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Abstract

Speakers repeat constructions frequently in
dialogue. Due to their peculiar information-
theoretic properties, repetitions can be thought
of as a strategy for cost-effective communica-
tion. In this study, we focus on the repetition of
lexicalised constructions—i.e., recurring multi-
word units—in English open-domain spoken
dialogues. We hypothesise that speakers use
construction repetition to mitigate information
rate, leading to an overall decrease in utter-
ance information content over the course of a
dialogue. We conduct a quantitative analysis,
measuring the information content of construc-
tions and that of their containing utterances,
estimating information content with an adap-
tive neural language model. We observe that
construction usage lowers the information con-
tent of utterances. This facilitating effect (i) in-
creases throughout dialogues, (ii) is boosted by
repetition, (iii) grows as a function of repetition
frequency and density, and (iv) is stronger for
repetitions of referential constructions.

1 Introduction

The repeated use of particular configurations of
structures and lexemes, constructions, is pervasive
in conversational language use (Tomasello, 2003;
Goldberg, 2006). Such repetition can be under-
stood as a surface level signal of processes of co-
ordination (Sinclair and Fernández, 2021) or ‘in-
terpersonal synergy’ between conversational part-
ners (Fusaroli et al., 2014). Speakers may use rep-
etitions to successfully maintain common ground
with their interlocutors (Brennan and Clark, 1996;
Pickering and Garrod, 2004), because they are
primed by their recent linguistic experience (Bock,
1986), or to avoid a costly on-the-fly search for
alternative phrasings (see, e.g., Kuiper, 1995). At
the same time, repetitions are also advantageous
for comprehenders. Repeating a sequence of words

positively reshapes expectations for those words,
allowing comprehenders to process them more
rapidly (for a review, see Bigand et al., 2005). As
speakers are known to take into consideration both
their own production cost and their addressee’s
processing effort (Clark and Wilkes-Gibbs, 1986;
Clark and Schaefer, 1989; Frank and Goodman,
2012), its two-sided processing advantage, as de-
scribed above, makes construction repetition an
efficient, cost-reducing communication strategy.
In this paper, we investigate whether and how
these information-theoretic properties of repeti-
tions shape patterns of information rate in open-
domain spoken dialogue.

Information theory is the study of the conditions
affecting the transmission and processing of infor-
mation. To the foundations of the field belongs the
noisy-channel coding theorem (Shannon, 1948),
which states that for any given degree of noise
in a communication channel, it is possible to
communicate discrete signals nearly error-free
up to a maximum information rate, the channel
capacity. If speakers use the communication
channel optimally, they might send information at
a rate that is always close to the channel capacity.
This observation is at the basis of the principle
of Entropy Rate Constancy (ERC; Genzel and
Charniak, 2002), which predicts that the informa-
tion rate of speaker’s utterances, measured as the
utterance conditional entropy (i.e., its in-context
Shannon information content or information
density) remains constant throughout discourse.
The ERC predictions have been empirically
confirmed for written language production (Genzel
and Charniak, 2002, 2003; Qian and Jaeger, 2011)
but results on dialogue are mixed (Vega and Ward,
2009; Doyle and Frank, 2015b,a; Xu and Reitter,
2018; Giulianelli et al., 2021), with some studies
suggesting a decreasing information rate over the
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course of dialogues (Vega and Ward, 2009; Giu-
lianelli and Fernández, 2021). We hypothesise that
this decreasing trend in dialogue may be associated
with construction repetition. We conjecture that
speakers use construction repetition as a strategy
for information rate mitigation, by padding
the more information dense parts of their utter-
ances with progressively less information dense
constructions—leading to an overall decrease in
information rate over the course of a dialogue.

We extract occurrences of fully lexicalised con-
structions (see Table 1 for examples) from a cor-
pus of open-domain spoken dialogues and use a
Transformer-based neural language model to es-
timate their contribution to utterance information
content. First, we confirm that constructions in-
deed exhibit lower information content than other
expressions and that information content further de-
creases when constructions are repeated. Then, we
show that the decreasing trend of information con-
tent observed over utterances—which contradicts
the ERC principle—is driven by the increasing mit-
igating effect of construction repetition, measured
as a construction’s (increasingly) negative contri-
bution to the information content of its containing
utterance, what we call its facilitating effect.

In sum, our study provides new empirical evi-
dence that dialogue partners use construction rep-
etition as a strategy for information rate mitiga-
tion, which can explain why the rate of information
transmission in dialogue, in contrast to the con-
stancy predicted by the theory (Genzel and Char-
niak, 2002), is often found to decrease. Our find-
ings inform the development of better dialogue
models. They indicate, as suggested in related
work (e.g., Xi et al., 2021), that while avoiding
degenerate repetitions in utterance generation (Li
et al., 2016; Welleck et al., 2019) is an appropri-
ate strategy, dialogue systems should not suppress
human-like patterns of repetition as these make au-
tomatic systems be perceived as more natural and
more effective in conversational settings.

2 Background

2.1 Constructions

This work focuses on constructions, seen as
particular configurations of structures and lex-
emes in usage-based accounts of natural language
(Tomasello, 2003; Bybee, 2006, 2010; Goldberg,
2006). According to these accounts, models of
language processing must consider not only indi-

SPXV SAXQ S9YG

want to be with him it on the television I bet you can
shit like that for a family yeah I used to
I can be think that’s a go to bed
to see her the orient express and I love
and she just one thing that the window and
I quite like one of my favourites and I think it’s
you don’t like on the television yeah I think so
and you’re like yes yeah I the same people
going to go erm I think is she in
you’re going to a really good lock the door

Table 1: Top 10 constructions from three dialogues of
the Spoken BNC (Love et al., 2017), sorted according to
the PMI between a construction and its dialogue (§6.1).
Referential constructions in italics (§3.1). Headers cor-
respond to the dialogues’ IDs in the corpus.

vidual lexical elements according to their syntactic
roles but also more complex form-function units,
which can break regular phrasal structures—e.g.,
‘I know I’, ‘something out of’. We further focus on
fully lexicalised constructions (sometimes called
formulaic expressions, or multi-word expressions).
Commonly studied types of constructions are id-
ioms (‘break the ice’), collocations (‘pay attention
to’), phrasal verbs (‘make up’), and lexical bundles
(‘a lot of the’). In §3.1, we explain how the notion
of lexicalised construction is operationalised in the
current study; Table 1 shows some examples.

