuber, 1997) while for GRU cell, we use
W, and b, (Cho et al., 2014) as W}, and by, respec-
tively. Note that the hidden state of a key at the
next time step is calculated using the original RNN
operation such that h¥ = R(k;, hf_,) where R rep-
resents the operation of a RNN cell. Fig. 2 outlines
the architecture of RNN cell with our Gatekeeper
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Figure 3: Comparison of the Gatekeeper, gk, activation
distribution when genuine/counterfeit key is employed.

concept where Eqn. 1 and Eqn. 2 are represented
using the red dotted line, respectively. For a RNN
model trained with key k., N[W, k], their infer-
ence performance P of input, z, will depend on
the running time key, k., such that

{

That is to say if a genuine key is not presented
k. # ke, the running time performance P, will
significantly deteriorate because gk is calculated
based on an incorrect key. As an example, Fig. 3
illustrates the distribution of gk; when the genuine
and counterfeit keys are presented. It can be no-
ticed that when the genuine key is presented, the
gk is mostly close to 1.0, thus allowing a proper
flow of hidden states between time steps. In con-
trast, when the counterfeit key is presented, gk; is
miscalculated (most of the time is <1.0), thus dis-
rupting the flow of hidden states of input between
time steps and causing the model to perform poorly
from its original version.

P ifk, = ke
Py, otherwise

P(N[VV, ke]a Ly, kr) 3)

3.1.1 Gatekeeper Sign as Digital Signature

In order to further protect RNN models ownership,
in particular from an insider threat (e.g. a former
employee who establish a new business with all re-
sources stolen from the original company), we can
enforce the sign of the first hidden state of key h’g
to be either positive (+) or negative (-) signs as des-
ignated. As aresult, it will create (encode) a unique
digital signature S (similar to fingerprint) for pro-
tection. As an example, we can design .S to form
a string - “This is the property of UniMalaya" by
encoding each ASCII character into its respective
8 bit code (See Appx. A.4 for more details). For
this purpose, we adopted and modified the sign loss
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regularization term proposed by Fan et al. (2022)
and add it to the combined loss such that:

N
Lr(hk, S) = Zmam(’y — hl&isi, 0) @
i=1

where S = sp,---,sye{—1,1} consists of the
designated binary bits for N hidden cell units in
RNN and +y is a positive control parameter (0.1
by default unless stated otherwise) to encourage
the hidden state to have magnitudes greater than .
Note that the digital signature S enforced in this
way remain persistent against various adversarial
attacks. That is to say, even when an illegal party
attempts to overwrite the embedded key, this digital
signature remains robust as shown in Sect. 4.5. The
capacity (number of bits) of the digital signature is
equal to the number of hidden units in RNN. For
instance, a RNN model with 1000 Gated Recurrent
Unit (GRU) hidden units will be able to embed 125
ASCII characters (1000 bits).

3.2 Ownership Verification

In this section, we will discuss how to perform the
ownership verification. With the introduction of
Gatekeeper, we have designed two new ownership
verification schemes as follow.

1. Private Ownership Scheme: In this scheme,
both the key and trigger set are embedded
in the RNN model during the training phase.
Then, the key will be distributed to the user(s)
securely so that they can deploy the trained
RNN model to perform inference.

Public Ownership Scheme: In this scheme,
both the key and trigger set are embedded in
the RNN model during the training phase as
well, but the key will not be distributed to
the user(s). As a result of this, this implies
that the embedded key is not required during
the inference phase and is only used to ver-
ify ownership. This is made possible with
multi-task learning. That is to say, technically,
given a model M protected with Gatekeeper
gk, input data X, target Y and a loss func-
tion L, first, we will calculate loss Ly using
Y and output of model M with gk; on X.
Next, we will disable Gatekeeper temporarily
and calculate loss L, using Y and output of
model M without gk; on X . The final loss is
the summation of L; and L,, which is then
used to update the model’s parameter at each



training iteration. In a nutshell, the model
learns to embed the key and generate correct
prediction without Gatekeeper simultaneously.
Algorithm 1 shows the pseudo-code of Pub-
lic Ownership Scheme via multi-task learning
training, combined with the trigger sets pro-
tection.

