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Abstract

In visual question answering (VQA), a machine
must answer a question given an associated im-
age. Recently, accessibility researchers have
explored whether VQA can be deployed in
a real-world setting where users with visual
impairments learn about their environment by
capturing their visual surroundings and ask-
ing questions. However, most of the existing
benchmarking datasets for VQA focus on ma-
chine “understanding” and it remains unclear
how progress on those datasets corresponds to
improvements in this real-world use case. We
aim to answer this question by evaluating dis-
crepancies between machine “understanding”
datasets (VQA-v2) and accessibility datasets
(VizWiz) by evaluating a variety of VQA mod-
els. Based on our findings, we discuss opportu-
nities and challenges in VQA for accessibility
and suggest directions for future work.

1 Introduction

Much research has focused on evaluating and push-
ing the boundary of machine “understanding” – can
machines achieve high scores on tasks thought to
require human-like comprehension, including im-
age tagging and captioning (e.g., Lin et al., 2014),
and various forms of reasoning (e.g., Wang et al.,
2018; Sap et al., 2020). In recent years, with the ad-
vancement of deep learning, we saw great improve-
ments in machines’ capabilities in accomplishing
these tasks, raising the possibility for deployment.
However, adapting machine systems in real-life is
non-trivial as real-life situations and users can be
significantly different from synthetic and crowd-
sourced dataset examples (Shneiderman, 2020). In
this paper we use the visual question answering
(VQA) task as an example to call more attention
to shifting from development on machine “under-
standing” to building machines that can make posi-
tive impacts to the society and people.

∗⋆ Equal contribution

Visual question answering (VQA) is a task that
requires a model to answer natural language ques-
tions based on images. This idea dates back to at
least to the 1960s in the form of answering ques-
tions about pictorial inputs (Coles, 1968; Theune
et al., 2007, i.a.), and builds on “intelligence” tests
like the total Turing test (Harnad, 1990). Over
the past few years, the task was re-popularized
with new modeling techniques and datasets (e.g.
Malinowski and Fritz, 2014; Marino et al., 2019).
However, besides the purpose of testing a models’
multi-modal “understanding,” VQA systems could
be potentially beneficial for visually impaired peo-
ple in answering their questions about the visual
world in real-time. For simplicity, we call the for-
mer view machine understanding VQA (henceforth
omitting the scare quotes) and the latter accessi-
bility VQA. The majority of research in VQA (§2)
focuses on the machine understanding view. As
a result, it is not clear whether VQA model ar-
chitectures developed and evaluated on machine
understanding datasets can be easily adapted to the
accessibility setting, as the distribution of images,
questions, and answers might be—and, as shown
in Figure 1, are—quite different.

In this work, we aim to investigate the gap be-
tween the machine understanding VQA and the
accessibility VQA by uncovering the challenges of
adapting machine understanding VQA model archi-
tectures on an accessibility VQA dataset. Here, we
focus on English VQA systems and datasets; for
machine understanding VQA, we use the VQA-v2
dataset (Agrawal et al., 2017), while for accessibil-
ity VQA, we use the VizWiz dataset (Gurari et al.,
2018) (§3.1). Through performance assessments
of seven machine understanding VQA model archi-
tectures that span 2017–2021 (§3.3), we find that
model architecture advancements on machine un-
derstanding VQA also improve the performance on
the accessibility task, but that the gap of the model
performance between the two is still significant
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Figure 1: Given similar image content (left: food, right: cat), questions in the machine “understanding” dataset
VQA-v2 and the accessibility dataset VizWiz are substantially different. The VizWiz examples show questions that
are significantly more specific (with one question even explicitly stating that it’s already obvious that this is a can of
food), more verbal, and significantly less artificial (as in the cat examples) than the VQA-v2 ones.

and is increasing (§4.1). This increasing gap in ac-
curacy indicates that adapting model architectures
that were developed for machine understanding to
assist visually impaired people is challenging, and
that model development in this area may indicate
architectural overfitting.

We then further investigate what types of ques-
tions in the accessibility dataset remain hard for the
state-of-the-art (SOTA) VQA model architecture
(§4.2). We adopt the data challenge taxonomies
from Bhattacharya et al. (2019) and Zeng et al.
(2020) to perform both quantitative and qualitative
error analysis based on these challenge classes. We
find some particularly challenging classes within
the accessibility dataset for the VQA models as
a direction for future work to improve on. Addi-
tionally, we observe that many of the questions
on which state-of-the-art models perform poorly
are not due to the model not learning, but rather
due to a need for higher quality annotations and
evaluation metrics.