A common property of constructions is their fre-
quent occurrence in natural language. As such, they
possess what, in usage-based accounts, is some-
times referred to as ‘processing advantage’ (Con-
klin and Schmitt, 2012; Carrol and Conklin, 2020).
Evidence for the processing advantage of construc-
tion usage has been found in reading (Arnon and
Snider, 2010; Tremblay et al., 2011), naming la-
tency (Bannard and Matthews, 2008; Janssen and
Barber, 2012), eye-tracking (Underwood et al.,
2004; Siyanova-Chanturia et al., 2011), and electro-
physiology (Tremblay and Baayen, 2010; Siyanova-
Chanturia et al., 2017). In this paper, we model
this processing advantage as reduced information
content and show that it can mitigate information
rate throughout entire dialogues.

2.2 Information Content, Surprisal, and
Processing Effort

Estimates of information content have been shown
to be good predictors of processing effort in per-
ception (Jelinek et al., 1975; Clayards et al., 2008),
reading (Keller, 2004; Demberg and Keller, 2008;
Levy et al., 2009), and sentence interpretation
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(Levy, 2008; Gibson et al., 2013). In these studies,
information content is typically referred to as sur-
prisal, taken as a measure of how unpredictable,
unlikely, or surprising a linguistic signal is in its
context. As speakers take into consideration their
addressee’s processing effort (Clark and Wilkes-
Gibbs, 1986; Clark and Schaefer, 1989), their lin-
guistic choices can often be explained as strate-
gies to manage the fluctuations of information con-
tent over time. Surprisal-based accounts have in-
deed been successful at explaining various aspects
of language production: speakers tend to reduce
the duration of less surprising sounds (Aylett and
Turk, 2004, 2006; Bell et al., 2003; Demberg et al.,
2012); they are more likely to drop sentential ma-
terial within less surprising scenarios (Jaeger and
Levy, 2007; Frank and Jaeger, 2008; Jaeger, 2010);
they tend to overlap at low-surprisal dialogue turn
transitions (Dethlefs et al., 2016); and they pro-
duce sentences at a constant information rate in
texts (Genzel and Charniak, 2002; Qian and Jaeger,
2011; Giulianelli and Fernández, 2021).

To measure information content we use GPT-2
(Radford et al., 2019), a neural language model.
We thereby follow the established approach (e.g.,
Genzel and Charniak, 2002; Keller, 2004; Xu and
Reitter, 2018) of using language models to estimate
information content. Neural models’ estimates in
particular have been shown to be good predictors
of processing effort, measured as reading time,
gaze duration, and N400 response (Monsalve et al.,
2012; Goodkind and Bicknell, 2018; Merkx and
Frank, 2021; Schrimpf et al., 2021). We further
implement a simple neural adaptation mechanism,
performing continuous gradient updates based on
utterance prediction error; this not only leads to
a more psychologically plausible model but also
to the estimation of more human-like expectations
(van Schijndel and Linzen, 2018).

3 Data

We conduct our study on the Spoken British Na-
tional Corpus1 (Love et al., 2017), a dataset of tran-
scribed open-domain spoken dialogues containing
1,251 contemporary British English conversations,
collected in a range of real-life contexts. We focus
on the 622 dialogues that feature only two speakers,
and randomly split them into a 70% finetuning set
(to be used as described in §4) and a 30% analy-
sis set (used in our experiments, as described in

1http://www.natcorp.ox.ac.uk.

§5 and §6). Table 2 shows some statistics of the
dialogues used in this study.

Mean ± Sd Median Min Max

Dialogue length (# utterances) 736 ± 599 541.5 67 4859
Dialogue length (# words) 7753 ± 5596 6102 819 39575
Utterance length (# words) 11 ± 15 6 1 982

Table 2: Two-speaker dialogue statistics, Spoken BNC.

3.1 Extracting Repeated Constructions

We define constructions as multi-word sequences
repeated within a dialogue. To extract construc-
tions from each dialogue, we use the sequential
pattern mining method proposed by Duplessis et al.
(2017a,b, 2021), which treats the extraction task
as an instance of the longest common subsequence
problem (Hirschberg, 1977; Bergroth et al., 2000).2

We modify it to not discard multiple repetitions of
a construction that occur in the same utterance. We
focus on constructions of at least three tokens, ut-
tered at least three times in a dialogue by any of
the dialogue participants. Repeated sequences that
mostly appear as a sub-part of a larger construction
are discarded.3 We also exclude sequences contain-
ing punctuation marks or which consist of more
than 50% filled pauses (e.g., ‘mm’, ‘erm’).4

Applying the described extraction procedure to
the 187 dialogues in the analysis split of the Spo-
ken BNC yields a total of 5,893 unique construc-
tions and 60,494 occurrences. Further statistics
of the extracted constructions are presented in Ta-
ble 3, and Table 1 shows 10 example construc-
tions extracted from three dialogues. For analysis
purposes, we distinguish between referential and
non-referential constructions. We label a construc-
tion as referential if it includes nouns, unless the
nouns are highly generic.5 Referential construc-
tions are mostly topic-determined; examples are

‘playing table tennis’, ‘a woolly jumper’, ‘a room
with a view’. The remaining constructions are la-
belled as non-referential. These mainly include
topic-independent expressions and conversational
markers, such ‘a lot of’, ‘I don’t know’, and ‘yes
of course’. Our dataset consists of 5,291 referen-

2Their code is freely available at https://github.
com/GuillaumeDD/dialign.

3We discard constructions that appear less than twice out-
side of a larger repeated construction in a given dialogue (e.g.,

‘think of it’ vs. ‘think of it like’).
4The full list of filled pauses can be found in Appendix B.
5We define a limited specific vocabulary of generic nouns

(e.g., ‘thing’, ‘fact’, ’time’); full vocabulary in Appendix B.

http://www.natcorp.ox.ac.uk
https://github.com/GuillaumeDD/dialign
https://github.com/GuillaumeDD/dialign
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tial and 55,203 non-referential construction occur-
rences, 1,143 and 4,750 construction forms; see
Table 1 for further examples.

Mean ± Sd Median Max

Construction Length 3.27 ± 0.58 3 7
Construction Frequency 4.29 ± 3.04 3 70
Constructions per Dialogue 325.34 ± 458.64 149 2817

Referential 30.96 ± 39.75 19 346

Non-Referential 296.88 ± 424.17 134.5 2530

Utterance Length 31.19 ± 36.19 21 959

Table 3: Construction statistics for our analysis split of
the Spoken BNC. Constr. Frequency: occurrences of a
given construction in a dialogue. Constr. per Dialogue:
occurrences of all constructions in a dialogue. Utterance
Length: number of words in utterances containing a
construction. The minimum is always 3 by design (§3.1).
The difference between referential and non-referential
is only significant for Constr. per Dialogue.