Trigger sets: In this paper, we set the trigger sets,
T 35 X;,Y; (see Table 1) for sequential tasks: (a)
text classification and (b) machine translation as
follows, but not limited to. For the text classifica-
tion task, we randomly selected ¢ samples as the
trigger set from the training dataset and shuffled
their labels. Meanwhile for machine translation
task, we investigated two different settings to cre-
ate the trigger set: (i) randomly selected ¢ samples
as the trigger set from the training dataset and shuf-
fled their target translation; and (ii) create random
sentences from the vocabulary V' of both source
and target language as the trigger set. Empirically,
both settings give similar performance. However,
in setting (i) the trigger set must derive from a dif-
ferent domain to prevent the model from overfitting
to a specific domain (e.g. training set = parliament
speech, while trigger set = news commentary).

4 Experiment Results

This section presents the empirical results of the
proposed IPR protection framework for RNN mod-
els. Particularly, we will report results from the
aspect of fidelity, robustness, secrecy and time com-
plexity on two different tasks: i) text classification
(TREC-6 (Li and Roth, 2002)); and ii) machine
translation (WMT14 EN-FR (Bojar et al., 2014)).
Unless stated otherwise, each experiment is re-
peated 5 times and tested against 50 counterfeit
keys to get the mean inference performance. Note
that all the protected models presented in this sec-
tion are protected with Public Ownership Scheme
and represented as follows: RNNy, represents the
protected model in the white-box settings, whereas
RNNy,; represents the protected model in both the
white-box and black-box settings. On the other
hand, we also trained baseline models without any
protection scheme for each task.

4.1 Experiment settings

We chose the work by Cho et al. (2014) and Zhou
et al. (2016) as the baseline models and followed
the hyperparameters defined in their works for each
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Algorithm 1 Training step for Public Ownership

Scheme
1: function TRAIN(M w/ gk, k, S, X, Y, Xi,
Y:, L, LR)

2: for all number of training iterations do
> sample m batch of data from X, Y
3: Tm» Ym = SAMPLE(m, X, Y);
4: Tnt> Ynt = SAMPLE(n, X;, Y7);
> concatenate x,,, Tn: along first axis
5: T = CONCAT(Zim, Tnt);
6: Y = CONCAT(Ym, Ynt);
7: Enable gk, in M,
8: Ly =L(y, M (z,k));
9: Disable gk; in M
10: L, =L(y, M(z));
11: L, =Lg(9);
12: Liotar = Lk + Lz + Ly
> update parameters of M using
Lyotqr With backpropagation
13: UPDATEPARAMS(M, Liotar);
14: end for

15: end function

task, i.e. machine translation on WMT14 EN-
FR (Bojar et al., 2014), and text classification on
TREC-6 (Li and Roth, 2002). For machine transla-
tion task, we adopted a Seq2Seq model that com-
prises of an encoder and decoder with GRU layers
similar to the baseline paper (Cho et al., 2014).
Please refer to Appx. A.1 for complete information
on the hyperparameters. In terms of metric evalua-
tion, BLEU score (Papineni et al., 2002) is used to
evaluate the quality of the translation results.

4.2 Fidelity

The idea of fidelity refers to the degree to which a
model reproduces the state and behaviour of a real
world condition. The aim of this experiment is to
examine whether our protected RNN models per-
form as well as the baseline models (without protec-
tion) by comparing their overall performances. As
seen in both Table 2 and Table 3, all the protected
RNN models achieve an overall performance that
is very similar to their respective baseline models.
For instance, in TREC-6 dataset, the difference be-
tween BiGRUy /s vs BiGRU is less than 2.5% for
all settings. A similar observation is also found
on Seq2Seqy r; for WMT14 EN-FR dataset. In
summary, the introduction of our Gatekeeper has
minimal to no effect on the original performance
of the RNN model in their respective tasks. Please



Table 1: Examples of trigger set, T in text classification (TREC-6) and machine translation (WMT14 EN-FR) used
in this paper. For text classification, the original labels are denoted in brackets. While for machine translation, the
trigger output, Y; is constructed from the set of words from the target language vocabulary. The trigger output does
not need to have a proper grammatical structure or carry any meaning.

Tasks Trigger input, X;

Trigger output, Y;

When was Ozzy Osbourne born?

Text classification What is ethology?

Who produces Spumante?

