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Abstract

Automated reporting has the potential to assist
radiologists with the time-consuming proce-
dure of generating text radiology reports. Most
existing approaches generate the report directly
from the radiology image, however we observe
that the resulting reports exhibit realistic style
but lack clinical accuracy. Therefore, we pro-
pose a two-step pipeline that subdivides the
problem into factual triple extraction followed
by free-text report generation. The first step
comprises supervised extraction of clinically
relevant structured information from the image,
expressed as triples of the form (entity1, rela-
tion, entity2). In the second step, these triples
are input to condition the generation of the radi-
ology report. In particular, we focus our work
on Chest X-Ray (CXR) radiology report gen-
eration. The proposed framework shows state-
of-the-art results on the MIMIC-CXR dataset
according to most of the standard text genera-
tion metrics that we employ (BLEU, METEOR,
ROUGE) and to clinical accuracy metrics (re-
call, precision and F1 assessed using the CheX-
pert labeler), also giving a 23% reduction in
the total number of errors and a 29% reduction
in critical clinical errors as assessed by expert
human evaluation. In future, this solution can
easily integrate more advanced model architec-
tures – to both improve the triple extraction and
the report generation – and can be applied to
other complex image captioning tasks, such as
those found in the medical domain.

1 Introduction

Chest X-Ray (CXR) studies are among the most
frequent radiology studies undertaken in health-
care (NHS England and NHS improvement, 2022).
Each CXR is accompanied by a text report writ-
ten by a radiologist or trained radiographer which
describes the findings within the study. Unfortu-
nately, CXR reports are subject to delays, often

due to institutional factors, which can result in ad-
verse patient outcomes (Care Quality Commission,
2018). A possible solution to improve the radiology
workflow, and to facilitate timely delivery of accu-
rate reports, is to automate the generation of text
reports. However, generating clinically accurate
radiology reports is a challenging task.

The task of generating a textual description for
an image is referred to as image captioning, and re-
cent methods have often adopted encoder-decoder
architectures, in which the image embeddings are
computed using Convolutional Neural Networks
(CNNs) (e.g., He et al., 2016) and the text is gen-
erated using Recurrent Neural Networks (RNNs)
(e.g., Hochreiter and Schmidhuber, 1997 and Cho
et al., 2014), or, more recently, using Transformer-
based architectures (Vaswani et al., 2017). Such
architectures have been proposed to perform au-
tomated report generation in the medical domain,
with some custom modules introduced for this spe-
cific task. For instance, some recent works in CXR
report generation have introduced relational mem-
ory modules (Chen et al., 2020) to allow the model
to memorise information from previous generation,
and cross-modal memory modules (Chen et al.,
2021; Qin and Song, 2022) to encourage alignment
between visual and textual information. Another
line of work has explored ways to inject external
knowledge into the model (Liu et al., 2021b; Yang
et al., 2022), based on pre-constructed knowledge
graphs or by retrieving other similar reports within
the dataset. The above methods all attempt to gener-
ate the radiology report directly from the image, us-
ing only supervision with a standard cross-entropy
loss of the generated text compared to the target
text, which will reward verbatim replication of the
target text (style), whilst not emphasising accurate
reporting of the clinically important findings (con-
tent). This concern was partially treated by intro-
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Step 1
Triples Extractor 

Triples
low MODIFY lung

volume MODIFY lung
opacity LOCATED_AT right
opacity LOCATED_AT base

 pneumothorax STATUS absent 
 effusion STATUS absent

effusion LOCATED_AT pleural 

Step 2
Report Generator 

Radiology Report

There extremely low lung volumes.
There is right basilar opacity. There is
no pneumothorax. There is no large

pleural effusion. Indication Field
 

Dizziness, hypoxia 

Figure 1: Illustration of the proposed two-step pipeline. Step 1 – a triples extractor is implemented to extract a set
of triples associated with each CXR scan. Step 2 – a report generator is implemented to generate a radiology report,
based on the extracted triples. The CXR image and report shown in this example are both taken from the IU-Xray
dataset (Demner-Fushman et al., 2016), while the triples are extracted as described in Section 2.1.