4 Experimental Setup

In this section, we define our information-theoretic
measures and present the adaptive language model
used to produce information content estimates.6

4.1 Information Content Measures

The information content of a word choice wi is the
negative logarithm of the corresponding word prob-
ability, conditioned on the utterance context u:wi

(i.e., the words that precede wi in utterance u) and
on the local dialogue context l:

H(wi|u:wi , l) = − log2 P (wi|u:wi , l) [1]

We define the local dialogue context l as the 50
tokens that precede the first word in the utterance.7

We use tokens as a unit of context size, rather than
utterances, since they more closely correspond to
the temporal units used in previous work (e.g., Re-
itter et al., 2006), and since the length of utterances
can vary significantly (see Table 2). To measure the
information content of a construction c, we average
over word-level information content values:

H(c;u:c, l) =
1

|c|
∑
wi∈c

H(wi|u:c, l) [2]

6Code and statistical analysis are available at https://
github.com/dmg-illc/uid-dialogue.

7Building on prior work (Reitter et al., 2006) that uses a
window of 15 seconds of spoken dialogue as the locus of local
repetition effects, we compute the average speech rate in the
Spoken BNC (3.16 tokens/second) and multiply it by 15; we
then round up the result (47.4) to 50 tokens.

We use the same averaging strategy to compute the
information content of entire utterances, following
prior work (e.g., Genzel and Charniak, 2002; Xu
and Reitter, 2018):

H(u; l) =
1

|u|
∑
wi∈u

H(wi|u:wi , l) [3]

The above information content estimates target
constructions and entire utterances but they do not
qualify the relationship between the two. We also
measure the information content change (increase
or reduction in information rate) contributed by a
construction c to its containing utterance, which we
call the facilitating effect of a construction. Facili-
tating effect is defined as the logarithm of the ratio
between the information content of a construction
and that of its utterance context:

FE (c;u, l) = log2

1
|u|−|c|

∑
c ̸∋wj∈uH(wj |u:wi , l)

1
|c|

∑
wi∈cH(wi|u:c, l)

[4]

By definition, this quantity is positive when the
construction has lower information content than
its context, and negative when it has higher infor-
mation content. When the utterance consists of a
single construction, facilitating effect is set to 0.

We can expect the values produced by our in-
formation content and facilitating effect measure-
ments (Eq. 2 and 4, respectively) to correlate: it
is more likely for a construction to have a (posi-
tive) facilitating effect if its information content is
low. When a construction’s information content
is high, the information content of its utterance
context must be even greater for facilitating effect
to occur. Nevertheless, perfect correlation does
not follow a priori from the definition of the two
measures; we will show this empirically in §5.4.

4.2 Language Model
To estimate the per-word conditional probabilities
that are necessary to compute information content
(Eq. 1), we use an adaptive language model. The
model is conditioned on local contextual cues via
an attention mechanism (Vaswani et al., 2017) and
it learns continually (see, e.g., Krause et al., 2018)
from exposure to the global dialogue context. We
use GPT-2 (Radford et al., 2019), a pre-trained
autoregressive Transformer language model. We
rely on HuggingFace’s implementation of GPT-2
with default tokenizers and parameters (Wolf et al.,
2020) and finetune the pre-trained model on a 70%

https://github.com/dmg-illc/uid-dialogue
https://github.com/dmg-illc/uid-dialogue
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training split of the Spoken BNC to adapt it to the
idiosyncrasies of spoken dialogic data.8 We refer
to this finetuned version as the frozen model. We
use an attention window of length |u:wi |+ 50, i.e.,
the sum of the utterance length up to word wi and
the size of the local dialogue context.

As a continual learning mechanism, we use back-
propagation on the cross-entropy next word pre-
diction error, a simple yet effective adaptation ap-
proach motivated in §2.2. Following van Schijndel
and Linzen (2018), when estimating information
content for a dialogue, we begin by processing the
first utterance using the frozen language model and
then gradually update the model parameters after
each turn. For these updates to have the desired ef-
fect, the learning rate should be appropriately tuned.
It should be sufficiently high for the language
model to adapt during a single dialogue, yet an ex-
cessively high learning rate can cause the language
model to lose its ability to generalise across dia-
logues. To find the appropriate rate, we randomly
select 18 dialogues from the analysis split of the
Spoken BNC9 and run an 18-fold cross-validation
for a set of six candidate learning rates: 1e − 5,
1e− 4, . . ., 1. We finetune the model on each dia-
logue using one of these learning rates and compute
perplexity reduction (i) on the dialogue itself (adap-
tation) as well as (ii) on the remaining 17 dialogues
(generalisation). We select the learning rate yield-
ing the best adaptation over cross-validation folds
(1e−3), while still improving the model’s generali-
sation ability. See Appendix C.2 for further details.

5 Preliminary Experiments

In this section, we present preliminary experiments
on the information content of utterances and con-
structions, which set the stage for our analysis of
the facilitating effect of construction repetition.

5.1 Utterance Information Content
Our experiments are motivated by the mixed
results on the dynamics of information rate in
dialogue discussed in §1. We thus begin by testing
if the Entropy Rate Constancy (ERC) principle
holds in the Spoken BNC, i.e., whether utterance
information content remains stable over the course
of a dialogue. Following a procedure established
in prior work (Xu and Reitter, 2018), we fit a

8More details on finetuning can be found in Appendix C.1.
9This amounts to ca. 10% of the analysis split. We use

the analysis split because there is no risk of “overfitting” with
respect to our main analyses.

linear mixed effect model with the logarithm of
utterance position and construction length as fixed
effects (we will refer to their coefficients as β),
and include multi-level random effects grouped by
dialogue. For the ERC principle to hold, the posi-
tion of an utterance within a dialogue should have
no effect on its information content. Instead, we
find that utterance information content decreases
significantly over time (β = −0.119, p < 0.005,
95% c.i. −0.130 :−0.108), in line with previous
negative results on open-domain and task-oriented
dialogue (Vega and Ward, 2009; Giulianelli and
Fernández, 2021). The strongest drop occurs in
the first ten dialogue utterances (β=−0.886, p<
0.005, 95% c.i. −0.954:−0.818) but the decrease
is still significant for later utterances (β =
−0.043, p<0.005, 95% c.i. −0.054:−0.032).

5.2 Construction Information Content

Our hypothesis that construction repetition pro-
gressively reduces the information rate of utter-
ances is motivated by the fact that constructions
are known to have a processing advantage (see
§1 and §2.1). This property makes them an effi-
cient production strategy, i.e., one that reduces the
speaker’s and addressee’s collaborative effort. Be-
fore investigating if the hypothesised information
rate mitigation strategy is at play, we test whether
our information theoretic measures and the lan-
guage model used to generate them are able to
capture processing advantage: we expect our frame-
work to yield lower information content estimates
(Eq. 2) for constructions than for other word se-
quences. Indeed, the information content of con-
structions is significantly lower than that of non-
construction sequences (t = −168.82, p < 0.005,
95% c.i. −2.033:−1.987).10 Constructions’ infor-
mation content is on average 2 bits lower than that
of non-constructions. We conclude that our esti-
mates of information content are a sensible model
of the processing advantage of constructions.