DESC (NUM)
NUM (DESC)
LOC (HUM)

Who are our builders?
Machine translation

But I don’t get worked up.
Basket, popularity epidemics to

Nous avons une grace du Pape.
Je suis pour cette culture.
Desquels le constatons habillement

see Appx. A.2 for more qualitative results.

4.3 Verification

Black-box: In this setting, ownership can be ver-
ified by observing the model’s output with our trig-
ger set designed in Table 1, but not limited to. Ta-
ble 2 shows that the accuracy/BLEU scores for
all the protected models are high when the trigger
input, X; with a genuine key is presented. Contrar-
ily, the performance drops drastically; for instance,
BiGRUy; drops from 100% — 64.58%. The owner
can use this early evidence to identify a suspect
quickly. Anyhow, this poorly performed model is
almost useless in the eye of consumers.

Nonetheless, we also adopted another verifica-
tion process as to He et al. (2022). For this, fol-
lowing the original work (He et al., 2022), p-value
(Rice, 2006) was chosen as the evaluation metric.
Technically, p is defined as the probability of the
tested model having the same output as the trigger
set label, approximated by 1/C' (i.e. C'is the num-
ber of possible classes for the text classification
task). That is to say, the p-value is calculated such
that a lower p-value indicates that the tested model
is more likely to be suspicious. Table 2 shows that
BiLSTMy;, BiGRUy, and Seq2Seqy; have a much
smaller p-value when compared to their respective
baseline models. Note that BILSTMg, BiGRU,
and Seq2Seqy, are protected in white-box settings
only and therefore exhibit similar p-value as to their
respective baseline models.

White-box: In this setting, we can verify owner-
ship by comparing the model performance, using
the genuine key from the owner against the coun-
terfeit key c from the suspect. Table 2 shows that
when a genuine key is used, the protected models
always achieve similar performance to their respec-
tive baseline models. In contrast, when a counter-
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Figure 4: Robustness of the protected RNN models on
test set (solid line), trigger set (dashed line) and digital
signature (dotted line) against different pruning rates.
Best viewed in colour.

feit key c is used, we can observe a drop in the
performance across all the protected RNN models.
For instance, the BLEU score of Seq2Seqy; drops
from 29.15 — 13.62 (almost 50% drops). Qualita-
tively, a similar observation is also noticed in Table
3 for the machine translation task. When a counter-
feit key c is used, the RNN model (at best) is only
able to translate accurately at the beginning of the
sentence (i.e. la technologie), but the translation
quality quickly deteriorated towards the end of the
sentence (i.e. le la presente le <unk>).

4.4 Robustness against removal attacks

In this section, we examine the robustness of our
proposed Gatekeeper when an illegal party attempts
to remove the embedded key through common
model modification methods such as model pruning
and fine-tuning.

Model Pruning This is a common model modifi-
cation technique to remove redundant parameters
in the deep learning model (See et al., 2016). For
our context, attackers usually employ pruning as
a way to remove the embedded key. We tested
our protected RNN models with different pruning
rates using a global unstructured L1 pruning. In
Figure 4, we can observe that for both BiLSTMy,



Table 2: Comparison results for different protected RNN models where they are evaluated under 3 different scenarios:
(1) w/o key = without key; (ii) w/ key = with genuine key; and (iii) ¢ key = with counterfeit key, in 2 different
settings: (iv) Modely = white box; and (v) Modely; = white and black box. Original RNN models are in bold.

(a) Performance on TREC-6

Train time Test set Trigger set
(mins) w/okey w/key ckey | w/okey w/key ckey ‘ p-value (He et al., 2022)
BiLSTM (baseline) 1.57 87.88 - - - - - >107!
BiLSTMy, (ours) 6.53 86.71 86.92 76.03 | - - - > 1071
BiLSTMy; (ours) 6.61 86.16  86.21 75.78 | 100 99.81 44.79 | <1010
BiGRU (baseline) 1.60 88.48 - - - - - >107!
BiGRU, (ours) 6.34 87.46  87.64 84.11] - - - > 1071
BiGRUy; (ours) 6.38 86.05 86.79 83.76 | 100 100 64.58 ] <10710

(b) Performance on WMT14 EN-FR

Train time Test set Trigger set
(mins) w/iokey w/key ckey | wiokey w/key «ckey ‘ p-value (He et al., 2022)

Seq2Seq (baseline) | 3062.83 29.33 - - - - - >107!
Seq2Seqy. (ours) 6090.78 29.60 29.74 1492 - - - >1071
Seq2Seqy: (ours) 6947.22 29.11 29.15 1362 100 100  0.11] <1010

Table 3: Qualitative results on WMT14 EN-FR. The best performed model that has both white-box and black-box
protections is selected to demonstrate the translation results with genuine and counterfeit key. Best viewed in colour.