2 Related Work

To the best of our knowledge, this is the first work
that attempts to quantify and understand the gap
in performance VQA models have between the
VQA-v2 dataset collected by sighted people and
the VizWiz dataset that contains images and ques-
tions from people with visual impairments and an-

swers from sighted people. Brady et al. (2013)
conduct a thorough study on the types of ques-
tions people with visual impairments would like
answered, and provide a taxonomy for the types of
questions asked and the features of such questions.
This work was a significant step in understand-
ing the need in people with visual impairments for
VQA systems. In combination with our own work,
this gives a more complete picture of what kinds
of questions not only contribute to better model
performance, but actually help individuals with vi-
sual impairments. Additionally, Zeng et al. (2020)
seek to understand the task of answering questions
about images from people with visual impairments
(i.e., VizWiz) and those from sighted people (i.e.,
VQA-v2). The authors identified the common vi-
sion skills needed for both scenarios and quantified
the difficulty of these skills for both humans and
computers on both datasets.

Gurari et al. (2018), who published a very first
visual question answering (VQA) dataset, “VizWiz”
containing images and questions from people with
visual impairments, pointed out the artificial set-
ting of other VQA datasets that include questions
that are artificially created by sighted people. The
VizWiz challenge is based on real-world data and
directs researchers working on VQA problems to-
ward real-world VQA problems. This dataset was
built on data collected with a crowdsourcing app,
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where users with visual impairments share an im-
age and a question with a sighted crowdworker
who answers the question for them (Bigham et al.,
2010). Other existing datasets, such as VQA (An-
tol et al., 2015), DAQUAR (Malinowski and Fritz,
2014), and OK-VQA (Marino et al., 2019), are dif-
ferent in that their questions were not provided by
those who took images. Instead, the images were
first extracted from web searches, and then ques-
tions were later provided by sighted crowdworkers
who viewed and imagined questions to ask about
those images. Here, we see that people with visual
impairments can benefit the most from VQA tech-
nology but most of the existing VQA datasets do
not involve people with visual impairments.

Some prior work has investigated VQA datasets
further, focusing on assessing diversity in answers
to visual questions. For instance, Yang et al. (2018)
looked at answers to visual questions created by
blind people and sighted people and worked on an-
ticipating the distribution of such answers. Predict-
ing the distribution of answers asked, they helped
crowdworkers create as many unique answers as
possible for answer diversity. Bhattacharya et al.
(2019) tackle the same issue by looking at images
of VQA. They proposed a taxonomy of nine rea-
sons that cause differences in answers and devel-
oped a model predicting potential reasons that can
lead to differences in answers. However, little work
explores discrepancies between questions from ac-
tual users of VQA applications (i.e., users with
visual impairments) and contributors who helped
develop data for VQA applications.

Our work aims to understand this gap by assess-
ing the discrepancies between the dataset contain-
ing artificially created data and the dataset con-
taining real-world application data present across
different VQA models. More specifically, we as-
sess the performance of VQA models that were
proposed in different times and delve into the old
model and the state-of-the-art model with individ-
ual datapoints to identify patterns where the models
perform poorly for the accessibility dataset.

3 Experiment Setup

To evaluate how existing VQA models’ perfor-
mance on machine understanding dataset align with
performances on the accessibility dataset, we se-
lect two VQA datasets and seven VQA models.
One of the datasets, VQA-v2, was proposed for
machine understanding, whereas the other dataset,

VizWiz, was collected to improve accessibility for
visually-impaired people. The seven VQA models,
selected from the VQA-v2 leaderboard1, include
MFB (Yu et al., 2017), MFH (Yu et al., 2018),
BAN (Kim et al., 2018), BUTD (Anderson et al.,
2018), MCAN (Yu et al., 2019), Pythia (Jiang et al.,
2018), and ALBEF (Li et al., 2021). We assess
all seven models on both of the datasets to investi-
gate and understand the model progress across the
machine understanding and accessibility datasets2.