ducing classification of the the findings and patholo-
gies that are present in the image (Alfarghaly et al.,
2021), as an auxiliary task. However, in this ap-
proach there is no direct link between the classi-
fication and reporting outputs, and the transfer of
information relies on multi-tasking functioning ef-
fectively. Further, this approach does not consider
the relations between different classes. Overall,
there is a limited effect on the generation process.

We focus our work on improving the clinical util-
ity of the generated reports, by introducing an inter-
mediate step to the generation process. It consists
of extracting, from a CXR image, factual informa-
tion in a structured format, expressed in the form
of triples (entity1, relation, entity2). We further
categorise the entities and relations according to a
clinical schema, in order to remove heterogeneity
of expression. This is particularly relevant in the
field of radiology, where radiologists can express
similar clinical concepts using different phrases i.e.
the following phrases all relate to the same clinical
concept of edema: "pulmonary oedema", "cardiac
decompensation", "fluid overload" and "evidence
of acute heart failure". We adopt RadGraph (Jain
et al., 2021) to extract four predefined clinically rel-
evant relations (Suggestive of, Located at, Modify
and Status), and we map medical entities to med-
ical concepts (e.g., “fluid overload” to «edema»)
according to a scheme devised by a junior physi-
cian. Our two-step pipeline is shown in Figure
1, where the first step consists of the triples ex-
traction process which aims at extracting factual
information from a CXR image, and the second
step corresponds to report generation which uses
the image as input alongside (i.e. conditioned by)
the extracted triples.

To the best of our knowledge, only Li et al.
(2022) have very recently proposed a similar ap-
proach for automatic generation of ophthalmic re-
ports. In their work, they show an improvement by

extracting, from an ophthalmic image, entities and
relations (they consider the extracted triples to rep-
resent a latent clinical graph), and injecting them
to the text generation process. This varies from our
work in three aspects: the definition and generation
of triples, the model architecture, and the medical
domain application (Ophthalmology vs. CXR). In
terms of triples annotation, their approach is granu-
lar, using the original linguistic terms and relations,
without further categorisation and processing: the
entities are represented by single words as written
in the source text, and they consider the verbs ex-
tracted with a dependency parser as the relations.
Thus, our annotation pipeline generates a much
lower number of entities, relation and triples, stan-
dardising and simplifying the triples. Moreover, in
terms of model architecture, whilst they train the
model end-to-end using a triples restoration loss,
we keep the two steps independent from one other,
and frame each step as a sequence-to-sequence
task.

In summary, our contributions are to:

1. propose using a clinically informed schema to
express the information in CXR radiology re-
ports in structured form, using triples (entity1,
relation, entity2);

2. propose a two-step pipeline for CXR radiol-
ogy report generation: Triples Extractor fol-
lowed by Report Generator;

3. conduct extensive experiments on the MIMIC-
CXR dataset (Johnson et al., 2019a,b; Gold-
berger et al., 2000), showing state-of-the-art
results for NLG and clinical accuracy metrics.

2 Methods

In this section we describe how the ground truth
triples were extracted from the Finding section of
each original report. Further, we introduce the
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two-step pipeline, describing in detail the model
architectures. In Figure 1, we show a high level
design of the two-step pipeline.

2.1 Ground Truth Triples

We hereby present the steps we adopted to extract
the ground truth triples from the Finding sections
of the radiology reports; these triples are used to
supervise the first step of the proposed two-step
pipeline. The triples are represented as (e1, r, e2),
where e1 and e2 are two entities linked together by
a relationship r.