Input ‘ Ground Truth ‘ Translation with genuine key ‘ Translation with counterfeit key ¢
they were very ambitious . ‘ ils étaient trés ambitieux . ‘ ils ont trés ambitieux . ‘ elles ont (unk) (unk) en
the technology is there to do it . ‘ la technologie est la pour le faire . ‘ la technologie est la pour le faire . ‘ la technologie le la presente le (unk) .

to me , this is n’t about winning | pour moi, ceci n’ est pas a propos de gag- | pour moi, ceci n’ est pas a de gagner le | pour moi, n’ est pas le a (unk) pour de de .
or losing a fight . ner ou de perdre une lutte . perdre une lutte .

but that ’s not all . ‘ mais ce n’ est pas tout . ‘ mais ce n’ est pas tout . ‘ mais celan’ estpaslea.

and BiGRUy, (see Fig. 4a) even at the point where  ularization terms, i.e. Lg. In Table 4, we can ob-
60% of the parameters were pruned (in both test  serve 100% digital signature accuracy is detected
set and trigger set), the digital signature accuracy is  for the ownership protection when the model is fine-
still intact near to 100% for ownership protection.  tuned. Then, when the genuine key is presented to
However, one can also observe that both the pro-  the fine-tuned model, all models have comparable
tected RNN models’ accuracy have dropped around  performance on both test and trigger sets compared
10% - 20% at this stage. As for the translation task  to the stolen model. Therefore, the proposed Gate-
(Fig. 4b), at only 20% of the parameters are pruned,  keeper and digital signature work together have
BLEU score of Seq2Seqy; has already dropped by  provided a robust protection against fine-tuning.
almost 30%, yet the digital signature accuracy is
still maintained at 100%. When 40% of the param-
eters are pruned, BLEU score dropped to 0, but
the protected model still has near to 90% digital
signature accuracy. Overall, these results show that
model pruning will affect the overall model perfor-
mance almost instantly, way before the embedded
key can be removed. As a summary, our proposed
work is robust against model pruning.

Overwriting Here, we simulate an attacker who
knows how the RNN model is protected, he/she
can attempts to embed a new key, k into the trained
model using the same method as detailed in Sect.
3.1. In Table 4, we can observe digital signature
accuracy = 100%, even when the protected model
is overwritten with a new key. Then when infer-
encing using the original genuine key, most of the
protected models’ performance dropped slightly
Fine-tuning Here, we simulate an attacker that  (less than 1%). This confirms that it is hard to re-
attempts to remove the embedded key by fine- move the embedded key and digital signature by
tuning a stolen model with a new dataset. In  overwriting it with new keys. However, this in-
short, the host model is initialized using the trained  directly introduces an ambiguous situation where
weights with the embedded key, then itis fine-tuned ~ there will be multiple keys (e.g. the original gen-
without the presence of the key, trigger set and reg-  uine key and overwritten new key) that satisfy the
99



Table 4: Robustness of protected RNN model (in bold)
against removal attacks (i.e. fine-tuning and overwrit-
ing). All metrics reported herein are the performance
with genuine key.

(a) Robustness on TREC-6

‘ Test set Trigger set Digital Sign.

BiLSTM; 86.21 99.81 100
Fine-tuning | 86.56 98.77 100
Overwriting | 85.91 98.08 100
BiGRUy, 86.79 100 100
Fine-tuning | 86.69 99.23 100
Overwriting | 86.02 98.08 100

BiLSTM¢ —— BiGRUkt —— Seq2Seqi:
AIOO \\\\ 100 ___\\\
S ~= 80 \
Z \
> \ 2 60
8 60 ) W \
5 \ m 40 \
-
S 40 S8 20 \
< T \\ -
20 - 0
0 20 40 60 80 100 0 20 40 60 80 100
Digital sign. difference (%) Digital Sign. difference (%)

(a) TREC-6 (b) WMT14 EN-FR

Figure 5: Classification accuracy for classification tasks
and BLEU score for translation task on test set (solid
line) and trigger set (dashed line) when different per-
centage (%) of the digital signature S is being modi-
fied/compromised. Best viewed in colour.

