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Abstract

Many NLP main tasks benefit from an accurate
understanding of temporal expressions, e.g.,
text summarization, question answering, and
information retrieval. This paper introduces
Hengam, an adversarially trained transformer
for Persian temporal tagging outperforming
state-of-the-art approaches on a diverse and
manually created dataset. We create Hengam
in the following concrete steps: (1) we develop
HengamTagger, an extensible rule-based tool
that can extract temporal expressions from a
set of diverse language-specific patterns for any
language of interest. (2) We apply HengamTag-
ger to annotate temporal tags in a large and di-
verse Persian text collection (covering both for-
mal and informal contexts) to be used as weakly
labeled data. (3) We introduce an adversarially
trained transformer model on HengamCorpus
that can generalize over the HengamTagger’s
rules. We create HengamGold, the first high-
quality gold standard for Persian temporal tag-
ging. Our trained adversarial HengamTrans-
former not only achieves the best performance
in terms of the F1-score (a type F1-Score of
95.42 and a partial F1-Score of 91.60) but also
successfully deals with language ambiguities
and incorrect spellings. Our code, data, and
models are publicly available at https://
github.com/kargaranamir/Hengam.

1 Introduction

A wide array of natural language processing (NLP)
applications relies on accurately identifying of
events and their respective occurrence times. Text
summarization (Christensen et al., 2013; Aslam
et al., 2015; Ghodratnama et al., 2021), question
answering (Llorens et al., 2015; Bast and Hauss-
mann, 2015; Jia et al., 2018, 2021), and information
retrieval tasks requiring to classify information in
a chronological order (Kanhabua and Nejdl, 2013)
are all examples of such applications. In order to

⋆ The first two authors contributed equally and their au-
thorships were determined randomly.

address these needs in the last decades, there has
been an increased interest in temporal information
extraction systems and developing their appropri-
ate corpora and evaluation frameworks. TempEval
challenges are, for instance, great examples of such
efforts held as a part of SemEval workshops focus-
ing on temporal information extraction (Verhagen
et al., 2007, 2010; UzZaman et al., 2013).

The study of temporal expressions in English
and other languages has been an ongoing re-
search track in the last decade, spanning renowned
rule-based efforts such as HeidelTime (Strötgen
and Gertz, 2010) and SUTime (Chang and Man-
ning, 2012) to learning-based approaches, e.g., a
transformer-based “BERT got a Date” (Almasian
et al., 2021). The majority of efforts in this area
have been rule-based, which is suffering from (i)
a relatively low recall, as finite rules are usually
insufficient to deal with all forms of temporal ex-
pressions, and (ii) a relatively low precision, as
solely relying on the surface form would lead to a
high false positive rate. On the other hand, training
on a limited set of examples imposes a challenge
for learning-based approaches, as this way, they can
hardly see a diverse set of time patterns, even in the
presence of large and high-quality datasets (Al-
masian et al., 2021). Thus, an approach com-
bining the strength of both rule-based approaches
and learning-based approaches in temporal tagging
would be extremely beneficial.

Similar to many other languages, both rule-based
approaches (Mansouri et al., 2018) and learning-
based approaches (Mohseni and Tebbifakhr, 2019;
Taher et al., 2020; Farahani et al., 2021) are de-
veloped for the Persian language. ParsTime (Man-
souri et al., 2018) is probably the first and the most
popular attempt to identify and normalize Persian
temporal expressions, which also uses the TimeML
scheme (Pustejovsky et al., 2005). ParsTime be-
ing purely rule-based has several limitations: (i)
inability to handle ambiguities in the language, (ii)
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incapability to deal with a wide range of temporal
terms, and (iii) failing to generalize. The other
studies in Persian time tagging have attempted
to recognize time and date entities as a subset of
named entity recognition (NER) tasks, such as Mor-
phoBert (Mohseni and Tebbifakhr, 2019), Beheshti-
NER (Taher et al., 2020) and ParsBERT (Farahani
et al., 2021). These studies all tackle this problem
using transfer learning by training a supervised
NER model on variations of a pretrained trans-
former language model, in particular, a BERT (De-
vlin et al., 2018) model.

Time and date tags are included in Per-
sian NER datasets, such as Peyma (Shahsha-
hani et al., 2018), A’laam (Hosseinnejad et al.,
2017), Persian-NER (Text-mining.ir, 2018), and
NSURL’19 (Taghizadeh et al., 2019). However,
training models based on these datasets do not lead
to a high-performance temporal tagging model, as
they contain a limited number of temporal tags and
do not cover all forms of possible temporal expres-
sions in Persian. For instance, Peyma, which is
used in several studies, including MorphoBERT,
Beheshti-NER, and ParsBERT, only contains 2126
sentences containing temporal expressions. In ad-
dition to the small number of training examples,
these datasets are far from being an appropriate
temporal dataset that must cover most types of tem-
poral expressions and consider language-specific
constraints. Some of the language-specific chal-
lenges in Persian are: (i) the difference between
formal and informal writing styles, (ii) lexical am-
biguity (homographs), and (iii) the use of three
calendar systems in Persian: the Gregorian, Hijri,
and Jalali calendars, unlike most of languages, re-
ferring mostly to only one or two calendars in their
texts.