5.3 Stable Rate of Construction Usage

In experiment §5.2, we confirmed that construc-
tions have lower information content than other
utterance material. A simple strategy to decrease

10We extract all 3- to 7-grams from our analysis split of the
Spoken BNC, excluding all n-grams that are equal to extracted
constructions. We then sample, for each length n from 3 to 7,
sn non-construction sequence occurrences—where sn is the
number of occurrences of n-tokens-long extracted construc-
tions.. The length distributions should match because length
has an effect on S and FE (see §6.3).
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utterance information content over dialogues (we
do observe this decrease in the Spoken BNC, as de-
scribed in §5.1) could then simply be to increase the
rate of construction usage. To test if this strategy is
at play, we fit a linear mixed effect model with ut-
terance position as the predictor and the proportion
of construction tokens in an utterance as the re-
sponse variable. Over the course of a dialogue, the
increase in the proportion of an utterance’s tokens
which belong to a construction is negligible (β=
0.004, p<0.05, 95% c.i. 0.001 : 0.008). Speakers
produce constructions at a stable rate (see also Fig-
ure 2 in Appendix B), indicating that an alternative
strategy for information rate reduction is at work.

5.4 Information Content vs. Facilitating
Effect

The facilitating effect FE of a construction is a
function of its information content and the infor-
mation content of its containing utterance (Eq. 4).
To ensure that our estimates of FE are not entirely
determined by construction information content
(cf. §4.1), we inspect the relation between the two
measures empirically, by looking at the values
they take in our dataset of constructions. We find
that the Kendall’s rank-correlation between FE
and information content is −0.623 (p < 0.005):
although this is a rather strong negative correlation,
the fact that the score is not closer to −1 indicates
that there are cases where the two values are both
either high or low. We indeed find examples of
constructions with high information content H and
high facilitating effect FE:

A: we’ll level that right press p purchase and
B: right
A: go back to recommended (H=5.30 FE=1.65)

as well cases where information content is low and
facilitating effect is low or negative:

A: right let’s go and have a drink
B yeah
A: let’s go and have a drink (H=2.10 FE=−2.21)

These examples have been selected among
occurrences with H/FE higher or lower than
the mean H/FE ± sd, respectively 3.62± 1.48
and 0.62 ± 0.73. Further analysis shows that
this is not only true for individual instances
but for entire groups of constructions. In par-
ticular, although their information content is
overall higher (t = 13.511, p < 0.005, 95% c.i.
0.371 : 0.497), referential constructions also have
higher facilitating effect than non-referential ones

(t=3.115, p< 0.005, 95% c.i. 0.016 : 0.072). We
conclude that the two measures capture different
aspects of a construction’s information rate profile,
with facilitating effect being sensitive to both
construction and utterance information content.

6 The Facilitating Effect of Construction
Repetition

We now test whether constructions have a positive
facilitating effect, i.e., whether they reduce the in-
formation content of their containing utterances.
We present our main statistical model in §6.1,
describe the effects of FE predictors specific to
unique construction mentions in §6.2, and analyse
differences between types of constructions in §6.3.

6.1 Method

To understand what shapes a construction’s
facilitating effect, we collect several of motivated
features that can be expected to be informative
FE predictors. We fit a linear mixed effect (LME)
model using (i) these features as fixed effects,
(ii) FE as the response variable, (iii) and multi-level
random effects grouped by dialogue and individual
speaker ID. The first predictor is utterance position,
i.e., the index of the utterance within the dialogue,
which allows us to test if FE increases over the
course of a dialogue. We then include predictors
that distinguish different types of repetition. Since
we expect a construction mention to increase
expectation for subsequent occurrences—thus
reshaping their information content—we consider
its repetition index, i.e., how often the construction
has been repeated so far in the dialogue. Expec-
tation is also shaped by intervening material, so
we additionally track distance, the number of
tokens separating a construction mention from
the preceding one. As FE is the interplay between
a construction and its utterance context, it is
important to know whether the utterance context
contains other mentions of the construction. We
use a binary indicator (previous same utterance)
to single out occurrences whose previous mention
is in the same utterance; for these cases, we also
count the number of same-utterance previous men-
tions (repetition index in utterance). To explore
whether FE varies across types of expressions, we
also include a binary feature indicating whether the
construction is referential or non-referential (§3.1).
Finally, we keep track of construction length, the
number of tokens that constitutes a construction,
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Speaker RI RI Utt Dist Turn H(u) H(c) FE(c;u)

A 0 0 - Drink? that was what he did yeah just just to just to know that 5.99 4.73 0.40
I he might not be a complete twat but just a fyi

B 1 0 1586 Especially for my birthday mind you I might not be here for 5.04 4.01 0.53
2 1 14 mine and I went what do you mean you might not be here? 2.70 0.90

Table 4: Repetition chain for the construction ‘might not be’ in dialogue SXWH of the Spoken BNC, annotated with
repetition index (RI), RI in utterance (RI Utt), and distance from previous mention (Dist; in tokens). H(u) is the
utterance information content, H(c) and FE(c;u) are the construction’s information content and facilitating effect.

(a) (b) (c) (d)

Figure 1: The facilitating effect (FE) of constructions vs. non-construction sequences (a) and of first construction
mentions vs. repetitions (b); as well as FE vs. repetition index (c) and FE vs. distance from previous mention
(number of words). The first distance bin is the mean length of a turn containing a construction (Table 3).

and PMI, the pointwise mutual information
between a construction and its dialogue, which
is essentially a measure of the construction’s
frequency in the current dialogue as a function of
its overall frequency in the corpus, indicating the
construction’s degree of interaction-specificity.11

To determine the fixed effects of the final model,
we start with all the predictors listed above (the
non-binary ones are log-transformed) and perform
backward stepwise selection, iteratively removing
the predictor with the lowest significance and keep-
ing only those with p<0.05. All predictors make
it into our final model, the one which best fits the
data according to both the Akaike and the Bayesian
Information Criterion. The full specification of the
best model, with model fit statistics as well as fixed
and random effect coefficients, are in Appendix D.
The next two sections present our main findings;
we report fixed effect coefficients (β), p-values (p),
and 95% confidence intervals (c.i.).