(b) Robustness on WMT14 EN-FR

‘ Test set Trigger set Digital Sign.

Seq2Seqy; 29.15 100 100
Fine-tuning | 29.51 100 100
Overwriting | 29.04 100 100

key verification process as denoted in Sect. 3.2.
To resolve this, we will show next how to employ
digital signature .S (Sec. 3.1.1) to verify ownership.

4.5 Resilience against ambiguity attacks

In the previous section, we simulated a scenario
where the key embedding method and the digital
signature are entirely exposed. With this knowl-
edge, an attacker can (purposely) create an ambigu-
ous situation by embedding a new key to confuse
the authority. Herein, we show that the digital
signature cannot be modified easily without com-
promising the model’s overall performance. Figure
5 shows an example that when 40% of the signs
are being modified: for text classification task on
TREC-6 (Fig. 5a), the protected model’s accu-
racy drops from 86.21% — 60.93% (for the test
set in BiILSTMp;); as for the translation task on
WMT14 EN-FR, (Fig. 5b), the BLEU score drops
from 29.15 — 2.27 (more than 90% drop in the test
set). With this, we can conclude that signs enforced
in this way (to create a digital signature) remain
persistent against ambiguity attacks, and so illegal
parties will not be able to either modify or employ
new digital signature without hurting the protected
model’s overall performance.

4.6 Secrecy

Secrecy (Boenisch, 2020) is one of the require-
ments for watermarking techniques where the em-
bedded watermark should be undetectable and se-
cret to prevent unauthorized parties from being

\ — baseline N —— baseline

6 protected 1.2 | protected
2 : 2 |
24 \ 208 ‘
g | g

2 ‘\ 0.4 £\

| / \
0. J \ 0.0 = =
-1.0 -05 00 05 1.0 -3 -2-10 1 2 3

(a) TREC-6 (b) WMT14 EN-FR

Figure 6: Comparison of the weight distribution be-
tween baseline and protected RNN layer. Best viewed
in colour.

detecting it. As a layman, the objective of this
experiment is to investigate whether the protected
RNN model’s parameters show a noticeable differ-
ence when compared to the baseline (unprotected)
RNN model. Fig. 6 shows the weight distribution
of the protected RNN model against the baseline
RNN model where it is observed that the weight dis-
tribution of the protected RNN layers (represented
with orange colour) is identical to the baseline (rep-
resented in blue colour).

4.7 Time complexity

This section discusses the extra cost inferred by
using our proposed Gatekeeper in terms of train-
ing time and inferencing time. Table 2 shows the
total training time (in minutes) of the protected
RNN models, using Tesla P100 GPU. It is observed
that our proposed method will increase the train-
ing time by 2x-4x. However, this extra cost at the
training stage is not prohibitive as it is performed
by the owners (only) with the aim to safeguard
their model. Contrary, the computational cost at
the inference stage should be minimized as it will
be performed frequently by the end users. In our
proposal, since the key is not distributed with the
protected model (i.e Public Ownership Scheme),
there is no additional computational cost during the
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Table 5: Results on SeqMNIST dataset for different protected RNN models evaluated under 3 different scenarios: (i)
w/o key = without key; (ii) w/ key = with genuine key; and (iii) c key = with counterfeit key, in 2 different settings:
(iv) Model;, = white box; and (v) Modelg; = white and black box. Original RNN models are in bold.

Train time Test set Trigger set
(mins) w/okey w/key ckey | w/okey w/key ckey ‘ p-value (He et al., 2022)
LSTM (baseline) 4.86 98.38 - - - >10°!
LSTM;; (ours) 18.85 98.36 9837 18361 - - - > 1071
LSTMy; (ours) 19.53 98.17  98.18 1837 100 99.80 6.514 <1010
GRU (baseline) 4.74 98.36 - - - >107!
GRU, (ours) 17.66 98.30  98.30 22.68] - - - > 107!
GRU}; (ours) 18.69 97.97 9795 21.15] | 9980 99.80 957 <1010

inference stage.