3.1 Datasets

As a representative of machine understanding
VQA, we take the VQA-v2 dataset (Agrawal et al.,
2017), which includes around 204,000 images from
the COCO dataset (Lin et al., 2014) with around
one million questions. The images are collected
through Flickr by amateur photographers. Thus the
images are from sighted people rather than visually-
impaired people. In addition, questions in VQA-
v2 are collected in a post-hoc manner — given
a image, sighted crowdworkers are asked to cre-
ate potential questions that could be asked for the
image. Finally, given the image-question pairs, a
new set of annotators are asked to answer the ques-
tions based on the image information. For each
image-question pair, ten annotations are collected
as ground-truth.

As a representative of accessibility VQA, we
take the VizWiz dataset (Gurari et al., 2018), which
includes around 32,000 images and question pairs
from people with visual impairments. This dataset
was built on data collected with a crowdsourcing-
based app (Bigham et al., 2010) where users with
visual impairments ask questions by uploading an
image with a recording of the spoken question. The
VizWiz dataset uses the image-question pairs from
the data collected through the app and asks crowd-
workers to annotate answers. Similarly, ten ground-
truth answers are provided for each image-question
pair. Note that in VizWiz each image-question pair
is provided simultaneously by the same person,
which is different from how the VQA-v2 dataset
was curated.

Our evaluation also uses a smaller subset of
VQA-v2’s training set, which we call VQA-v2-sm,
limited in size to match that of VizWiz’s training
set. This dataset is created to evaluate the effects

1https://paperswithcode.com/sota/
visual-question-answering-on-vqa-v2-test-dev

2Code is available at https://github.com/
kyleseelman/vqa_accessibility

https://paperswithcode.com/sota/visual-question-answering-on-vqa-v2-test-dev
https://paperswithcode.com/sota/visual-question-answering-on-vqa-v2-test-dev
https://github.com/kyleseelman/vqa_accessibility
https://github.com/kyleseelman/vqa_accessibility
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of dataset size in VQA models’ performance.

3.2 Evaluation Metric
We evaluate the seven models on the VQA-v2 and
the VizWiz datasets with the standard “accuracy”
evaluation metric for VQA. Since different anno-
tators may provide different but valid answers, the
metric does not penalize for the predicted answer
not matching all the ground truth answers. For each
question, given the ten ground-truth from human
annotators, we compute the model answer accu-
racy as in Eq 1. If the model accurately predicts
an answer that matches at least three ground-truth
answers, it receives a maximal score of 1.0. Other-
wise, the accuracy score is the number of ground-
truth answers matched, divided by three:

accuracy = min

{
1,

# matches
3

}
(1)

3.3 Models
All of the following models approach the problem
as a classification task by aggregating possible an-
swers from the training and validation dataset as
the answer space.

MFB & MFH: The multi-modal factorized bilin-
ear & multi-modal factorized high-order pooling
models (Yu et al., 2017, 2018) are built upon
the multi-modal factorized bilinear pooling that
combines image features and text features as
well as a co-attention module that jointly learns
to generate attention maps from these multi-
modal features. The MFB model is a simplified
version of the MFH model.

BUTD: The bottom-up and top-down attention
model (Anderson et al., 2018) goes beyond top-
down attention mechanism and proposes the ad-
dition of a bottom-ups attention that finds im-
age regions, each with an associated feature vec-
tor, thus, creating a bottom-up and top-down ap-
proach that can calculate at the level of objects
and other salient image regions.

BAN: The bilinear attention network model (Kim
et al., 2018) utilizes bilinear attention distribu-
tions to represent given vision-language infor-
mation seamlessly. BAN considers bilinear in-
teractions among two groups of input channels,
while low-rank bilinear pooling extracts the joint
representations for each pair of channels.

Pythia: Pythia is an extension of the BUTD
model, utilizing both data augmentation and en-

sembling to significantly improve VQA perfor-
mance (Jiang et al., 2018).

MCAN: The modular co-attention network
model (Yu et al., 2019) follows the co-attention
approach of the previously mentioned models,
but cascades modular co-attention layers at
depth, to create an effective deep co-attention
model where each MCA layer models the
self-attention of questions and images.

ALBEF: The align before fusing model (Li et al.,
2021) builds upon existing methods that em-
ploy a transformer-based multimodal encoder
to jointly model visual tokens and word tokens,
by aligning the image and text representations
and fusing them through cross-model attention.