This paper aims to bridge the gap between rule-
based and transformer-based approaches by creat-
ing an unbiased temporal tagged corpus using a
rule-based approach and then adversarial training
of a state-of-the-art transformer model. Training
begins by fine-tuning a pre-trained model on a cre-
ated corpus, followed by adversarial fine-tuning
with a smaller, strongly labeled corpus using pro-
jected gradient descent (PGD). The following are
the main contributions of this paper:

(i) We present the Hengam rule-based tagger
(HengamTagger), which is an efficient and exten-
sible rule-based temporal expression identification
tool. HengamTagger is the only publicly acces-

sible tool capable of extracting Persian temporal
expressions.
(ii) We introduce HengamCorpus, a sizeable unbi-
ased dataset created by HengamTagger covering
the majority of formal and informal temporal ex-
pressions taking the Persian language constraints
into account.
(iii) We developed HengamTransformer, a state-of-
the-art adversarial transformer-based temporal tag-
ger model trained on the HengamCorpus. Hengam-
Transformer obtain a type F1-Score of 95.42 and a
partial F1-Score of 91.60 on the evaluation dataset
that includes a wide range of temporal patterns in
Persian.

2 Related Work

The approaches for the identification of temporal
expression fall within two main categories: (i) rule-
based and (ii) learning-based methods.
Rule-Based Methods. Rule-based methods iden-
tify temporal expressions by constructing deter-
ministic rules. Here we summarize the main in-
stances of such works, namely GUTime (Mani,
2003; Verhagen et al., 2005), HeidelTime (Strötgen
and Gertz, 2010), SUTime (Chang and Manning,
2012), and SynTime (Zhong et al., 2017). GUTime
is a part of the TARSQI toolkit to enhance question-
answering systems in temporally-related queries.
GUTime extends TempEx (Mani and Wilson, 2000)
with machine-learned rules to resolve temporal ex-
pressions based on the TimeML TIMEX 3 stan-
dard. HeidelTime employs knowledge resources
and linguistic clues to normalize extracted tempo-
ral expression rules. SUTime is another renowned
system built on TokensRegex (Chang and Man-
ning, 2014) mapping regular expressions defined
over text and tokens to semantic objects. SynTime
proposes general type-based heuristic rules detect-
ing time mentions based on the similar syntactic
behavior of temporal words. SynTime identifies
temporal tokens in raw text, searches for other spec-
ified types in their surroundings, and then merges
these segments into temporal expressions.

ParsTime (Mansouri et al., 2018) is the only
previous attempt to develop a rule-based tempo-
ral tagger capable of identifying and normalizing
Persian temporal expressions. However, some chal-
lenges are not addressed by ParsTime, such as ho-
mographs, common spelling mistakes, and infor-
mal variations in temporal expressions in Persian.
Unfortunately, due to a lack of documentation and
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feedback from the authors, we were not able to
run the ParsTime, but by reviewing the ParsTime
code, we ensured that all predefined patterns are
reflected in HengamTagger. Furthermore, Hengam-
Tagger resolves some of the ParsTime challenges
by defining exclusion patterns and covering a far
broader range of temporal expressions described in
the §3.1.

Learning-Based Methods. A majority of learning-
based methods were introduced at the TempEval
challenge of SemEval (Verhagen et al., 2007, 2010;
UzZaman et al., 2013). Such models tradition-
ally use textual features, such as characters, words,
syntactic, and semantic features. These studies
have utilized statistical models such as Conditional
Random Fields (CRFs), Markov Logic Networks,
and Support Vector Machines (SVMs) to model
temporal expressions (UzZaman and Allen, 2010;
Filannino et al., 2013; Bethard, 2013). With the
recent advances in NLP, models built on top of
pre-trained language models, such as BERT (De-
vlin et al., 2018), are introduced (Chen et al., 2019;
Lange et al., 2020; Almasian et al., 2021). These
models are trained on several datasets supporting
temporal pattern units (Mazur and Dale, 2010; Uz-
Zaman et al., 2013; Zhong et al., 2017).

For the Persian language, the learning-based ap-
proaches are mainly trained over the general Per-
sian NER datasets, and there is no public annotated
dataset in standard time schemes, such as TimeML.
Examples of these datasets are Peyma (Shahsha-
hani et al., 2018), Persian-NER (Text-mining.ir,
2018), and NSURL’19 (Taghizadeh et al., 2019).
There have also been a couple of studies dis-
cussing the creation of a dataset of temporal pat-
tern units. However, we were unable to access
their data by contacting the authors (Mansouri
et al., 2018; Hosseinnejad et al., 2017). Exist-
ing Persian temporal taggers are created using the
above-mentioned NER datasets utilizing a varia-
tion of BERT transformers (Devlin et al., 2018),
such as MorphoBert (Mohseni and Tebbifakhr,
2019), Beheshti-NER (Taher et al., 2020) and Pars-
BERT (Farahani et al., 2021). MorphoBERT (using
a Persian morphological analyzer combined with
BERT) and Beheshti-NER (utilizing a CRF model
on top of the BERT network) are NER approaches
presented at the NSURL’19 workshop (Taghizadeh
et al., 2019) and ranked first and second respec-
tively. Previous studies (Mohseni and Tebbifakhr,
2019; Taher et al., 2020) have noted that, due to the

lack of time and date examples in the NSURL’19
and Peyma datasets, the worst results of the seven
different NER classes were associated with time
and date categories.

3 Materials and Methods

In this section, we present the workflow of Hengam
shown in Figure 1. We firstly (i) start with a rule-
based tagger (HengamTagger), which is then used
in (ii) creating a weakly labeled dataset (Hengam-
Corpus). (iii) Ultimately, we present our Hengam
adversarial transformer model (HengamTrans-
former) trained over a strongly labeled dataset. We
also describe how we develop a gold standard for
this task and evaluate Hengam variations against
the state-of-the-art approaches.