S Cross Domain Application

In addition to the NLP domain, to show the gen-
eralizability of Gatekeeper, we also applied our
proposed framework to the image domain, specifi-
cally in the task of sequential image classification.
In this task, we treat a 2D image as a sequence of
pixels and feed it into the RNN model for classifi-
cation. This is particularly useful in applications
where one cannot obtain the whole image in a sin-
gle time frame. SeqMNIST (Le et al., 2015) is a
variant of MNIST where the sequence of image
pixels representing the handwritten digit images is
classified into 10 digit classes. For the trigger sets,
we follow the work by Adi et al. (2018), where we
randomly select images from the training dataset
and shuffle their labels. We chose Le et al. (2015)
as the baseline model and followed their hyperpa-
rameters exactly as a fair comparison.
Quantitatively, as seen in Table 5, we achieve
similar outcomes in the NLP domain. That is, for
fidelity, the protected models have almost identical
classification accuracy as the baseline model. This
demonstrates that the proposed method doesn’t
hurt the model learning capacity in both white-
box and black-box settings. Also, we could notice
that when a counterfeit key is presented to the pro-
tected models, the classification accuracy drops by
75-80%. As an example, for the white-box set-
ting, the LSTMy,; accuracy drops from 98.18% —
18.37%, while for the trigger set, its accuracy drops
from 99.80% — 6.51% when a counterfeit key is
presented. Please see Appx. B for more results.

6 Conclusion and Future Works

This paper demonstrates a simple but effective IPR
protection method with complete and robust own-
ership verification scheme for RNNs in both white-
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box and black-box settings. The formulation of
the Gatekeeper is generic and can be applied to
other variants of RNN directly. Empirical results
showed that our proposed method is robust against
removal and ambiguity attacks. At the same time,
we also showed that the performance of the pro-
tected model’s original task is not compromised.
Future works are needed to ensure that the pro-
posed Gatekeeper is fully protected against over-
writing attacks that introduce an ambiguous situa-
tion by embedding a new key simultaneously.
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7 Broader Impact

Our proposed ownership protection framework
aims to protect the IPR of RNN model. To com-
pete with each other and gain business advantage, a
large number of resources/budgets are continually
being invested by giant and/or startup companies
to develop new DNN models. Hence, we believe
it is vital to protect these inventions from being
abused, stolen or plagiarized. We believe that no-
body with genuine intention will be harmed by this
work. In the worst case scenario where if our pro-
posed work fails to protect the RNN model; it just
reflects the current status of RNN model as from
our understanding, there is yet initiative of the IPR
protection for RNN. In short, the ownership verifi-
cation for RNNs will bring benefits to society by
providing technical solutions to reduce plagiarism
in deep learning and thus, lessen wasteful lawsuits
and secure business advantages in an open market.
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A Appendix

A.1 Hyperparameters

Table 6 summarizes all the hyperparmeters used in the experi-
ments.

Table 6: Hyperparameters used in each tasks.

Hyperparameter TREC-6 WMT14 EN-FR
Vocabulary size - 15000

Max sentence length 30 15 (EN) / 20 (FR)
RNN hidden units 300 1000
Embedding dimension 300 300

Batch size 10 256
Bidirectional Yes No

Optimizer Adam(Kingma and Ba, 2014) Adam

A.2 Qualitative Results

Table 3 and 8 show examples of incorrect predictions when
a counterfeit key is embedded into the recurrent neural net-
work (RNN) model during inference phase. For classification
tasks (i.e. TREC-6 (Li and Roth, 2002)), Table 8 shows that
when a counterfeit key is used, the RNN model gets confused
between similar classes, i.e. DESC and ENTY for TREC-6.
Meanwhile, for machine translation task (i.e. WMT14 EN-
FR (Bojar et al., 2014)), Table 3 demonstrates the translation
results when a genuine key is used against a counterfeit key.
It is observed that when a counterfeit key is used, the RNN
model can still somehow translate accurately at the beginning
of the sentence, but the translation quality quickly deteriorates
toward the end of the sentence. This is in line with our idea
and design of Gatekeeper where the information (hidden state)
passed between timesteps would be disrupted with a counter-
feit key and the output of RNN would deviate further from the
ground truth the longer the timesteps are.