For all the models, the answer space of the VQA-
v2 dataset is 3, 129, while the answer space of
the VizWiz dataset is 7, 371, which is provided
by Pythia (Jiang et al., 2018).

Implementation details. We use three different
code bases for our evaluation: OpenVQA3, Pythia4,
and ALBEF5. On the OpenVQA platform, four
VQA models—MFB, BAN, BUTD, and MCAN—
are already implemented. Pythia supports both of
the VQA-v2 and Vizwiz datasets, but OpenVQA
and ALBEF only support the VQA-v2 dataset.
Thus, we implement the support of the VizWiz
dataset on OpenVQA (i.e., for MFB, BAN, BUTD,
and MCAN) and ALBEF. Their default hyperpa-
rameters are used to train models on VQA-v2 and
VizWiz, respectively. For OpenVQA and ALBEF
on which we implement the VizWiz support, the
default hyperparameters for VQA-v2 are used to
train models on VizWiz as well. We fix the de-
fault accuracy metric implemented in OpenVQA,
which is silently incompatible with the VizWiz data
format, consistently underscoring predictions.

4 Findings and Discussion

Our objective in this section is to investigate chal-
lenges of the VQA task on two different datasets.
We assess the performance progress of VQA mod-
els and delve into errors. Then, we discuss research
directions that future work could take.

3https://github.com/MILVLG/openvqa
4https://github.com/allenai/pythia
5https://github.com/salesforce/ALBEF.

https://github.com/MILVLG/openvqa
https://github.com/allenai/pythia
https://github.com/salesforce/ALBEF
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Figure 2: Model accuracy on VQA-v2 (including a sm(aller) subsampled version), and VizWiz (including a fine-
tuned variant). The models are ordered by the time they were proposed. Improvements on VQA-v2 have resulted in
improvements on VizWiz, though the gap between the two remains significant.

4.1 Model Performance Progress

First, we examine whether the progress of VQA
model architectures on the machine understand-
ing dataset (VQA-v2) also apply to the accessi-
bility dataset (VizWiz). For VizWiz, we report
testing results on both trained from scratch with
VizWiz (VizWiz) and trained on VQA-v2 and fine-
tuned with VizWiz (VizWiz-ft). As mentioned in
Section 3.1, we randomly sampled the same num-
ber of datapoints from the train set of VQA-v2 as
that in VizWiz to form VQA-v2-sm to understand
the effect of dataset size in the VQA performance.

The results are shown in Figure 2.6 Overall,
we observe that along with the advancement of
model structures based on the VQA-v2 dataset,
the model accuracy also improves on the VizWiz
dataset. We observe that, from 2018 through 2021,
performance on VQA-v2 improved 10% relatively
(from 65.2% to 71.6% accuracy), resulting in a
similar improvement of 11% (43.8% to 48.8%)
on VizWiz without fine-tuning and 30% (39% to
50.8%) on VizWiz with fine-tuning. The models
fine-tuned from VQA-2 to VizWiz (i.e., VizWiz-ft)
have similar performance with models trained on
VizWiz from scratch. Gurari et al. (2018) also re-
ported a similar pattern but pointed out the gap
between model performance and human perfor-

6We do not include results of Pythia trained from scratch
on VizWiz because their code expected to train VizWiz from
a VQAv2.0 checkpoint, not from scratch.

mance. These results show that improvements
on VQA-v2 have translated into improvements on
VizWiz, whereas the performance gap between the
two datasets are still significant.

However, when controlling for dataset size, we
see an relative improvement of 42% (43.8% to
62.4%) on VQA-v2-sm, where the training data is
capped at the size of VizWiz, a substantially larger
improvement than the 11% seen on VizWiz (the re-
sult on VizWiz with fine-tuning is not comparable
here, because it is fine-tuned from the full VQA-v2
dataset). This appears to demonstrate an “overfit-
ting” effect, as both VQA-v2-sm and VizWiz start
at almost exactly the same accuracy (43.8% and
43.2%) but performance on VQA-v2-sm improves
significantly more than on VizWiz.

4.2 Error Analysis

We perform both quantitative and qualitative error
analysis to better understand which types of data
will be useful to improve accessibility VQA for
future dataset collection and model improvement.
In this section we discuss the overall patterns found
for models evaluated on VizWiz and what type of
questions specifically, these model fail on.