HengamCorpus

HengamTagger

Twitter
Corpus

Wikipedia
Corpus

Hamshahri
Corpus

Hellokish
Corpus

HengamTransA

HengamTransW

Strongly 
Labeled 
Dataset

Figure 1: The overview of Hengam approach.
(i) HengamTagger (our rule-based system) identifies
the temporal expression from both formal and infor-
mal datasets resulting in the automatically annotated
HengamCorpus. (ii) HengamCorpus is then used in a
supervised fine-tuning of the Hengam Transformer, an
XLM-RoBERTa with a CRF layer. Since HengamCor-
pus is considered as a weakly labeled dataset, the trans-
former model trained solely on HengamCorpus is called
Weak Hengam Transformer or in short HengamTransW.
(iii) In the next step, we train Adversarial Hengam
Transformer or in short HengamTransA by fine-tuning
HengamTransW over a strongly labeled dataset using
the PGD algorithm.

3.1 HengamTagger
A significant bottleneck in training supervised ma-
chine learning models is the preparation of train-
ing data, which is time-consuming and, in many
cases, expensive when human labeling is required.
There are only a few datasets containing both for-
mal and informal Persian temporal labeled data.
These datasets are considered too small to be used
for training large models with the generalization
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ability. In addition, they do not cover a wide di-
verse set of temporal patterns, and therefore trained
models are not able to recognize temporal expres-
sions in many cases. Hence, to overcome both
issues, we introduce HengamTagger, a rule-based
approach designed to automate extracting and la-
beling temporal expressions using finite predefined
patterns.
Tagger Architecture. HengamTagger is a rule-
based Persian temporal extractor built on top of
regular expressions specifying pattern units and
patterns that can match temporal expressions. As
indicated in the architecture diagram in Figure 2,
the temporal patterns of different types are intro-
duced in HengamTagger in abstract forms ’patterns’
and ’pattern units’ explained in the next part.

DATE TIME EXC AUX NUM

MNTH
SSN
DU
…

DP
HR
TU
…

PLACE
ADD
EVE
…

CJ
NXT
PF
…

NUM
N31
N12

…

Pattern Units (PUs)

Regular expressions

HengamTagger Interface

DATE TIME EXCLUSION

MNTH NUM
SSN NUM

…

DP NXT
TU NXT

N24:N60
…

PLACE NUM MNTH
ADD SSN

WD BAZAR
…

Patterns (PTs)

Next August, there will be an impressive meteor shower.

آگوست آينده، يك بارش شهابي چشمگير رخ خواهد داد.

3

Next August, there will be an impressive meteor shower.

.آگوست آينده، يك بارش شهابي چشمگير رخ خواهد داد

1

MNTH NXT

2

Figure 2: The Architecture of our Rule-based
HengamTagger. In the rule-based system, the atomic
units of temporal expressions are Pattern Units (PUs).
These PUs are then combined to generate temporal Pat-
terns (PTs). Our final rules are regular expressions gen-
erated from these PTs. For instance, the PUs “MNTH”
and “NXT” represent the names of months and the rel-
ative temporal terms, respectively. Having the PT rule
“MNTH NXT”, meaning a relative temporal term fol-
lowed by the name of the month, helps HengamTagger
to detect the example expression آینده آگوست (august
âyande, “next august”).

Pattern Units (PUs). “Pattern units”, or in a short
form PUs, are abstract atomic units matching time-
related terminologies. PUs are then combined to
form a more complex but still abstract representa-
tion of temporal relations, called “patterns”, shortly
PTs. We categorize the PUs into five groups de-
pending on their usages: (i) date units, (ii) time
units, (iii) exclusion units, (iv) auxiliary units, and
(v) number units. In the following, we introduce
each of these five categories using an example. (i)
Date unit: date PUs represent temporal expres-
sions larger than or equal to 24 hours, such as

days of week, months, seasons, etc. For instance,
MNTH PU refers to different months in three calen-
dar types including, Gregorian, Hijri (Lunar), and
Jalali (Solar) calendars in Persian. (ii) Time unit:
Time PUs represent temporal expressions cover-
ing a time less than 24 hours. TU pattern unit is
an example referring to different time units, e.g.,
ساعت (sâ’at, “hour”) and ثانیه (sâniye, “second”) in
Persian. (iii) Exclusion unit: these PUs represent
the building blocks for patterns that can introduce
false negatives using homographs to the other PUs.
For instance, the PLACE PU refers to any loca-
tion may be named after a specific time and date,
e.g., مدرسه (madrese, “school”) or موزه (muse, “mu-
seum”). (iv) Auxiliary unit: auxiliary PUs mainly
consist of grammatical terms that help in building
PTs in combination with other PUs. For instance,
the NXT pattern unit is a set of words that might
come after temporal expressions, e.g., پیشین (pišin,

“prior”). (v) Number unit: number PUs are num-
bers in digit or in alphabetic format. For instance,
N31 represents a number between 1 to 31.

Patterns (PTs). Date, time, and exclusion PUs are
combined to build three types of date, time, and
exclusion PTs, respectively. In the following, we
introduce each pattern group through an example.