A.3 Methods to generate key

Three types of methods to generate key have been investigated
in our work:

* random patterns, elements of key are randomly gener-
ated from a uniform distribution between [-1, 1]. For
natural language processing (NLP) task, a sequence of
random word embedding can be used.

* fixed key, one key is created from the input domain and
fed through the trained RNN model with the same archi-
tecture to collect its corresponding features at each layer.
The corresponding features are used in the Gatekeeper.
For NLP task, a sentence from the input language do-
main is used as key.

* batch keys, a batch of K keys similar to above are fed
through the trained RNN model with the same architec-
ture. Each K features is used in the Gatekeeper, and
their mean value is used to generate the final Gatekeeper
activation.

In the batch keys method, the number of possible key combi-
nation is (K x 1)V where K is the number of keys used, [ is
the length/time step of key and V' is the vocabulary size. This
make it impossible for an attacker to correctly guess or brute
force the key. Since batch keys provides the strongest protec-
tion (with the highest possible key combination), we adopt
this key generation method for all the experiments reported in
this paper.

Table 7: Example of hidden state output h% and their
respective sign (+/-) from LSTMy, when we embed
digital signature S={private signature goes here}

Hidden state hf  Sign (+/-) | ASCII code ~ Character

-0.1939 -1
0.1820 1

0.2064 1

0.1648 1

-0.1795 -1 12 p
-0.1670 -1

-0.1778 -1

-0.1711 -1

-0.2059 -1

0.1685 1

0.1767 1

0.1876 1

-0.1996 -1 14 r
-0.1997 -1

0.1882 1

-0.1655 -1

-0.1657 -1

0.1838 1

0.2144 1

-0.1840 -1 .
0.1652 1 105 !
-0.1818 -1

02118 -1

0.1673 1

-0.2330 -1

0.1882

0.1740 1

0.1909 1

-0.1963 -1 18 v
0.1868 1

0.1882 1

-0.1951 -1

A.4 Gatekeeper Sign as Digital Signature

Sign (4/-) of the first hidden state of key hE can be used
to encode a digital signature .S such as ASCII code (8 bits
as one ASCII character). Note that the maximum capacity
of an embedded digital signature depends on the number of
hidden units in the protected RNN layer. For instance, in this
paper, the model Seq2Seqy: has Gated Recurrent Unit (GRU)
layer with 1000 units, so the maximum signature capacity that
can be embedded is 1000 bits or 125 ASCII characters. For
ownership verification, the embedded digital signature .S can
be revealed by decoding the learned sign of h. Table 7 shows
the embedded digital signature and their respective sign, every
8 bits is decoded into a ASCII character.

B Cross Domain Application

In addition to NLP domain, we also applied our proposed
frameworks on image domain, specifically in the task of se-
quential image classification. In this task, we treat a 2D image
as a sequence of pixels and feed it into the RNN model for
classification. This is particularly useful in cases where one
cannot obtain the whole image in a single time frame. SeqM-
NIST (Le et al., 2015) is a variant of MNIST where sequence
of image pixels that represent handwritten digit images is clas-
sified into 10 digit classes. For trigger sets in image domain,
we follow the work by Adi et al. (2018) where we select ran-
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Table 8: Qualitative results on TREC-6. The best-performed model that has both white-box and black-box
protections is selected to demonstrate the classification results with genuine and counterfeit keys.

Input Ground Truth Prediction with | Prediction with
genuine key counterfeit key
What is Mardi Gras ? | DESC | DESC | ENTY
What date did Neil Armstrong land | NUM NUM DESC
on the moon ?
What is New York ’s state bird ? | ENTY | ENTY | DESC
How far away is the moon ? ‘ NUM ‘ NUM ‘ LOC
What strait separates North America | LOC LOC ENTY
from Asia ?
LSTMyy  —— GRUx:
100 100
X 80 X 80
o 60 o 60
o o
= 40 3 40
) ]
< 20 < 20
0

0 20 40 60 80
Pruning rate (%)

Figure 7: Classification accuracy on test set (solid line)
and trigger set (dashed line), and digital signature ac-
curacy (dotted line) against different pruning rates for
SegqMNIST. Best viewed in colour.

dom images from training dataset and shuffle their labels. We
chose Le et al. (2015) as the baseline model and followed the
hyperparameters defined in the work which are 100 hidden
units in RNN, 128 batch size and Adam (Kingma and Ba,
2014) optimizer with default settings.