The overall annotation pipeline is shown in Fig-
ure 3. We use two publicly available tools to anno-
tate the ground truth triples, which are then refined
with the help of a junior physician with 2 years of
clinical experience. We consider only sentences
that can be extracted from a single CXR image,
therefore we filter out mentions of comparisons
with previous scans, since they are not always avail-
able in the MIMIC-CXR dataset.

RadGraph Entity & Relation Extraction We first
apply RadGraph (Jain et al., 2021), which extracts
entities and relations from a radiology report. Rad-
Graph classifies the extracted entities as Anatomy
corresponding to anatomical concepts (e.g., heart
or lung), or Observation referring to words associ-
ated with visual features, identifiable pathophysi-
ologic processes, or diagnostic disease classifica-
tions. The Observation entities are further cate-
gorised as Definitely Present, Uncertain, and Defi-
nitely Absent. The schema proposed by RadGraph
includes three different relations: Suggestive Of –
which links two Observation entities, where the sec-
ond entity is implied based on the first entity (e.g.,
«opacity → SUGGESTIVE_OF → pneumonia»);
Located At – which indicates where an Observation
entity is located (e.g., «fracture → LOCATED_AT
→ rib»); and Modify – indicating that the first en-
tity modifies the scope of, or quantifies the degree
of, the second entity (e.g., «dense → MODIFY →
consolidation»). We use the pre-trained model1 to
extract the entities and relations from the Finding
section of MIMIC-CXR radiology reports. Given
that we aim to represent each report as a set of
triples, we introduce another relation named Status,
to include the three categorisations that RadGraph
associates to each Observation entity: Definitely
Present becomes STATUS present, Uncertain be-

1https://physionet.org/content/
radgraph/1.0.0/

comes STATUS uncertain, and Definitely Absent
becomes STATUS absent.

ScispaCy Entity Extraction The RadGraph
schema was designed to prefer granular entities
(mostly represented by single words), linked to one
other with many relations, in order to have dense
annotations associated with each report. However,
to simplify the task, we want to merge triples which
could be sensibly represented as a single entity (e.g.,
«enteric → MODIFY → tube» can be merged into a
single medical entity called «enteric tube»). There-
fore, we additionally use a named-entity recogni-
tion model which extracts less granular medical
entities, namely ScispaCy’s (Neumann et al., 2019)
en_core_sci_scibert model2.

Merge Radgraph and SciscpaCy entities The
third step consists of merging together the two sets
of entities associated with the same report, while
keeping the relations extracted with RadGraph.
This is performed by prioritising entities extracted
using ScispaCy Esc over these extracted using Rad-
Graph Erg. Formally, if there exists esc ∈ Esc

and erg ∈ Erg such that erg ⊂ esc (i.e. erg is a
substring of esc), then we substitute erg with esc
and assign to it all the relations originally asso-
ciated with erg. Moreover, if erg,1 and erg,2 are
linked together with a relation – (erg,1, r, erg,2) –
and erg,1, erg,2 ⊂ esc, then we remove the relation
r and only keep esc as a single entity. Otherwise,
if erg ̸⊂ esc ∀esc ∈ Esc, then we keep erg and its
associated relations.

Normalise entities and categorise relations ac-
cording to clinical schema The final step of our
annotation process comprises the refinement of the
merged entities. With the help of a junior physician,
we defined five entity categories: Anatomy (e.g.,
«heart»), Finding/Pathology (e.g., «pneumothorax»,
«effusion»), Location (e.g., «left», «top»), Modifiers
(e.g., «large», «left») and Status (e.g., «present»,
«normal»). For each entity term, we defined a set of
synonyms. We then associate the term when one of
the synonyms is detected in an entity span. Further,
we constrain the triples to a fixed schema, based
on the entity labels, as shown in Figure 2, and fil-
ter out the triples whose entity types and relations
do not appear in that schema. If more than one
of the manually selected terms is found inside an
entity name, we split the entity and assign the rela-
tion based on the same schema. This occurs when

2https://github.com/allenai/scispacy

https://physionet.org/content/radgraph/1.0.0/
https://physionet.org/content/radgraph/1.0.0/
https://github.com/allenai/scispacy
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Figure 2: Triples schema. The relations correspond to
the edges of the graph, and the type of relation is indi-
cated in capital letters. The entity labels are represented
by the nodes of the graph. These represent the triples to
which our annotation pipeline is constrained.