(i) Date pattern: date patterns match temporal ex-
pressions spanning a time larger than or equal to 24
hours. For example, N31 MNTH pattern matches
with temporal expressions, e.g., بهمن ۱۶ (16 bah-
man, “Bahman 16 ”≈“February 4”), می ۵ (5 mey,

“May 5”), etc. (ii) Time pattern: time patterns
match the temporal expressions covering a range
of hours. For example, TU NXT pattern matches
with temporal expressions, e.g., بعد ساعت (sâ’at
ba’d, “next hour”), قبل دقیقه (daqiqeh qabl, “previ-
ous minute”), etc. (iii) Exclusion pattern: exclu-
sion patterns exclude phrases that are matched by
date or time patterns by defining more concise pat-
terns. For example, PLACE N31 MNTH pattern
matches with expressions, e.g., خرداد ۱۵ مدرسهی

(madrese-ye 15 xordad, “15 of khordad school”),
دی ۹ بیمارستان (bimârestân-e 9 dey, “dey 9th hospi-
tal”), etc. Exclusion patterns help to disambiguate
the names of persons or places that are homographs
with temporal expressions. For Instance, خرداد ۱۵

(15 xordad, “15th of Khordad”≈“5th of June”) is
a temporal expression showing a date but مدرسهی

خرداد ۱۵ (madrese-ye 15 xordad, “khordad 15th

school”) is a place name consisting of a specific
date and should not be recognized as a temporal ex-
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pression. Another example of the exclusion pattern
usages is the continuous verbs having the prefix
mi (می) in Persian. mi is the homograph of “May”
which is a 5th month of the year in the Gregorian
calendar. This issue is addressed by using multiple
exclusion patterns that construct all of the possible
verbs that begin with prefix mi.
Output Schemes. There are several output
schemes supported by HengamTagger. Before pro-
viding the output, HengamTagger merges temporal
expressions that have the same tag (Time or Date)
and are adjacent to each other. For example, in the
temporal expression دوشنبه امروز (emrooz došanbe,

“today Monday”) there are two phrases, امروز (em-
rooz, “today”) and دوشنبه (došanbe, “Monday”)
which are dates. HengamTagger may match these
two expressions separately, but during the post-
processing stage, they are merged into one expres-
sion. Following are the different output schemes
supported by Hengam: (i) Span Indices: in this
format, the start and end indices of each of the de-
tected temporal patterns are provided separating
the “Time”, “Date”, and “DateTime” categories.
Note that the “DateTime” is the combination of
time and date expressions. (ii) TimeML: based
on TIMEX 3 standard (Pustejovsky et al., 2005),
this format takes four outputs into account. The
“Date” tag indicates a calendar time. “Time” tag
for temporal expressions less than 1 day (including
clock time, daypart, etc.). “Duration” tag for tem-
poral expressions that describe intervals. The “Set”
tag is used when the temporal expression refers to
recurring events. (iii) BIO: in this format, two dif-
ferent tagging schemes are considered, the first one
outputs the time and the date as individual entities,
i.e., “TIM” and “DAT”. The second one represents
the “TMP” entity by combining “Time” and “Date”.
These tags are represented in the BIO standard tag-
ging scheme used in the NER tasks (Ramshaw and
Marcus, 1999).

3.2 HengamCorpus

We introduce HengamCorpus weakly labeled
dataset by applying HengamTagger (§3.1) over
datasets described in §3.2.1. Unlike previous ef-
forts of creating a temporal tagged dataset, empow-
ered by our extensive set of patterns and pattern
units, we can consider a wide array of diverse tem-
poral patterns. Furthermore, we introduce a dataset
containing strong temporal labeled data and also
include challenging sentences to improve Hengam-

Transformer training in §3.4.

3.2.1 Raw Text Collections
We chose four popular Persian text collections cov-
ering both formal and informal styles: Persian
Wikipedia (Fa.wikipedia.org, 2020) and Hamshahri
Corpus (Hamshahrionline.ir, 2021) as formal ones,
and Twitter (Abdi Khojasteh et al., 2020) and Hel-
loKish dataset (Moradi and Bahrani, 2015) datasets
as informal Persian datasets. (i) PersianWiki:
Persian language collection of Wikipedia articles,
the 19th largest edition by the number of articles.
As of the data creation date, the dataset contains
739, 870 articles with 3, 858, 609 sentences. (ii)
Hamshahri: this data is based on the Iranian news-
paper Hamshahri, one of Iran’s first Persian lan-
guage online newspapers. The dataset used for the
analysis contains 150, 096 news articles resulting
in 1, 793, 147 sentences. (iii) PersianTwitter: the
data consists of 20, 665, 964 tweets, mostly in the
informal Persian context, which has been further
reduced to 9, 852, 565 tweets after eliminating du-
plicates. (iv) HelloKish: HelloKish is a tourism
guidance website that allows people to share their
opinions about different places. In total, this dataset
spans 2, 378 comments constructed from 7, 899
sentences.

