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Abstract

Word embeddings learned using the distri-
butional hypothesis (e.g., GloVe, Word2vec)
do not capture the affective dimensions of
valence, arousal, and dominance, which are
present inherently in words. We present a
novel retrofitting method for updating embed-
dings of words for their affective meaning.
It learns a non-linear transformation function
that maps pre-trained embeddings to an affec-
tive vector space, in a representation learn-
ing setting. We investigate word embeddings
for their capacity to cluster emotion-bearing
words. The affective embeddings learned by
our method achieve better inter-cluster and
intra-cluster distance for words having the
same emotions, as evaluated through differ-
ent cluster quality metrics. For the down-
stream tasks on sentiment analysis and sar-
casm detection, simple classification models,
viz. SVM and Attention Net, learned using our
affective embeddings perform better than their
pre-trained counterparts (more than 1.5% im-
provement in F1-score) and other benchmarks.
Furthermore, the difference in performance is
more pronounced in limited data setting.

1 Introduction

Affect refers to the experience of a feeling or emo-
tion (Picard, 2000). This definition broadly en-
compasses sentiment, emotion, personality, and
mood. Incorporating these affective aspects in text
analysis can significantly benefit numerous NLP
applications, including sentiment analysis, sarcasm
detection, opinion mining, empathetic agents, etc.
Words, being the smallest meaningful constructs in
a language, have been the primary focus area for af-
fect analysis in literature. The affective meaning of
a word can be represented primarily using: (1) dis-
crete affective labels such as joy, happiness, anger,
etc., notable models include Plutchik’s Wheel of
Emotions (Plutchik, 1980), Ekman’s model (Ek-
man, 1992), etc.; (2) dimensional models such as

valence-arousal-dominance (VAD) model (Russell
and Mehrabian, 1977), evaluation-potency-activity
(EPA) model (Osgood et al., 1957), etc. that repre-
sent human affects in a continuous space. In this
work, we focus on dimensional models since they
capture more fine-grained information compared to
the discrete models and are more expressive (Calvo
and Mac Kim, 2013). The dimensional model in
VAD represents a word and its affective meaning
as a point in a 3-dimensional space that consists of
valence (degree of pleasure or displeasure), arousal
(degree of excitement or calmness), and dominance
(degree of control or submission).

While pre-trained embeddings are good at cap-
turing various lexico-semantic relations, do they
encode the affective meaning of words? For exam-
ple, consider violate, a word having low valence
and high arousal. Table 1 shows the most similar
words to violate as computed using cosine similar-
ity with pre-trained Word2vec embeddings. This
list includes words with high valence (e.g., comply
and obey) as well as low arousal (e.g., adhere, stipu-
late), disregarding the affective meaning of violate.
Similarly, banish, a word with low dominance, is
one of the most similar words to conquer, a word
having high dominance. This analysis suggests that
the pre-trained word embeddings do not adequately
encode the affective meaning of words.

It is well known in the community that the em-
beddings learned using the distributional hypoth-
esis (Harris, 1954) mix semantic similarity with
other types of semantic relatedness (Hill et al.,
2015). For instance, though opposite in meaning,
both cheap and expensive have similar embeddings
since they occur in nearly identical contexts. This
problem has been addressed by first borrowing se-
mantic relations from knowledge sources such as
WordNet, Paraphrase Database, etc., in the form
of constraints and then using these constraints to
learn joint specialization (Yu and Dredze, 2014;
Liu et al., 2015) or retrofitting (Faruqui et al., 2015;
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word Pre-trained Word2vec VADProjWBal
violate (↓V;↑A) contravene, violation, abide, prohibit, adhere, for-

bid, comply, contravention, obey, stipulate
contravene, prohibit, endanger, forbid, restrict, vio-
lation, oppose, abide, offend, discriminate

bombard (↓V;↑A) barrage, overwhelm, saturate, zap, invade, terrorize,
ignore, hurl, swarming, scour

overwhelm, terrorize, saturate, hurl, frighten, oblit-
erate, gobble, zap, invade, unleash

conquer (↑A;↑D) conquering, vanquish, overcome, liberate, annihi-
late, conquest, banish, unite, outwit, confront

conquering, vanquish, liberate, overcome, annihi-
late, unleash, unite, outwit, confront, wrest

Table 1: Most similar words computed using cosine similarity: pre-trained Word2vec vs. embeddings retrofitted
using our method (↑: high; ↓: low; V: Valence; A: Arousal; D: Dominance) - neighbours marked in bold do not
agree with the probe word for affect dimensions

word V A D
adorable 0.969 0.512 0.457
suffering 0.02 0.719 0.235
conquer 0.694 0.873 0.971
slow 0.357 0.073 0.131
pretend 0.49 0.528 0.542
indulgence 0.479 0.49 0.517

Table 2: Example words and their affect scores in the
NRC VAD lexicon (V: Valence; A: Arousal; D: Domi-
nance)

Mrkšić et al., 2016) models. However, these mod-
els focus mainly on synonymy, antonymy and hy-
pernymy relations. Some recent efforts have used
affective lexicons (Seyeditabari et al., 2019) or task-
dependent distant supervision (Tang et al., 2016;
Agrawal et al., 2018) to learn emotion embeddings.
However, these methods rely only on discrete af-
fective resources. Lately, a few attempts (Khosla
et al., 2018; Chawla et al., 2019) have used re-
sources created for dimensional models to learn
affective embeddings. While the abovementioned
approaches work well for some tasks, they do not
generalize well across tasks and have not been eval-
uated extensively for affective aspects.