ScispaCy detects entities that can be expressed as
the combination of two or more separate entities
(e.g., «pulmonary vascular engorgement» can be
expressed as «engorgement → LOCATED_AT →
pulmonary vascular»).

Filter out comparisons to previous reports Fi-
nally, we substitute the triples that express a change
from previous studies of the same patient, since we
are aiming to generate the report from a single CXR
image, without having access to previous images.
We identify the triples expressed as «e1 → MOD-
IFY → e2», where e1 corresponds to «unchanged»,
«new», «increase» or «decrease»; we then substi-
tute the triple with «e2 → STATUS → present»,
based on the assumption that if the radiologist men-
tions a change of a pathology or a finding, this is
still present and visible in the image.

2.2 Model

We propose a novel framework to perform auto-
mated reporting in two steps: Triples Extraction
and Report Generation. Similarly to Chen et al.
(2020), we design and train Transformer models
with custom architectures from scratch. Figure 4
shows a detailed diagram of the two-step pipeline.

Triples Extractor (TE) The first step consists of
extracting the triples associated with each CXR
image, whose semi-automated annotation process
is described in Section 2.1. We treat this prob-
lem as a sequence-to-sequence task, using a mul-
timodal encoder-decoder Transformer as the back-
bone, with both the CXR image and the indication
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Figure 3: Example of the annotation pipeline to extract
the ground truth triples from the radiology report. In
the last two steps, we adopt the same color scheme as
indicated in Figure 2, to categorise the entities.

field (i.e., scan request text) as inputs. The bene-
fit of using the indication field as context for CXR
classification in an encoder Transformer model was
previously shown by Jacenków et al. (2022).

The multimodal input sequence is the concate-
nation of the CXR image embedding and the indi-
cation field text embedding. The image embed-
ding, denoted I = {I1 . . . IN}, corresponds to
the feature map extracted from the last convolu-
tional layer of ResNet-101 and flattened into a
49 × 2048 image embedding. The text input is
tokenised into a M × 2048 token embedding, in-
dicated as W = {W1 . . .WM}. Further, we sum
to the input sequence a segment embedding – to
allow the model to discriminate between visual and
textual inputs – and position embedding – needed
by the Transformer to access the order of the in-
put embedding. A [SEP] token is used to sepa-
rate the two input modalities. The target sequence
Trp = {Trp1 . . . T rpK} corresponds to the con-
catenation of the ground truth triples, each sepa-
rated by a [SEP] token.

We compare two different setups of the triples
extractor model TE-Transformer to generate the
triples (T):

• CXR → Trp: a visual Transformer, which
only takes a single CXR image as input.

• CXR + Ind → Trp: a multimodal Trans-
former which takes as input the Indication
Field (Ind), along with the CXR image, to
provide additional context to the model.
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[SEP]

ResNet-101

1

+ +

+ + +

111

 Set of Triples 

[SEP]

[SEP]

[SEP] [SEP] [SEP]
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Figure 4: Architecture design of the two models: Triples Extractor and Report Generator.

Report Generator (RG) The second step of the
pipeline corresponds to the generation of the ra-
diology report. The problem is again framed as
a sequence-to-sequence task, using a multimodal
encoder-decoder Transformer as the model back-
bone. The multimodal input sequence comprises
the CXR image embedding I = {I1 . . . IN}, com-
puted as in step 1; and the text embedding T̂ rp =
{T̂ rp1 . . . T̂ rpJ} represents the extracted triples
from step 1, which correspond to a single string of
text, where the triples are separated by a [SEP]
token.