3.2.2 Training Corpus Creation
Weakly Labeled Dataset. HengamCorpus weakly
labeled dataset is generated by extracting temporal
expressions on the raw text collections § 3.2.1 us-
ing HengamTagger. We have observed that certain
temporal patterns are highly skewed in the datasets
in terms of frequency, resulting in a non-uniformity
of temporal expression types. We have discussed
and visualized this matter in further detail in Ap-
pendix §B. The non-uniformity of these temporal
patterns introduces a bias in training and evalua-
tion if we ignore these imbalances. To address this
issue, we uniformly draw samples from sets of sen-
tences of unique “temporal pattern profile”, pres-
ence/absence vector of different temporal patterns
within the sentence. The created HengamCorpus
consists of 313, 847 sentences and 12, 902, 121 to-
kens covering 1, 783, 426 date tokens and 195, 639
time tokens. HengamCorpus differs from other
datasets with temporal tags in two ways. First, it
includes a wide range of types of temporal expres-
sions without being biased towards any particular
pattern. Secondly, all data points are labeled con-
sistently regardless of the context, in both formal
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and informal contexts.
Strongly Labeled Dataset. HengamTagger does
not understand the semantics of words and cannot
handle challenges like homographs properly. There
are many homographs in Persian that express tem-
poral expressions, on top of having multiple other
meanings. For instance, the homograph mehr (مهر)
can refer to 7th month in the solar calendar, stamp,
love, or name of a popular news agency, depend-
ing on the context. We need a dataset with cor-
rect labels to inform the learning model (Hengam-
Transformer described in §3.3) about these differ-
ences. Thus, we need to provide a dataset that
is strongly labeled. As the labeling process in-
volves a great deal of time and expense, we only
make a small portion of strongly labeled instances (
≈ 0.5% ||HengamCorpus||), and the rest will be
handled by HengamCorpus as weakly labeled in-
stances. We collect a set of 1, 500 carefully crafted
sentences consisting of 2, 909 date tokens and 691
time tokens. In the creation of the strong collection,
we attempt to include challenging examples (e.g.,
homographs, polysemous words, etc.) as much as
possible. Two annotators participated in the label-
ing independently, resulting in a kappa agreement
score of 0.95. Subsequently, the conflicts were
resolved in a joint session.

3.3 HengamTransformer

Similar to any other rule-based approach, the rule-
based version of HengamTagger has the following
disadvantages: (i) it has a relatively low recall be-
cause of using a finite set of rules, and (ii) it is
incapable of comprehending a complex context
to handle challenging cases, e.g., as homographs,
which leads to a lower precision. In this step, we
introduce HengamTransformer, a fine-tuned trans-
former language model adversarially trained on
HengamCorpus and a set of strong labels, as a so-
lution to both problems.

HengamTransformer is a neural CRF model con-
sisting of an XLM-RobBERTa transformer model
and a linear-chain CRF layer. In this architecture,
the transformer neural network component serves
as an encoder, which encodes the input sequences
of tokens into token embeddings, and subsequently
transforms them into token logits. In a sequence
labeling model, the RoBERTa model encodes each
token into a hidden representation size d, which
is then projected onto the tags space determined
by the number of classes and the tagging schemes,

i.e. Rd 7→ R|C|, where C indicates the set of tags.
Let us consider the input as X = [x1, · · · , xk]
and their labels as Y = [y1, · · · , yk], yi ∈ C,
and the logits generated by the encoder network
as l = [l1, . . . , lk], li ∈ R|C|, where k indicates
the length of the sequence. In the next compo-
nent, the CRF layer employs a label transition func-
tion Ψ (Ψ : R|C|∗|C| → R). Using HengamTrans-
former, each possible tag sequence is assigned a
score based on the aggregation of emission scores,
which is the likelihood of tag yi given sequence
X and transition scores for moving from the tag
yi−1 to the yi. Thus, we can assign a score to the
sequence of labels, Y , based on the logits and the
transition score as the following:

score(y, x) =

k∑
i=1

li,yi +

k−1∑
i=1

Ψ(yi, yi+1),

where li,j indicates the j-th entry in logit li.
Considering D as the training set and Y as the set

of all possible tagging schemes, the loss function
of the CRF model can be defined as an average of
the negative log-likelihoods over the training set:

Loss = − 1

|D|
∑

(x,y)∈D

log
exp score(y, x)∑

y′∈Y exp score(y′, x)
.

Finally, HengamTransformer utilizes the Viterbi
algorithm (Forney, 1973) to determine the tag se-
quence with the highest score as the output.

3.4 Adversarial HengamTransformer
First, we use HengamCorpus (§3.2) to fine-tune
the HengamTransformer’s language model. In the
next step, we train a complete architecture contain-
ing the transformer and the CRF layer jointly in an
end-to-end manner. We split the HengamCorpus,
into train (75%), test (10%) and validation (15%)
sets. After reaching the early-stopping point based
on the performance of the validation data, we re-
train the model on the strong labels (§3.2.2) in an
adversarial manner. In many previous works, it
has been shown that adversarial training can im-
prove both generalization and robustness (Miyato
et al., 2017; Cheng et al., 2019). An adversarial
training of HengamTransformer contains a min-
max optimization process. The max part involves a
non-concave maximization problem to find pertur-
bation vectors maximizing the loss for a particular
mini-batch. And then in the min step, we deal with
a non-convex minimization problem to determine
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parameters minimizing the loss function using the
Stochastic Gradient Descent (SGD) algorithm.

Suppose that the HengamTransformer is defined
as a function fθ(X), where X is the sub-word em-
beddings and θ is referring to the trainable param-
eters. The adversarial training method attempts
to find the optimal parameters θ∗ minimizing the
maximum risk of any adversarial perturbations δ to
the embeddings inside a norm ball, which can be
written as follows:

θ∗ = argminθED

[
max
∥δ∥≤ϵ

L (fθ(X + δ), Y )

]
,

where D represents the data distribution, Y repre-
sents the label, and L represents the loss function.
K-projected gradient descent (K-PGD) adversar-
ial training (Madry et al., 2018), as an effective
adversarial training method, is utilized. K-PGD ad-
versarial training, requiring K forward-backward
passes through the network, is usually computa-
tionally expensive. However, since only a small
portion of our data (< 0.5%) is strongly labeled,
the adversarial training can be done in an efficient
manner.