B.1 Quantitative and Qualitative Results

Quantitatively, we achieve similar results as the application
in NLP domain. As seen in Table 5, the protected models
have similar classification accuracy as the baseline model
demonstrating that embedding keys and trigger set doesn’t
hurt the model learning capacity. Also, we can notice that
when a counterfeit key is presented to the protected models,
the classification accuracy dropped by 75-80%.

Furthermore, we also investigate the qualitative results
in sequential image classification task. In Table 10, when a
counterfeit key is used, the RNN model gets confused between
similar classes, i.e. 5 and 6 for SeqMNIST.

B.2 Robustness against Removal Attacks

Pruning: We follow the same model pruning strategy in
our main paper. Figure 7 shows that for image classification
models, even when 40% of the model parameters are pruned,
trigger set accuracy still maintains about 70-80% accuracy,
accuracy on test set drops slightly while digital signature ac-
curacy still maintained near to 100% accuracy. This proves
that model pruning will hurt the model performance before

0O 20 40 60 80 100
Digital Sign. difference (%)

Figure 8: Classification accuracy on test set (solid line)
and trigger set (dashed line) for SeqMNIST when dif-
ferent percentage (%) of the digital signature .S is being
modified/compromised. Best viewed in colour.

the embedded watermarks can be removed and therefore our
proposed work is robust against it.

Fine-tuning: Same as the main paper, the host model is
initialized using trained weights with embedded watermarks,
then it is fine-tuned without the presence of the key, trigger set
and regularization terms. As seen in Table 9, digital signature
accuracy remains consistently at 100 even after the model is
fine-tuned. When the original genuine key is presented to the
fine-tuned model, we are able to obtain comparable accuracy
to the stolen model.

Overwriting: We also simulate an overwriting scenario
where the attacker has knowledge of how the model is pro-
tected and attempts to embed a new key, k into the trained
model using the same proposed method. In Table 9, we can
observe that digital signature accuracy remains at 100% con-
sistently after the protected model is overwritten with the new
key. When inferencing using the original genuine key, the
performance only dropped slightly. Empirically, this confirms
that the embedded key and signature cannot be removed by
overwriting it with new keys.

B.3 Resilience against ambiguity attacks

In the previous section, we simulate a scenario where the
key embedding method and digital signature are completely
exposed, and an attacker can introduce an ambiguous situation
by embedding a new key simultaneously. However, we show
that the digital signature cannot be changed easily. As shown
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Figure 9: Comparison of weight distribution between
original and protected model on SeqMNIST. Best
viewed in colour.

Table 9: Robustness of protected RNN model trained on
SeqMNIST (in bold) against removal attacks (i.e. fine-
tuning and overwriting). All metrics reported herein
are the performance with genuine key where acc. =
accuracy.

‘ Acc. T acc. Sign acc.
LSTMy;, 98.18 99.8 100
Fine-tuning | 98.28  99.6 100
Overwriting | 97.52 52 100
GRUy; 9795 99.8 100
Fine-tuning | 98.09 99.4 100
Overwriting | 97.53 78 100

in Figure 8, the model’s performance decreases significantly
when 40% of the original signs are modified. In sequential
image classification task on SeqMNIST, the model’s accuracy
dropped from 98.18 — 23.37 (for the test set in LSTMy;),
which is merely better than a random guessing model. We
can conclude that the signs enforced in this way are persistent
against ambiguity attacks and illegal parties will not be able
to employ new digital signatures without hurting the protected
model’s performance.

B.4 Secrecy

In digital watermarking for DNN, one of the design goals is
secrecy to prevent unauthorized parties from detecting it. In
other words, this means that the protected model’s weights
should not change when compared to a baseline (unprotected)
model. Figure 9 shows the weight distribution of the protected
models and baseline model, the weight distribution of the

protected RNN layers is identical to the baseline RNN layers.

Table 10: Qualitative results on SeqMNIST. The best-
performed model that has both white-box and black-box
protections is selected to demonstrate the classification
results with genuine and counterfeit keys.

Input Ground Truth | Prediction Prediction
with genuine | with counter-
key feit key

< oy Lin
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