During the training phase, we use the con-
catenation of the ground truth triples Trp =
{Trp1 . . . T rpK}, to train our model. To prevent
the model focussing only on the triples – which al-
ready contain a comprehensive set of information,
sufficient to generate a clinically accurate report
– and ignoring the CXR image, we also consider
randomly masking out 40% of the triples (this per-
centage was selected empirically). This way, we
expect the model to also learn representative fea-
tures from the image to compensate the missing
information. We adopt such a training strategy
because step 1 is not expected to be performed per-
fectly, thus we force the model to still consult the
image when generating the final report.

During this step, we compare three different se-
tups of the report generator model RG-Transformer,
to generate the radiology report (RR):

• Trp → RR: a Transformer which takes only
triples as input to generate radiology report.

• Trp + CXR → RR: a multimodal Trans-
former taking both triples and CXR as inputs.

• Trp + CXR → RR (w/ Mask): a multi-
modal Transformer, similar to the above,
trained on a random subset of the input triples.

3 Experimental Setup

3.1 Dataset
We conduct our experiments on the MIMIC-CXR
dataset, which comprises 377,110 CXR images
from 65,379 patients and the associated radiol-
ogy reports. In this work we adopted the same
training/validation/test split as used by Chen et al.
(2020)3 and Chen et al. (2021)4, for a fair compar-
ison with their methods. This results in 270,790
training images, 2,130 validation images and 3,858
test images, alongside the associated radiology re-
ports. All the images are resized by matching the
smaller edge to 256 pixels and maintaining the
original aspect ratio.

Following previous methods, we consider only
the Finding Section of each report as the target text
output of our pipeline; this is the section in the
report which contains a free-text description of the
radiographic findings and/or pathologies which are
visualised within the image. Further, we extract
the Indication Field (sometimes termed Clinical
History) from the radiology reports, when this is
present, as it contains relevant medical history. We
use this as additional context for the Triples Ex-
traction step, since this is the part of the report that
would be available at imaging time.

3.2 Baselines
We compare our two-step pipeline with:

3https://github.com/cuhksz-nlp/R2Gen
4https://github.com/cuhksz-nlp/

R2GenCMN

https://github.com/cuhksz-nlp/R2Gen
https://github.com/cuhksz-nlp/R2GenCMN
https://github.com/cuhksz-nlp/R2GenCMN
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• Lower Bound (CXR → RR): an encoder-
decoder Transformer architecture which gen-
erates the reports from the CXR in one step,
without extracting the triples first. This de-
fines the Lower Bound, and we expect our
two-step pipeline to outperform this.

• Upper Bound (GT-Trp → RR): we train an
encoder-decoder Transformer to generate the
radiology report from the ground truth triplets
(GT-Trp). This sets an Upper Bound to our
problem, as it mimics the scenario where all
the triples are perfectly extracted in step 1.
This allows us to understand the feasibility of
generating a report from the set of triplets.

3.3 Implementation Details

We consider the same model architecture for both
steps of the proposed pipeline. A vanilla encoder-
decoder Transformer is used as the backbone of
our models. Both its encoder and decoder are com-
posed by three Attention Layers, as described by
Vaswani et al. (2017), each composed by 8 heads
and 512 hidden units, and we initialise them ran-
domly. For both steps, the vocabulary of the to-
keniser is defined independently, where each token
corresponds to a single word appearing either in
the input or output text of the training set; with
an additional [SEP] token used in the input to
separate the image vs text (first step), or image vs
triples (second step).

We adopt ResNet-101 as the visual extractor, ini-
tialised using ImageNet pre-trained weights (Deng
et al., 2009), with the scope of encoding a sin-
gle CXR image and feeding the embedding to the
Transformer as the visual input. During training,
we adopt standard data augmentation of the im-
age: random 224 × 224 crop; random horizontal
flip; and random rotation within the range (−10◦,
+10◦). During inference, we take a 224× 224 cen-
tral crop of the image.