6.2 Construction Mentions

Our first observation is that construction usage re-
duces utterance information content. More pre-
cisely, we find that facilitating effect is higher
for constructions than for non-construction se-

11The probabilities for the PMI calculation are obtained
using maximum likelihood estimation over our analysis split
of the Spoken BNC.

quences (t = 118.79, p < 0.005, 95% c.i. 0.536 :
0.554). Constructions have on average 62% lower
information content than their utterance context;
the average percentage drops to 7% for non-
construction sequences.12 Figure 1a shows the two
distributions. We also observe a positive effect of
utterance position on FE (β = 0.046, p < 0.005,
95% c.i. 0.026 : 0.06); that is, the facilitating ef-
fect of constructions increases over the course
of dialogues. While the proportion of construction
tokens remains stable (§5.3), their mitigating con-
tribution to utterance information content increases
throughout dialogues—perhaps since speakers are
more likely to repeat established constructions
as the dialogue develops. We indeed find that
repeated constructions have stronger facilitat-
ing effect: there is a significant difference be-
tween the FE of first mentions and repetitions (t=
−38.904, p<0.005, 95% c.i. −0.265:−0.239), as
shown in Figure 1b. The information content of
repetitions is on average 68% lower than that of
their utterance context; for first mentions, it is on
average 42% lower.

Having observed that the mitigating contribution
of constructions to utterance information content in-
deed increases with construction repetition, we now
look at how the FE of repetitions varies as a func-

12These are the same sampled non-construction sequences
as in §5.2. Their average FE is 0.07± 0.80.
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tion of their distribution across time. On the one
hand, we find that facilitating effect is cumulative:
repeating a construction reduces utterance informa-
tion content more strongly as more mentions of the
construction accumulate in the dialogue (Figure 1c).
The effect of repetition index (i.e., how often the
construction has been repeated so far in the dia-
logue) is positive on FE (β = 0.079, p < 0.005,
95% c.i. 0.063:0.094). On the other hand, the dis-
tance of a repetition from the previous mention has
a negative effect on FE (β = −0.311, p < 0.005,
95% c.i. −0.328:−0.293). That is, facilitating ef-
fect decays as a function of the distance between
subsequent mentions. As shown in Figure 1d, this
is a fast decay effect: the most substantial drop
occurs for low distance values. The large magni-
tude of this coefficient indicates that recency is an
important factor for constructions to have a strong
facilitating effect. Indeed, almost one third (31.8%)
of all repetitions produced by speakers are not more
than 200 tokens apart from their previous mention.
Further results showing strong cumulativity effects
for self-repetitions within the same utterance can
be found in Appendix E.1.

6.3 Types of Construction

In this section, we analyse factors shaping the fa-
cilitating effect of construction forms, rather than
individual mentions. We focus on the length of a
construction and on whether it is referential.

Construction length has a positive effect on FE
(β = 0.098, p < 0.005, 95% c.i. 0.087 : 0.119):
longer constructions have stronger facilitating
effect. Table 4 shows a full repetition chain for a
construction of length 3; Table 5 (Appendix B) for
one of length 6. Non-construction sequences dis-
play an opposite, weaker trend (β =−0.019, p <
0.05, 95% c.i. −0.032:−0.005), as measured with
a linear model. A possible explanation for the posi-
tive trend of constructions is related to production
cost. Longer constructions are more costly for the
speaker, so for them to still be an efficient produc-
tion choice, their facilitating effect must be higher.

Finally, we observe that referential con-
structions have a stronger facilitating effect
than non-referential ones. Our LME model
yields a positive effect for referentiality on FE
(β=0.124, p<0.005, 95% c.i 0.099 : 0.149) and
we find a significant difference between the FE of
the two types (t=3.115, p<0.005, 95% c.i. 0.072:
0.016). Looking in more detail, first mentions of

referential constructions have higher information
content and lower FE than first mentions of non-
referential ones (H: t=15.435, p<0.005, 95% c.i.
1.115 : 0.864; FE: t=−9.315, p<0.005, 95% c.i.
−0.246:−0.161), perhaps since words in referen-
tial sequences tend to be less frequent and more
context-dependent. However, when repeated, their
information content drops more substantially, re-
producing inverse frequency effects attested in hu-
mans for syntactic repetitions (Bock, 1986; Scheep-
ers, 2003). As a result, their FE exceeds that of non-
referential constructions (FE: t=8.818, p<0.005,
95% c.i. 0.117 : 0.183), with the information con-
tent of a repeated reference being 81% lower than
that of its utterance context. Overall, these findings
indicate that although referential constructions are
less frequent than non-referential ones (23.3% vs.
76.7%; see §3.1), their repetition is a particularly
effective strategy of information rate mitigation.

7 Discussion and Conclusions

Construction repetition is a pervasive phenomenon
in dialogue; their frequent occurrence gives con-
structions a processing advantage (Conklin and
Schmitt, 2012). In this paper, we show that the
processing advantage of constructions can be natu-
rally modelled as reduced information content and
propose that speakers’ production of constructions
can be seen as a strategy for information rate mit-
igation. This strategy can explain why utterance
information content is often found to decrease over
the course of dialogues (Vega and Ward, 2009; Giu-
lianelli and Fernández, 2021), in contrast with the
predictions of theories of optimal use of the com-
munication channel (Genzel and Charniak, 2002).

We observe that, as predicted, construction
usage in English open-domain spoken dialogues
mitigates the information rate of utterances.
Furthermore, while constructions are produced at
a stable rate throughout dialogues, their facilitating
effect—our proposed measure of reduction in
utterance information content—increases over
time. We find that this increment is led by
construction repetition, with facilitating effect
being positively affected by repetition frequency,
density, and by the contents of a construction.
Repetitions of referential constructions reduce
utterance information content more aggressively,
arguably making them a more cost-reducing
alternative to the shortening strategy observed
in chains of referring expressions (Krauss and
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Weinheimer, 1964, 1967), which instead tends to
preserve rate constancy (Giulianelli et al., 2021).13

Relation to cognitive effort We consider rep-
etitions as a way for speakers to make dialogic
interaction less cognitively demanding both on the
production and on the comprehension side. This
is not at odds with the idea that repetitions are
driven by interpersonal synergies (Fusaroli et al.,
2014) and coordination (Sinclair and Fernández,
2021). We think that the operationalisation of these
higher level processes can be described by means of
lower level, efficiency-oriented mechanisms, with
synergy and coordination both corresponding to
reduced collaborative effort. Although informa-
tion content estimates from neural language models
have been shown to correlate with human process-
ing effort (cf. §2.2), we cannot claim that our work
directly models human cognitive processes as we
lack the relevant human data to measure such cor-
relation for the corpus at hand.