3.5 Evaluations
Temporal Tags in Persian NER Datasets. There
are three public Persian NER datasets that sup-
port temporal tags as follows: (i) Peyma dataset
contains only 2126 sentences with at least one
temporal expression. (ii) NSURL’19 dataset con-
sisted of 1784 temporal sentences (1672 sentences
from Peyma dataset as its subset). (iii) Persian-
NER which includes approximately one million
Wikipedia sentences, including 448, 542 sentences
with temporal terms. However, this dataset does
not support both time and date tags as separate tags
and uses the same temporal tag for both.
Exploring NER datasets using HengamTagger.
Due to incompleteness of annotations in three
NER public datasets (Shahshahani et al., 2018;
Taghizadeh et al., 2019; Text-mining.ir, 2018), we
limit the evaluation to the sentences containing at
least one temporal tag. Originally we wanted to
evaluate the HengamTagger over these datasets.
However, the error analysis showed us that the tem-
poral relations, in general, are not consistently and
correctly annotated in these cases. Thus, the perfor-
mance of HengamTagger on these datasets can be
served as an indication of their quality. Thus, we
create the HengamGold for a proper evaluation of
Persian temporal tagging.

HengamGold Evaluation Dataset. An evaluation
of a temporal identifier model requires a dataset
that covers a wide range of temporal expression
patterns as well as formal and informal contexts.
Since there exists no previous such a strongly la-
beled dataset, we present a small dataset consisting
of 200 examples in order to compare our model
to other closely related models. To ensure that
our HengamGold dataset accurately reflects a real-
world situation, we carefully designed 20 param-
eters, which are specific conditions on the tempo-
ral patterns and their interactions with the context.
Then we form the evaluation dataset based on these
conditions. In Appendix §C, we list the designed
conditions along with the number of satisfying sen-
tences in the dataset. Afterward, collected data
is annotated independently by two experts with a
kappa score of 0.97 which implies high agreement
among annotators.
Evaluation Metrics. For the sake of comparison,
we report precision, recall, and f1-score. In se-
quence labeling problem settings, these metrics
can be measured in two scenarios: exact match
and relaxed match (partial match) (Segura-Bedmar
et al., 2013). The ambiguity of boundaries for the
Persian temporal entities encouraged us to choose
a relaxed match scenario. Relaxed match scenario
is evaluated using the following metrics: (i) Par-
tial evaluation: comparing the predicted and the
true boundaries, regardless of the entity type. (ii)
Type evaluation: checking whether the predicted
type has an overlap with the correct entity type
or not. For the calculations we use “nervaluate”,
the evaluation toolkit1 which is developed based
on SemEval’13 guidelines (Segura-Bedmar et al.,
2013).
Evaluation of Hengam. We evaluate the perfor-
mance of different variants of Hengam temporal
detectors (rule-based and learning-based) against
the HengamGold dataset and compare its perfor-
mance with the state-of-the-art models for Persian
temporal tagging, i.e., Beheshti-NER (Taher et al.,
2020) and ParsBERT (Farahani et al., 2021). Un-
fortunately, the MorphoBERT (Mohseni and Tebb-
ifakhr, 2019) and ParsTime (Mansouri et al., 2018)
models were not available to be used in this com-
parison. Here, we utilize two different variations
of HengamTranfromer: (i) HengamTransformer-
weak: trained on HengamCorpus weakly labeled

1https://github.com/MantisAI/
nervaluate

https://github.com/MantisAI/nervaluate
https://github.com/MantisAI/nervaluate
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data, (ii) HengamTransformer-adversarial: trained
on HengamCorpus and subsequently adversarially
fine-tuned over the strongly labeled data. Further-
more, we also train a version of ParsBERT (Pars-
BERTHengam) with HengamCorpus to investigate
the contribution of adversarial training and the CRF
layer in the final performance.
Evaluation of Adversarial Training using
HengamChallengeSet. For an in-depth compar-
ison of the generalization ability of adversarial
Hengam HengamTransA over the weakly trained
transformer HengamTransW, we create another
evaluation set of 30 manually annotated challeng-
ing examples, called HengamChallengeSet. This
evaluation set spans examples containing homo-
graphs, polysemous cases, and other complex ex-
amples to study the effect of HengamTransW fine-
tuning with strongly labeled dataset.

4 Results

4.1 Temporal Tagging Analysis of Persian
NER datasets

A summary of the HengamTagger performance on
publicly available Persian NER datasets is provided
in Table 1. After an extensive error analysis, we
concluded that the Persian NER datasets are only
partially annotated for the temporal tags, meaning
that they cannot be used for a proper evaluation
of HengamTagger. Therefore, the main mission
of Table 1 is (1) to assess the coverage and preci-
sion of rules incorporated in HengamTagger and
(2) compare the time/date tagging quality in dif-
ferent Persian NER datasets. This is the primary
reason that we have not included another baseline
in Table 1. In addition, we have to indicate that
since these NER datasets were used in the training
process of “Beheshti-NER” and “ParsBERT”, it
did not seem to be the right approach to include
these models in the evaluation as well.