For each step, the whole model is trained end-to-
end using a cross-entropy loss with Adam optimiser
(Kingma and Ba, 2014). The learning rate for the
visual extractor is set to 5× 10−5 and 1× 10−4 for
the remaining parameters, and we decay them by a
factor of 0.8 every three epochs.

3.4 Metrics

To evaluate the goodness of step 1, we compute the
F1 score between the set of extracted triples T̂ rp
and the set of ground truth triples Trp.

Model val F1 test F1
CXR → Trp 0.348 0.275
CXR + Ind → Trp 0.411 0.307

Table 1: F1 scores for triples (Trp) extracted in step
1 on the validation and test set of MIMIC-CXR. We
compare two different versions of the Triples Extractor,
as defined in Section 2.2.

Step 2 is evaluated using common Natural Lan-
guage Generation (NLG) metrics: BLEU score
(Papineni et al., 2002), ROUGE score (Lin, 2004)
and METEOR (Banerjee and Lavie, 2005). Given
that these often fail to capture the semantic mean-
ing of the text, we also consider Clinical Efficiency
(CE) metrics. These are computed by applying the
CheXpert labeler (Irvin et al., 2019) to the gen-
erated reports, which extracts 14 labels: Atelec-
tasis, Cardiomegaly, Consolidation, Edema, En-
larged Cardiomediastinum, Fracture, Lung Lesion,
Lung Opacity, No Finding, Pleural Effusion, Pleu-
ral Other, Pneumonia, Pneumothorax, and Support
Devices. Generated labels are then compared with
the ground truth labels, provided in the MIMIC-
CXR dataset, by computing precision, recall and
F1 scores. We note that the CheXpert labeler pro-
vides only a partial assessment of clinical accuracy,
since attributes are ignored, as well as entities out-
side of the 14 defined labels. Therefore we also
perform a qualitative human evaluation of a subset
of the generated reports.

4 Results

Here we evaluate our proposed method on the
MIMIC-CXR dataset at each step: Triples Extrac-
tion and Report Generation. Every experiment is
repeated 3 times using different random seeds to
initialise the model weights and randomise batch
shuffling; we report the average scores between the
3 different runs. We also conduct some human eval-
uation on the generated reports, to further assess
their clinical accuracy.

4.1 Results on Triples Extraction

In Table 1, we compare the two models – CXR
TE-Transformer and MM TE-Transformer – by
computing the F1 score on both the MIMIC-CXR
validation and test set. This shows that introduc-
ing the Indication Field as additional context to
the model helps to restore the triples more accu-
rately. This result confirms what has previously
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Model NLG Metrics CE Metrics
Step 1 Step 2 BL-1 BL-2 BL-3 BL-4 MTR RG-L P R F1

Lower Bound: CXR → RR 0.341 0.212 0.145 0.106 0.136 0.280 0.373 0.33 0.334
CXR + Ind → Trp Trp → RR 0.322 0.219 0.159 0.122 0.150 0.311 0.454 0.431 0.442
CXR + Ind → Trp CXR + Trp → RR 0.336 0.226 0.164 0.125 0.149 0.307 0.439 0.398 0.417
CXR + Ind → Trp CXR + Trp → RR (w/ Mask) 0.363 0.245 0.178 0.136 0.161 0.313 0.428 0.459 0.443

Upper Bound: GT-Trp → RR 0.523 0.408 0.332 0.276 0.251 0.466 0.523 0.581 0.551

Table 2: NLG and CE results on the MIMIC-CXR test set, where BL=BLEU, MTR=METEOR, RG=ROUGE,
P=Precision and R=Recall. We adopt the two-step pipeline, considering a multimodal TE-Transformer to extract the
triples in the 1st step, and comparing different implementation of the 2nd step, defined in Section 2.2. These results
are also compared with the Lower Bound and the Upper Bound models, described in Section 3.2.