Adaptive language model Our decision to use
an adaptive neural language model affects infor-
mation content estimates in two main ways. On
the one hand, due to their high frequency, construc-
tions are likely to be assigned higher probabilities
by this model, and therefore lower information con-
tent. We stress that we do not present construc-
tions’ lower information content as a novel result,
nor do we make any claims based on this result.
As explained in §5.2, this is a precondition for
our experiments on the facilitating effect of con-
structions, which is not determined exclusively by
their information content (as empirically shown in
§5.4) but rather measures the effect of construction
usage on the information content of entire utter-
ances. On the other hand, because our model is
adaptive, the probability of constructions is likely
to increase as a result of their appearance in the
dialogue history. Adaptation, however, also con-
tributes to lower utterance information content over-
all through the exploitation of topical and stylistic
cues, as demonstrated by the lower perplexity of
the adaptive model on the entire target dialogue as
well as on other dialogues from the same dataset
(see §4.2 and Appendix C.2). In conclusion, while
our adaptive language model assigns higher proba-
bilities to frequently repeated tokens—as expected
from a psychologically plausible model of utter-

13Expression shortening is more efficient, however, in terms
of articulatory cost.

ance processing—it is not responsible for the dis-
covered patterns of construction facilitating effect.
In future work, the model can be improved, e.g.,
by conditioning on the linguistic experience of in-
dividual speakers.

Types of dialogue To consolidate our findings,
construction repetition patterns should also be stud-
ied in dialogues of different genres and on datasets
where utterance information content was not found
to decrease. We have chosen the Spoken BNC
for our study as it contains dialogues from a large
variety of real-life contexts, which makes it a rep-
resentative dataset of open-domain dialogue. In
task-oriented dialogue, we expect constructions to
consist of a more limited, task-specific vocabulary,
resulting in longer chains of repetition and poten-
tially more frequent referential construction usage.
These peculiarities of task-oriented dialogue may
influence the strength of the facilitating effect (as
we have seen, facilitating effect is affected by both
frequency and referentiality) but we expect our
main results to still hold, as they are generally re-
lated to the processing advantage of constructions.

Relevance for dialogue generation models Be-
sides contributing new empirical evidence on con-
struction usage in dialogue, our findings inform
the development of more naturalistic utterance gen-
eration models. They suggest that models should
be continually updated for their probabilities to
better reflect human expectations; that attention
mechanisms targeting contexts of different sizes
(local vs. global) may have a significant impact on
the naturalness of generated utterances; and that
while anomalous repetitions (e.g., generation loops)
should be prevented (Li et al., 2016; Holtzman
et al., 2019), it is important to ensure that natural
sounding repetitions are not suppressed. We expect
dialogue systems that are able to produce human-
like patterns of repetitions to be perceived as more
natural overall—with users having the feeling that
common ground is successfully maintained (Pick-
ering and Garrod, 2004)—and to lead to more ef-
fective communication (Reitter and Moore, 2014).
In our view, such human-like patterns can be repro-
duced by steering generation models towards the
trends of information rate observed in humans.
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Appendix

A Possible Criteria to Distinguish
Constructions

Lexicalised constructions can be classified accord-
ing to multiple criteria (Titone and Connine, 1994;

Wray, 2002; Columbus, 2013), including those
listed below.

• Compositionality This criterion is typically
used to separate idioms from other formulaic
expressions, although it is sometimes referred
to as transparency to underline its graded,
rather than binary, nature. There is no evi-
dence, however, that the processing advantage
of idioms differs from that of compositional
phrases (Tabossi et al., 2009; Jolsvai et al.,
2013; Carrol and Conklin, 2020). Therefore
we ignore this criterion in the current study.

• Literal plausibility This criterion is typically
used to discriminate among different types
of idioms (Titone and Connine, 1994; Titone
and Libben, 2014)—as compositional phrases
are literally plausible by definition. Because
we ignore distinctions made on the basis of
compositionality, we do not use this criterion.

• Meaningfulness Meaningful expressions are
idioms and compositional phrases (e.g. ‘on
my mind’, ‘had a dream’) whereas sentence
fragments that break constituency boundaries
(e.g., ‘of a heavy’, ’by the postal’) are consid-
ered less meaningful (as measured in norming
studies, e.g., by Jolsvai et al., 2013). There
is some evidence that the meaningfulness of
multi-word expressions correlates with their
processing advantage even more than their
frequency (Jolsvai et al., 2013); yet expres-
sions are particularly frequent, they present
processing advantages even if they break reg-
ular phrasal structures (Bybee and Scheibman,
1999; Tremblay et al., 2011). Moreover, ut-
terances that break regular constituency rules
are particularly frequent in spoken dialogue
data (e.g., ‘if you could search for job and
that’s not’, ‘you don’t wanna damage your
relationship with’). For these reasons, we do
not exclude constructions that span multiple
constituents from our analysis.

• Schematicity This criterion distinguishes ex-
pressions where all the lexical elements are
fixed from expressions “with slots” that can be
filled by varying lexical elements.In this study,
we focus on fully lexicalised constructions.

• Familiarity This is a subjective criterion that
strongly correlates with objective frequency

https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6
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(Carrol and Conklin, 2020). Human experi-
ments would be required to obtain familiarity
norms for our target data, and the resulting
norms would only be an approximation of the
familiarity judgements of the true speakers we
analyse the language of. Therefore, we ignore
this criterion in the current study.

• Communicative function Formulaic expres-
sions can fulfil a variety of discourse and
communicative functions. Biber et al. (2004),
e.g., distinguish between stance expressions
(attitude, certainty with respect to a proposi-
tion), discourse organisers (connecting prior
and forthcoming discourse), and referential
expressions; and for each of these three pri-
mary discourse functions, more specific sub-
categories are defined. This type of classi-
fication is typically done a posteriori—i.e.,
after a manual analysis of the expressions re-
trieved from a corpus according to other cri-
teria (Biber and Barbieri, 2007). In the BNC,
for example, we find epistemic lexical bun-
dles (‘I don’t know’, ‘I don’t think’), desire
bundles (‘do you want to’, ’I don’t want to’),
obligation/directive bundles (‘you don’t have
to’), and intention/prediction bundles (‘I’m
going to’, ‘it’s gonna be’). We do not use this
criterion to avoid an a priori selection of the
constructions.

B Extraction of Repeated Constructions

We define a limited specific vocabulary of generic
nouns that should not be considered referential.
The vocabulary includes: bit, bunch, day, days, fact,
god, idea, ideas, kind, kinds, loads, lot, lots, mid-
dle, ones, part, problem, problems, reason, reasons,
rest, side, sort, sorts, stuff, thanks, thing, things,
time, times, way, ways, week, weeks, year, years.
We also find all the filled pauses and exclude word
sequences that consist for more than 50% of filled
pauses. Filled pauses in the Spoken BNC are tran-
scribed as: huh, uh, erm, hm, mm, er.