Our analysis indicates that the HengamTagger
gets a high recall on both Peyma and NSURL’19
datasets. In many cases, the source of difference
is the inclusion/exclusion of the preposition before
the temporal expression as part of the temporal ex-
pression. However, there are also some true nega-
tives in these datasets resulting in a lower precision.
For instance, in Peyma dataset, the expression در

رمضان ماه (dar mah ramezan, “In the month of Ra-
madan”) is not labeled as a temporal expression.
In addition, Persian-NER (Text-mining.ir, 2018),
for instance, does not distinguish between time and

Dataset Type Partial

Pr. Re. F1 Pr. Re. F1

Peyma 72.15 93.81 81.57 69.53 90.41 78.61
NSURL 72.57 94.07 81.93 69.89 90.61 78.91
Persian-NER 89.39 88.30 88.84 58.95 58.23 58.91

Table 1: The performance of HengamTagger (Precision,
Recall, and F1 scores) on Persian NER datasets contain-
ing temporal labels

date tags and uses the same temporal tag for both
types. We also found many senseless cases fre-
quently tagged as temporal terms, e.g., سیمی (simi,

“Wired”), مهدی (mahdi, “mahdi, a person name”),
and مهمی (mohemmi, “an important”). We also
found several instances of inconsistency in terms
of following the IOB format. In general, Hengam-
Tagger still gets a relatively high type recall rate
on these datasets. The type recall in this dataset
increases from 88.30 to 89.25 by simply labeling
the three words suggested above with the label “O”.
Keeping all of this in mind, although our original
plan was to evaluate the HengamTagger with the
Persian NER datasets, because of the poor quality
of temporal tags, the analysis became the other way
around. That is the reason we created the Hengam-
Gold for a proper evaluation of Persian temporal
tagging approaches.

4.2 Hengam Evaluation Results

The performance comparison of HengamTrans-
former variations with rule-based HengamTag-
ger, Beheshti-NER (Taher et al., 2020), and Pars-
BERT (Farahani et al., 2021) on HengamGold
dataset is provided in Table 2. Our results suggest
that Hengam variations outperform the state-of-the-
art Persian Temporal Tagging approaches Beheshti-
NER and ParsBERT. In addition, the Hengam-
Transformer variations had superior performance
to the rule-based tagger suggesting a better gen-
eralization ability of a language-model-based tag-
ging model. HengamCorpus’ good quality dataset
greatly improved ParsBERT’s performance; never-
theless, the Hengam transformer architecture hav-
ing a CRF layer on top delivered even better results.
Furthermore, the adversarial HengamTransformer
achieved the best performance in terms of all met-
rics (precision, recall, and F1) as well as evaluation
settings (type evaluation and partial evaluation),
among other HengamTransformers.

Here we discuss a number of interesting obser-
vations we witnessed in the evaluation process of
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Hengam temporal taggers: (i) Style/Spelling er-
ror resistance: HengamTagger cannot handle a
different style or a severe spelling error. How-
ever, HengamTransformer is highly resilient to
this problem. For instance, the phrases خرداد پونزده

(poonzdah-e xordad, “Khordad 15th”) and سینزده

خرداد (sinzdah-e xordad, “Khordad 13th”) are the
informal forms of خرداد پانزده (pânzdah-e xordad,

“Khordad 15th”) and خرداد سیزده (sizdah-e xordad,
“Khordad 13th”) which are successfully recognized
by the HengamTransformer approach but not the
rule-based HengamTagger. In several examples,
we observed that HengamTransformer could resist
spelling errors as well. (ii) Pattern Generaliza-
tion: HengamTagger is only capable of detecting
temporal expression based on predefined rules and
cannot detect any new pattern. However, Hengam-
Transformer could successfully generalize to detect
phrases such as هفته بقیه (baqie hafte, “rest of the
week”), ثانیه هفت شش (šeš haft sâniye, “6-7 sec-
onds”), and یکبار ساعت هر (har sâ’at yekbar, “every
hour”) without seeing them in advance in the train-
ing data. (iii) Homographs: There are many tem-
poral markers in Persian involved in homograph
relations with other words. Clearly, HengamTag-
ger cannot handle this issue without including the
context into the pattern. In contrast, the strong
labels fed to HengamTransformer in the adversar-
ial training helped the model distinguish between
the word senses. As an example, both بهمن (bah-
man) and آذر (azar) are months of the Persian solar
calendar. However, they can also refer to a per-
son’s name or a product. The adversarially trained
HengamTransformer variation (and interestingly
not the HengamTransformer-weak) could success-
fully disambiguate these sentences in phrases سیگار

بهمن (sigar-e bahman, “Bahman cigarette”) and آذر

خانم (azar xânom, “Ms. Azar”).

4.3 Evaluation Results of the Adversarial
Training on HengamChallengeSet

Our analysis on the results of HengamTransA
and HengamTransW over the HengamChallenge-
Set shows that the adversarial training (Hengam-
TransA) could correctly disambiguate all 30 man-
ually annotated challenging cases, while the weak
training HengamTransW could only identify 9 out
of 30 challenging temporal tags. Detailed results
are provided2.

2https://github.com/kargaranamir/
Hengam/blob/main/data/evaluation/
challenge_set/HengamChallengeSet.xlsx

Model Type Partial

Pr. Re. F1 Pr. Re. F1

Beheshti-NER 81.67 37.55 51.44 61.25 28.16 38.58
ParsBERT 76.85 31.80 44.99 52.78 21.84 30.89
ParsBERTHengam 89.89 95.40 92.56 83.57 88.69 86.95
HengamTagger 89.93 95.78 92.76 83.99 89.46 86.64
HengamTransW 94.66 95.02 94.84 88.36 88.70 88.53
HengamTransA 95.06 95.78 95.42 91.25 91.95 91.60

Table 2: Comparison of different variations of Hengam
temporal detectors, (i) HengamTagger: the rule-based tag-
ger, (ii) HengamTransW: HengamTransformer trained on
HengamCorpus weakly labeled data, and (iii) Hengam-
TransA: HengamTransformer trained on HengamCorpus and
subsequently adversarially fine-tuned over the strongly labeled
data. The Hengam models are compared with the Beheshti-
NER (Taher et al., 2020), ParsBERT (Farahani et al., 2021),
and ParsBERT, which is fine-tuned with HengamCorpus (Pars-
BERTHengam) in terms of Precision, Recall, and F1 scores
in temporal type-checking and partial evaluations over the
HengamGold dataset.