Model NLG Metrics CE Metrics
BL-1 BL-2 BL-3 BL-4 MTR RG-L P R F1

ST (Vinyals et al., 2015) 0.299 0.184 0.121 0.084 0.124 0.263 0.249 0.203 0.204
Att2In (Rennie et al., 2017) 0.325 0.203 0.136 0.096 0.134 0.276 0.322 0.239 0.249
AdaAtt (Lu et al., 2017) 0.299 0.185 0.124 0.088 0.118 0.266 0.268 0.186 0.181
TopDown (Anderson et al., 2018) 0.317 0.195 0.130 0.092 0.128 0.267 0.320 0.231 0.238
R2Gen (Chen et al., 2020) 0.353 0.218 0.145 0.103 0.142 0.270 0.333 0.273 0.276
CA (Liu et al., 2021c) 0.350 0.219 0.152 0.109 0.151 0.283 - - -
CMCL (Liu et al., 2021a) 0.344 0.217 0.140 0.097 0.133 0.281 - - -
PPKED (Liu et al., 2021b) 0.360 0.224 0.149 0.106 0.149 0.284 - - -
R2Gen CMN (Chen et al., 2021) 0.353 0.218 0.148 0.106 0.142 0.278 0.334 0.275 0.278
R2Gen CMM+RL (Qin and Song, 2022) 0.381 0.232 0.155 0.109 0.151 0.287 0.342 0.294 0.292
Ours 0.363 0.245 0.178 0.136 0.161 0.313 0.428 0.459 0.443

Table 3: NLG and CE results on the MIMIC-CXR test set. All the results of the comparison methods are taken from
Qin and Song (2022).

been found by (Jacenków et al., 2022), and extends
their results on a more difficult task.

4.2 Results on Report Generation

In Table 2, we show a comparison of three vari-
ants of the Report Generator, which are described
in Section 2.2. We also compare the results with
a Lower Bound and a Upper Bound model, de-
fined in Section 3.2. During inference, for all three
models we input the triples extracted by the MM
TE-Transformer, as it yields the highest F1 scores.

It can be seen that the models trained without
masking do not consistently outperform the Lower
Bound metrics. The reason could be attributed
to the fact that, during training, we input to the
model the ground truth triples, which contain the
necessary information to generate a good quality
report. Therefore, the model tends to focus solely
on the triples, and always expects to see a set of
triples perfectly matching the final report. How-
ever, this is not true, as seen from the results in
Table 1. We overcome this by masking out some
of the ground truth triples during training, which
encourages the model to leverage also the CXR
image when generating the radiology report. More-

over, it can be noticed that all three models show
significantly lower performance compared to the
UB. This suggests that there is still a considerable
margin of improvement.

In Table 3, we benchmark our pipeline against
existing state-of-the-art automated radiology re-
porting methods. Our two-step approach outper-
forms other methods for most of the NLG metrics
and all the CE metrics, suggesting a good compro-
mise between clinical accuracy and text fluency of
the generated radiology reports.

4.3 Human Evaluation

We additionally evaluated the quality of reports
using two human evaluators, who compared the re-
ports generated by the baseline model and our two-
step model to the original report. The evaluators
were junior physicians with 2 and 3 years of clini-
cal experience respectively, including experience
of reading CXR reports. Evaluators were blinded
to the model type used to generate reports during
the exercise. For each example, evaluators were
shown the radiologist’s report and treated this as
the gold standard (they were not shown the under-
lying CXR image). In line with human evaluation
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The heart is normal in size. The cardiomediastinal contours are stable.
There are stable bilateral pleural effusions with partial right-sided

loculation. Biapical scarring and pleural thickening appears stable. There is
again right-sided superior hilar retraction and mild rightward XXXX

deviation. No acute infiltrate is appreciated. 