Figure 2 shows the proportion of tokens in an ut-
terance belonging to constructions (referential and
non-referential) and to non-construction sequences.
Table 5 shows a whole construction chain (from
the first mention to the last repetition) for a con-
struction of length 6.

Figure 2: Proportion of tokens in an utterance that be-
long to referential constructions, non-referential con-
structions, and to non-construction sequences. The x
axis shows percentages indicating utterance positions in
the dialogue relative to the dialogue length.

C Language Model

C.1 Finetuning

We finetune the ‘small’ variant of GPT-2 (Radford
et al., 2019) and DialoGPT (Zhang et al., 2020)
on our finetuning split of the Spoken BNC (see
Section 3) using HuggingFace’s implementation of
the models with default tokenizers and parameters
(Wolf et al., 2020). Dialogue turns are simply con-
catenated; we have experimented with labelling the
dialogue turns (i.e., A: utterance 1, B: utterance 2
and found that this leads to higher perplexity. The
finetuning results for both models are presented in
Table 6. We finetune the models and measure their
perplexity using Huggingface’s finetuning script.
We use early stopping over 5 epochs.14 Sequence
length and batch size vary together because they to-
gether determine the amount of memory required;
more expensive combinations (e.g., 256 tokens
with batch size 16) require an exceedingly high
amount of GPU memory. Reducing the maximum
sequence length has limited impact: 99.90% of
dialogue turns have at most 128 words.

DialoGPT starts from extremely high perplexity
values but catches up quickly with finetuning. GPT-
2 starts from much lower perplexity values and
reaches virtually the same perplexity as DialoGPT
after finetuning. For the pre-trained DialoGPT per-

14The number of epochs (5) has been selected in preliminary
experiments together with the learning rate (1e− 4). In these
experiments—which we ran for 40 epochs—we noticed that
the 1e−4 learning rate offers the best tradeoff of training time
and perplexity out of four possible values: 1e−2, 1e−3, 1e−4,
1e − 5. We obtained insignificantly lower perplexity values
with a learning rate of 1e−5, with significantly longer training
time: 20 epochs for GPT-2 and 28 epochs for DialoGPT.
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Speaker RI RI Utt Dist Turn H(u) H(c) FE(c, u)

A 0 0 - [...] I think that everyone should have the same opportunities
and I don’t think you should be proud or ashamed of what 4.24 1.90 1.21
your you know what your situation is whether you what your
what your race is whether you’re a woman or a man whether
you live from this pl whether you’re in this place [...]

A 1 0 80 I well I th I don’t think it should I don’t think you should be 3.40 1.73 1.40

A 2 0 19 Well yes perhaps but I don’t think you should be like um 3.95 1.06 2.25
embarrassed about it or I think I think you should just sort of

Table 5: Repetition chain for the construction ‘I don’t think you should be’ in dialogue S2AX of the Spoken BNC,
annotated with repetition index (RI), repetition index in utterance (RI Utt), and distance from previous mention
(Dist; number of tokens). H(u) is the utterance information content, H(c) and FE(c, u) are the construction’s
information content and facilitating effect.

plexity is extremely high, and the perplexity trend
against maximum sequence length is surprisingly
upward. These two behaviours indicate that the pre-
trained DialoGPT is less accustomed than GPT-2 to
the characteristics of our dialogue data. DialoGPT
is trained on written online group conversations,
while we use a corpus of transcribed spoken conver-
sations between two speakers. In contrast, GPT-2
has been exposed to the genre of fiction, which con-
tains scripted dialogues, and thus to a sufficiently
similar language use. We select GPT-2 finetuned
with a maximum sequence length of 128 and 512
as our best two models; these two models (which
we now refer to as frozen) are used for the adaptive
learning rate selection (Section C.2).

C.2 Learning Rate Selection

To find the appropriate learning rate for on-the-fly
adaptation (see Section 4.2), we randomly select
18 dialogues D from the analysis split of the Spo-
ken BNC and run an 18-fold cross-validation for a
set of six candidate learning rates: 1e− 5, 1e− 4,
. . ., 1. We finetune the model on each dialogue
using one of these learning rate values, and com-
pute perplexity change 1) on the dialogue itself (to
measure adaptation) as well as 2) on the remain-
ing 17 dialogues (to measure generalisation). We
set the Transformer’s context window to 50 to re-
produce the experimental conditions presented in
Section 4.1.

More precisely, for each dialogue d ∈ D, we
calculate the perplexity of our two frozen mod-
els (Section C.1) on d and D \ {d} (which we
refer to as pplbefore(d) and pplbefore(D), respec-
tively). Then, we finetune the models on d us-
ing the six candidate learning rates, and measure
again the perplexity over d and D \ {d} (respec-

tively, pplafter(d) and pplafter(D)). The change
in performance is evaluated according to two met-
rics: pplafter(d)−pplbefore(d)

pplbefore(d)
measures the degree

to which the model has successfully adapted to
the target dialogue; pplafter(D)−pplbefore(D)

pplbefore(D) mea-
sures whether finetuning on the target dialogue has
caused any loss of generalisation.

The learning rate selection results are presented
in Figure 3. We select 1e− 3 as the best learning
rate and pick the model finetuned with a maximum
sequence length of 512 as our best model. The
difference in perplexity reduction (both adaptation
and generalisation) is minimal with respect to the
model finetuned with a maximum sequence length
of 128, but since the analysis split of the Spoken
BNC contains turns longer than 128 tokens, we
select the 512 version. Similarly to van Schijndel
and Linzen (2018), we find that finetuning on a
dialogue does not cause a loss in generalisation
but instead helps the model generalise to other dia-
logues. Unlike (2018), who used LSTM language
models, we find that learning rates larger than 1e−1
cause backpropagation to overshoot, even within a
single dialogue. In Figure 3, the bars for 1e−1 and
1 are not plotted because the corresponding data
contains infinite perplexity values (due to numeri-
cal overflow). The selected learning rate, 1e− 3, is
a relatively low learning rate for on-the-fly adapta-
tion but it is still higher than the best learning rate
for the entire dataset by a factor of 10.