5 Conclusions

In this paper, we proposed Hengam, an accurate ad-
versarially trained transformer for Persian temporal
tagging outperforming state-of-the-art approaches
on a diverse and manually created dataset. We
achieved this system in the following concrete
steps: (1) we developed HengamTagger, a fast
and extensible rule-based tool that can extract tem-
poral expressions from any language by creating
language-specific patterns3. (2) We used Hengam-
Tagger to annotate a large and diverse Persian
text collection (covering both formal and infor-
mal contexts) for temporal tags. This way, we
made HengamCorpus and used it as weakly la-
beled data for subsequent learning-based tempo-
ral tagging. (3) We introduced an adversarially
trained transformer model on HengamCorpus that
can generalize over the HengamTagger’s rules eval-
uated over a set of challenging examples named
HengamChallengeSet. We studied available Per-
sian temporal datasets and found that the current
datasets are inadequate for developing a system
to identify temporal expressions. We created the
first high-quality gold standard for Persian tempo-
ral tagging called HengamGold. The adversarial
HengamTransformer not only achieved the best per-
formance in terms of the F1-score but also success-
fully dealt with language ambiguities and incorrect
spellings.

3Appendix §D gives an example of how to extend the
HengamTagger for another language.

https://github.com/kargaranamir/Hengam/blob/main/data/evaluation/challenge_set/HengamChallengeSet.xlsx
https://github.com/kargaranamir/Hengam/blob/main/data/evaluation/challenge_set/HengamChallengeSet.xlsx
https://github.com/kargaranamir/Hengam/blob/main/data/evaluation/challenge_set/HengamChallengeSet.xlsx
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A Experiment setup

HengamTransformer trained with a learning rate
of 2e− 5, a batch size of 16, and the maximum se-
quence length of 512 tokens for the entire training
set. Additionally, during the training the weights
belonging to the first 8 layers are frozen. Further-
more, for the adversarial training part, we used
K-PGD, with K = 3.

B Uniform data selection over temporal
profiles

HengamTagger has identified 3016 and 31,272
profiles from time and date patterns respectively.
In the creation of HengamCorpus, to maximize
the diversity of patterns for training and evalua-
tion, we uniformly draw samples from sets of sen-
tences of unique “temporal pattern profile”, pres-
ence/absence vector of different temporal patterns
within the sentence. Figure 3 illustrates how these
profiles are skewed in the raw collections. Each
row in this diagram indicates the presence of par-
ticular pattern IDs.

C HengamGold Parameters Description

We provide the conditions in creation of Hengam-
Gold in Table 3. These conditions are chosen to
maximize the coverage of diverse Persian temporal
patterns in this evaluation dataset (e.g., formal and
informal styles).

D Hints on extension of HengamTagger
for other languages

HengamTagger can be easily extended in support-
ing languages other than Persian. In this section we,
provide an example to extend the framework for an-
other language, in particular for English. Suppose
we want to extract English temporal expressions
such as “August 12”, “June 21”, etc. For detection
of this pattern, firstly we need to define two pattern
units: (i) the MNTH pattern unit, which includes
the Gregorian months, and (ii) the N31 pattern unit
to support numbers from 1 to 31. We then only use
the primitives MNTH and N31 to define the pattern
"MNTH N31". Subsequently, the "MNTH N31"
pattern generates the following regular expression
to support the mentioned temporal expression.

[January|February|...|December]\s[1− 31]

Figure 3: Skewness of date/time profile distributions.
This figure illustrates the frequency distribution of date
profiles calculated over PersianTwitter. HengamTagger
has identified 3016 and 31, 272 profiles from time and
date patterns. In the figure the skewness of temporal pro-
file distributions is demonstrated for the most frequent
profiles. In the next step, we uniformly sample from
the identified profiles (the red parts of the bar for each
pattern profile) to have maximum diversity of patterns
in the training.

Condition Matching
Cases

Is there any temporal expression in the sentence? 187
Is there any date expression in the sentence? 134
Is there any time expression in the sentence? 79
Is there a place name that contains temporal tokens? 7
Is there a person’s name that contains temporal tokens? 14
Does any other named entity contain temporal tokens
besides place and person?

15

Is the temporal expression explicit? 150
Does the sentence contain any symbols? 16
Can temporal expression be expressed as a set? 15
Can temporal expression be expressed as a duration? 9
Does the sentence have a formal tone? 130
Is there a digit in the sentence? 112
Does the sentence refer to a solar calendar? 33
Does the sentence refer to a Gregorian calendar? 24
Does the sentence refer to a lunar calendar? 8
Is there a month name in the sentence? 36
Is there any temporal token that indicates the day part
in this sentence?

33

Is there any temporal token that indicates the relative
time?

28

Is there any season name in the sentence? 7
Is there any weekday name in the sentence? 17

Table 3: Parameters used in the creation of Hengam-
Gold: we provide a list of conditions considered in
the design of the HengamGold evaluation dataset along
with the number of sentences that satisfying each condi-
tion.