As compared to the previous radiograph there is no relevant change. The
extent of the right pleural effusion is constant. Constant size of the cardiac

silhouette. No newly appeared parenchymal opacities. 

Omission errors = Biapical scarring, hilar retraction, pleural thickening,
XXXX deviation  

Original Report Generated Report

Large left lower lobe opacity is present. There does not appear to be
significant mediastinal shift. There is no pneumothorax. the cardiac
silhouette is not definitively identified and not fully evaluated. The

mediastinal contours are unremarkable.

PA and lateral views of the chest were reviewed and compared to the prior
studies. A right pleural effusion has increased in size since the prior study.

The left lung is clear. There is no pneumothorax. 
 

Omission errors = Left lower lobe opacity, mediastinal shift, mediastinal
contours 

Figure 5: Example of human evaluation undertaken on generated reports. Errors: Hallucination, Omission,
Attribute error, Impression error. In this data, taken from the IU-Xray dataset (Demner-Fushman et al., 2016),
ages (and other patient-identifiable information) is replaced by a placeholder, here indicated by XXXX.

Error Type Baseline Two-Step RC
Hallucinations 101 66 -0.35
Omissions 103 86 -0.17
Attribute Errors 29 25 -0.14
Impression Errors 4 6 +0.50
Grammatical Errors 3 1 -0.67
Total Errors 240 184 -0.23
Critical Errors 31 22 -0.29

Table 4: Number of errors found by the clinical eval-
uators in 60 reports generated with the baseline and
the two-step model. We indicate with RC the relative
change between the two models’ errors.

methods used to assess voice recognition software
(Rana et al., 2005; Quint et al., 2008; Ringler et al.,
2017), evaluators counted types of errors which
occurred in generated reports. The types of errors
available were 1. Hallucination, 2. Omission, 3.
Attribute error, 4. Impression error and 5. Gram-
matical error. Examples of the use of these errors
is shown in Figure 5. There was also the option for
evaluators to assign a critical error to the first four
errors if this was felt to significantly alter the clin-
ical course of action. For example, if a generated
report erroneously described a region as being sug-
gestive of pneumonia, this might result in a patient
unnecessarily receiving antibiotics. Alternatively,
if a report failed to describe a mass, this might
result in possible cancer being missed.

The evaluators discussed and agreed the eval-
uation protocol prior to the exercise. Evaluators
received a combined total of 60 ground truth re-
ports alongside the reports generated with the base-
line and the two-step approach, including 10 re-
ports shown to both evaluators to compute the inter-
annotator agreement. We found a moderate agree-

ment between the two annotators with a Gwet’s
AC1 score (Gwet, 2014) equal to 0.53.

The number of detected errors are displayed in
Table 4. Most of the errors are reduced when using
our two-step approach, which is consistent with the
results in Section 4.2. This shows that the two-step
approach generates more clinically accurate radi-
ology report compared to the single-step baseline.
However, the number of clinical error are still sig-
nificant, which makes this method still unsuitable
for real-life diagnostic applications.

5 Conclusion

In this work, we present a two-step framework for
CXR automated radiology reporting, which splits
the task into Triples Extraction and Report Gen-
eration. We propose a semi-automated annota-
tion schema, which extracts structured information
from a radiology report in the form of triples, and
serves to supervise the first step of our approach.
Further, our method shows state-of-the-art perfor-
mances on the MIMIC-CXR dataset for most of
the NLG metrics and all the CE metrics. Moreover,
we conduct human evaluation to assess errors in
the generated text, showing how our proposed two-
step approach generates 23% fewer errors and 29%
fewer critical errors compared to the baseline. Nev-
ertheless, end-to-end supervised report generation
from images requires further research on improv-
ing clinical accuracy in order to have utility as a
diagnostic tool.

In future, this solution can easily integrate more
advanced model architectures – to both improve
the triple extraction and the report generation – and
can be applied to other complex image captioning
tasks, such as those found in the medical domain.
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