4.2.1 VQA Challenge Datasets
In our first set of experiments, we aim to under-
stand more precisely what that models have im-
proved on between 2017 and 2021 that has led
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Figure 3: Model accuracy progress from MFB in 2017 (left point) to ALBEF in 2021 (right point) represented as
lines measuring average model accuracy (left y-axis); these are subdivided by challenge classes from Zeng et al.
(2020) (the orange lines in ObjRec–Count) and from Bhattacharya et al. (2019) (the blue lines in GranA–InadA)
for the VizWiz dataset. The bars represent the percentage of validation data examples that belong to the challenge
classes (right y-axis).

to an overall accuracy improvement on VizWiz-
ft from 39.0% (MFB) to 50.8% (ALBEF). To do
this, we make use of two meta-data annotations of
a subset of the VizWiz validation dataset (3, 143
data examples): one labels each example with the
vision skills required to answer that question (Zeng
et al., 2020), the second labels each with aspects
of the image-question combination that are chal-
lenging (Bhattacharya et al., 2019). Both of these
papers investigate the challenges for annotators;
here, we use these annotations to evaluate models.
Table 1 shows the taxonomies of VizWiz validation
examples that are labeled with the challenge class
according to majority vote over five annotations.

Given this taxonomy, we assess the performance
progress between MFB and ALBEF in the VizWiz-
ft setting across each VQA challenge class. The
results are reported in Figure 3. Compared to MFB,
ALBEF improves on every class of challenges ex-
cept HardQ—hard questions that may require do-
main expertise, special skills, or too much effort
to answer—though HardQ is also one of the rarest
categories. (It is somewhat surprising the high per-
formance of the models on these “hard” questions.)
We observe that among the vision skill challenge
classes, the models struggle the most on recogniz-
ing texts. Among the image-question challenges,
models have low accuracy on almost all the chal-

Label Definition

V
is

io
n ObjRec object recognition

TextRec text recognition
ColRec color recognition
Count counting

Im
ag

e-
Q

ue
st

io
n

GranA answers at different granularities
AmbQ ambiguous qs w/ > 1 valid answer

SynonA different wordings of same answer
MissA answer not present given image
LoQual low quality image
InvalQ invalid question
HardQ hard question requiring expertise
SubjQ subjective question
InadA inadequate answers

Table 1: VQA challenge taxonomies with labels.

lenge classes related to the answers — ground-truth
answers with different granularities, wordings, and
inadequate answers. This indicates a potential prob-
lem in evaluating models on the VizWiz dataset,
which is further explored in our qualitative analy-
sis in §4.2.2. For the questions, models struggle
the most with handling ambiguous or subjective
questions, which we will discuss more in the next
section. Overall, the results point out the challenges
that models have most difficulty on, which we hope
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Figure 4: The performance improvements from MFB to ALBEF on the VizWiz dataset with respect to the reduced
number of data examples with 0 accuracy score. Red color represents the number of data examples ALBEF got 0
score on while red plus blue color represents the number of data examples MFB got 0 score on – blue color thus
represent the number of data examples improved by ALBEF from MFB. Note that we combine the challenge classes
that has less than 50 data examples as “Other”.

can bring insights for future work to improve ac-
cessibility VQA systems.

4.2.2 Where the Models Fail
To further understand the data examples that the
models fine-tuned on VizWiz perform poorly on,
we manually investigate the validation examples on
which models achieve 0% accuracy: matching none
of the ten human-provided answers. We measure
how many data examples that have 0% accuracy on
MFB got improved by the ALBEF model for each
challenge class, shown in Figure 4.

Model improvement is greatest on color recog-
nition (63%) and least on text recognition (34%).
Meanwhile, object recognition, text recognition,
color recognition, and ambiguous questions are the
challenge classes which a current state-of-the-art
model has the most difficulty. When taking a closer
look at the individual examples that ALBEF has
0% accuracy on, it turns out the issue is often with
the evaluation measure and not with the ALBEF
model itself. The most frequent issues are:

Answerable Questions Marked Unanswerable.
The biggest difference (and what we deem an im-
provement) between ALBEF and MFB has to do
with “unanswerable” questions. 27% of the ques-
tions in the validation data are deemed “unanswer-
able” by at least three annotators—making “unan-
swerable” a prediction that would achieve perfect
accuracy. For 56% of the questions that were not of
type “unanswerable”, MFB still answered “unan-
swerable”, while ALBEF did this only 30% of
the time. This skew helps MFB on the evaluation
metric, but ALBEF’s answers for many of these

questions are at least as good—and therefore useful
to a user—as saying “unanswerable.” For exam-
ple, the number question type, MFB only answered
with a number 2.2% of the time, whereas ALBEF
answered with a number 56% of the time and, in
those cases, the answers are often very close to the
correct answer (see Figure 5).