D Linear Mixed Effect Models

As explained in §6.1 of the main paper, we fit a
linear mixed effect model using facilitating effect
as the response variable and including multilevel
random effects grouped by dialogues and individ-



680

Model Learning rate Max sequence length Batch size Best epoch Perplexity finetuned Perplexity pre-trained

DialoGPT 0.0001 128 16 3 23.21 7091.38
DialoGPT 0.0001 256 8 4 22.26 12886.92
DialoGPT 0.0001 512 4 4 21.73 21408.32
GPT-2 0.0001 128 16 4 23.32 173.76
GPT-2 0.0001 256 8 3 22.21 159.23
GPT-2 0.0001 512 4 3 21.55 149.82

Table 6: Finetuning results for GPT-2 and DialoGPT on our finetuning split of the Spoken BNC.
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Figure 3: The adaptation and generalisation perfor-
mance (defined in Section C.2) with varying learning
rate.

ual speakers.15. The fixed effects of the model,
resulting from a backward stepwise selection proce-
dure, are presented in §6.1. Non-binary predictors
are log-transformed, mean-centered, and scaled by
2 sd. The final model is summarised in Listing 1
and its coefficients are visualised in Figure 4. We
rely on the lme4 and lmerTest R packages for
this analysis.

E Further Results

E.1 Same-Utterance Self-Repetitions

We investigate the interaction between cumulativ-
ity and recency (see §6.2) by focusing on densely
clustered repetitions, produced by a speaker within
a single utterance (the median distance between
repetitions in the same utterance is 8 words; across
turns it is 370.5 words). Table 4 shows an exam-
ple of same-utterance repetition. Repeating a con-
struction when it has already been mentioned in
the current utterance limits its facilitating effect

15We also try grouping observations only by dialogue and
only by individual speakers. The amount of variance explained
(but unaccounted for by the fixed effects) decreases, so we
keep the two-level random effects.

(β = −0.099, p < 0.05, 95% c.i. -0.184:-0.013):
if a portion of the utterance already consists of a
construction, utterance information content will
already be reduced, which in turn reduces the po-
tential for the facilitating effect of repetitions. Nev-
ertheless, we find strong cumulativity effects for
self-repetitions within the same utterance: the
repetition index within the current utterance of a
construction mention (i.e., how often the construc-
tion has been repeated so far in the utterance) has a
positive effect on FE (β = 0.178, p < 0.005, 95%
c.i. 0.130:0.226); see Figure 5a. In sum, same-
utterance self-repetitions, especially those involv-
ing three or more mentions in a single utterance,
can have a strong reduction effect on utterance
information content. Although this may seem a
simple yet very effective strategy for information
rate mitigation, it is unlikely to be very effective
in terms of the amount of information exchanged.
Indeed, speakers do not use this strategy often in
the Spoken BNC: 6.82% of the total construction
occurrences have at least one previous mention in
the same utterance.

E.2 Interaction-Specificity

To distinguish interaction-specific constructions—
those repeated particularly often in certain
dialogues—from interaction-agnostic ones, we
measure the association strength between a con-
struction c and a dialogue d as the pointwise mutual
information (PMI) between the two:

PMI(c, d) = log2
P (c|d)
P (c)

[5]

This quantifies how unusually frequent a construc-
tion is in a given dialogue, compared to the rest
of the corpus. For example, for a construction
to obtain a PMI score of 1, its probability given
the dialogue P (c|d) must be twice as high as its
prior probability P (c). Low PMI scores (espe-
cially below 1) characterise interaction-agnostic
constructions, whereas higher PMI scores indicate
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Listing 1: Linear mixed effect model for Facilitating Effect

MODEL INFO:
Observations: 46399
Dependent Variable: Facilitating Effect
Type: Mixed effects linear regression

MODEL FIT:
AIC = 99197.283, BIC = 99302.224
Pseudo-R^2 (fixed effects) = 0.084
Pseudo-R^2 (total) = 0.111

FIXED EFFECTS:
-----------------------------------------------------------------------------------

Est. 2.5% 97.5% t val. d.f. p
--------------------------- ------- -------- -------- --------- ----------- -------
(Intercept) 0.704 0.683 0.725 65.527 185.698 0.000
log Utterance Position 0.046 0.026 0.066 4.556 9274.269 0.000
log Construction Length 0.098 0.084 0.111 14.396 46372.022 0.000
log Repetition Index 0.079 0.063 0.094 10.096 45082.205 0.000
log Distance -0.311 -0.328 -0.293 -34.571 46269.156 0.000
Previous Same Utterance -0.099 -0.184 -0.013 -2.262 46063.723 0.024
log Rep. Index in Utterance 0.178 0.130 0.226 7.243 45765.367 0.000
PMI -0.139 -0.154 -0.124 -18.225 45172.205 0.000
Referential 0.124 0.099 0.149 9.887 46214.616 0.000
-----------------------------------------------------------------------------------

p values calculated using Satterthwaite d.f.

RANDOM EFFECTS:
------------------------------------------------
Group Parameter Std. Dev.
---------------------- ------------- -----------
Speaker:‘Dialogue ID (Intercept) 0.082

Dialogue ID (Intercept) 0.090
Residual 0.701

------------------------------------------------

Grouping variables:
-----------------------------------------
Group # groups ICC
---------------------- ---------- -------
Speaker:‘Dialogue ID 368 0.013

Dialogue ID 185 0.016
-----------------------------------------

Continuous predictors are mean-centered and scaled by 2 s.d.
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that constructions are specific to a given dialogue.
The probabilities in Eq. 5 are obtained using maxi-
mum likelihood estimation over the analysis split
of the Spoken BNC. PMI scores have a negative
effect on FE (β = −0.139, p < 0.005, 95% c.i.
-0.154:-0.124), indicating that interaction-agnostic
constructions have a stronger facilitating effect than
interaction-specific ones. Figure 5b shows the FE
distributions for the most extreme cases: construc-
tions with a PMI lower than 1 (‘agnostic’) and
constructions that have been repeated in only one
dialogue (‘specific’).

Figure 4: Significant predictors of facilitating effect.
Mixed effects linear regression, continuous predictors
are mean-centred and scaled by 2 standard deviations.

(a) (b)

Figure 5: Facilitating effect against repetition index
within the current utterance (a) and facilitating effect
of interaction-agnostic constructions (PMI(c, d) < 1)
vs. interaction-specific constructions (PMI(c, d) =
maxc′,d′ PMI(c′, d′)) (b).

F Computing Infrastructure and Budget

Our experiments were carried out using a single
GPU on a computer cluster with Debian Linux OS.

The GPU nodes on the cluster are GPU GeForce
1001 1080Ti, 11GB GDDR5X, with NVIDIA
driver version 418.56 and CUDA version 10.1. The
total computational budget required to finetune the
language model amounts to 45 minutes; obtaining
surprisal estimates requires 4 hours, and selecting
the adaptation learning rate requires 9 hours.