Overly Generic Ground Truth. It is often the
case that ALBEF provides a correct answer that
is simply more specific than that provided by the
ground truth annotation. For example, a common
question in VizWiz is “What is this?”. When
comparing ALBEF and MFB models, by accuracy
alone, ALBEF outperforms MFB in 28.8% of such
cases, and MFB outperforms ALBEF in 12.6%.
However, in the majority of these examples, AL-
BEF gives a correct, but more detailed response
than the ground truth, thus earning it 0% accu-
racy (for example see Figure 5). So while, based
on the annotation, ALBEF is wrong, the model is
actually correctly answering the question and per-
forms worse than the MFB model only 2.6% of
the time. Furthermore, we found that both MFB
and ALBEF models are both challenged by yes/no
question types, but that these questions were often
subjective or ambiguous.

Annotator Disagreement. Questions such as “Is
this cat cute?” or “Are these bad for me?” ar-
guably make for poor questions when evaluating
model performance: highly subjective yes/no ques-
tions often have annotations where at least three
annotators state “yes”, and at least three state “no”.
Therefore, per the evaluation metric, either answer
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Figure 5: Examples of low-performance ALBEF image/question pairs, that should be correct, together with the
accuracy scores. (Left) ALBEF gives a more detailed answer of Iris, but since most annotators put flowers,
performance score is low. (Middle) ALBEF correctly names the beer, but once again does not match the annotators,
so MFB appears to perform better. (Right) ALBEF gives a number answer that is close to correct (and which is not
much different from the set of ground truth answers), where MFB does not make an attempt.

achieves an accuracy of 1. For example, for the
question “Do these socks match?” ALBEF had
an accuracy score of 60% for an answer of no and
MFB had an accuracy score of 83% for an answer
of yes, even though either is arguably correct.

5 Limitations

This work aims to understand the degree to which
progress on machine “understanding” VQA has,
and has the ability to, improve performance on the
task of accessibility VQA. Our findings should be
interpreted with several limitations in mind. First,
while we analyzed many models across several
years of VQA research, our analysis is limited to
two datasets. Moreover, as discussed in §4.2.2, the
“ground truth” in these datasets, especially when
combined with the standard evaluation metric, is
not always reliable. Second, our analysis is limited
to English, and may not generalize directly to other
languages. Finally, blind and low-vision users are
not a monolithic group, and the photos taken and
questions asked in the VizWiz dataset are represen-
tative only of those who used the mobile app, likely
a small, unrepresentative subset of the population.

6 Conclusion and Future Directions

In this paper, we have shown that, overall, perfor-
mance improvements on machine “understanding”
VQA have translated into performance improve-
ments on the real-world task of accessibility VQA.
However, we have also shown evidence that there
may be a significant overfitting effect, where signifi-
cant model improvements on machine “understand-
ing” VQA translate only into modest improvements
in accessibility VQA. This suggests that if the re-
search community continues to only hill-climb on
challenge datasets like VQA-v2, we run the risk of
ceasing to make any process on a pressing human-
centered application of this technology, and, in the
worst case, could degrade performance.

We have also shown that along with the overall
model improvement, the accessibility VQA sys-
tem have improved on almost all of the challenge
classes though some challenges remain difficult. In
general, we observe the models struggle most on
questions that require text recognition skill as well
as ambiguous questions. Future work thus may
wish to pay more attention on these questions in
both data collection and model design.

Finally, we have seen that we are likely reaching
the limit of the usefulness of the standard VQA ac-
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curacy metric, and that more research is needed to
develop automated evaluation protocols that are ro-
bust and accurately capture performance improve-
ments. On top of this, VQA systems are reach-
ing impressive levels of performance, suggesting
that human evaluation of their performance in eco-
logically valid settings is becoming increasingly
possible. As ecological validity would require con-
ducting such an evaluation with blind or low-vision
users, research is needed to ensure that such evalu-
ation paradigms are conducted ethically and mini-
mize potential harms to system users.
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