In this work, we present a simple yet effective
retrofitting approach to learn VAD-enriched affec-
tive embeddings. For knowledge, it relies on the
real-valued valence, arousal, and dominance scores
available in the NRC VAD lexicon (Mohammad,
2018a). We hypothesize that when we map pre-
trained embeddings to a vector space that is con-
ducive to predicting VAD scores, the mapped vec-
tors acquire affective meaning, resulting in affec-
tive embeddings. We design the mapping function
as a non-linear transformation using a multi-layer
feed-forward neural network. Given an input word,
we first compute its affective embedding using the
mapping function. The affective embedding is then

linearly projected to a 3-dimensional vector space
corresponding to the VAD dimensions. The scores
present in the VAD lexicon are used to jointly learn
both the mapping function as well as the linear
VAD projection.

The affective embeddings learned using our
method achieve better clustering for emotion bear-
ing words. For downstream tasks on sentiment
analysis and sarcasm detection, they perform better
than their pre-trained counterparts and other bench-
marks, with significant gains in limited data setting.
The main contributions of this work are:

1. A simple yet effective approach to learn affec-
tive embeddings in a representation learning
setting (Section 3).

2. A detailed evaluation showing better cluster-
ing achieved by our embeddings for emotion
bearing words (Section 4.1).

3. A detailed evaluation on sentiment analysis
and sarcasm detection showing the efficacy of
our retrofitting method (Section 4.2).

2 NRC VAD Lexicon

Various lexical resources have been proposed in the
literature to capture the affective meaning of words
using dimensional models, e.g., ANEW (Bradley
et al., 1999), Warriner’s lexicon (Warriner et al.,
2013), etc. In this work, we leverage the knowledge
present in the VAD lexicon (Mohammad, 2018a)
to learn affective embeddings. The lexicon pro-
vides real-valued scores in the range [0, 1] for va-
lence (V), arousal (A), and dominance (D) (0=low;
1=high) for more than 20,000 English words. Ta-
ble 2 shows a few example words and their VAD
scores. The word adorable, for instance, has high
valence content with average arousal and domi-
nance. We use the words in the lexicon and their
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Figure 1: Architecture for learning VAD-enriched affective retrofitted embeddings

Figure 2: Histograms of valence, arousal, and dominance scores for the words in the VAD lexicon: #words with
high/low affect scores are rare, whereas majority of words have average affect scores

affect scores as training data to learn our retrofitting
model for affective embeddings.

3 Retrofitting method

Our goal is to learn a non-linear transformation
function that maps pre-trained word embeddings
to a vector space that encodes the affective mean-
ing of words. The first question that arises here is:
how do we measure or quantify the degree of affect
content in a given vector space? We argue that it
should be easy to extract the affective meaning of
words from such a vector space. In fact, we hy-
pothesize and show (refer Section 4) that a simple
linear projection of word vectors from such a space
to a 3-dimensional VAD space accurately extracts
or predicts valence, arousal, and dominance scores
of words. Therefore, we treat the linear projec-
tion to the VAD space as our objective criteria to
learn the transformation function. To this end, the
valence, arousal, and dominance scores present in
the VAD lexicon provide the required training data.
Figure 1 shows the overall architecture for learning
our retrofitting model for affective embeddings.
1. Training data generation: A training example
in our model consists of a word and its VAD scores.
Generally, the number of words with high affect
scores, either positive or negative, is limited in a
language. Conversely, a large number of words

have average affect scores. Figure 2 shows the his-
tograms of VAD scores for the words in the VAD
lexicon, depicting this language property. Regres-
sion models learned for target variables with such
skewed distribution become biased, generally lead-
ing to better performance for common values than
rare cases. However, the words that are referred
more often to stress emotional or affective aspects
in human communication generally have either pos-
itive or negative affect content as opposed to the
average score. For example, consider words such
as {happy, nightmare, weak, etc.}, and {indulgence,
pretend, lease, etc.}. The former set contains words
that exhibit affective aspects, whereas the latter con-
tains words with minimal or no affective content.
Since the words having extreme or rare VAD scores
are of particular importance in our case, this imbal-
ance in affect scores needs to be taken into account
while learning our retrofitting model.

We employ a sample weighting approach with
cost-sensitive learning to address the imbalanced
regression problem described above. Specifically,
sample weights are assigned to each word wi in the
VAD lexicon such that the words with high/low af-
fect scores get higher weights than those with aver-
age affect scores. We use the density-based weight-
ing scheme (DenseWeight) proposed by Steininger
et al. (2021) to compute sample weights. The fol-
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lowing describes the process.

1. Apply kernel density estimator (KDE) to the
valence scores of all words to obtain the den-
sity function KDEv

2. Compute density pv(wi) for each word wi

using KDEv

3. Apply the following weighting function to
compute weights for all words

swv(wi) = fv(α,wi) = max(1− α · p(wi), ε)

Here, α ∈ [0, inf) is a hyper-parameter. Setting
it to 0 yields uniform weights. With increasing α,
sample weights of rare data points are emphasized
more strongly. The parameter ε helps in avoid-
ing negative or zero sample weights and is gen-
erally set to a small positive value, e.g., 5e−05.
The process described above for valence is sim-
ilarly applied for arousal and dominance to ob-
tain swa(wi) and swd(wi), respectively. Finally,
the sample weight sw(wi) for the word wi is com-
puted by aggregating these weights, i.e., sw(wi) =
aggregate(swv(wi), swa(wi), swd(wi)). We ex-
periment with two aggregation functions, i.e., max
and sum.
2. Transformation function: We take the d-
dimensional pre-trained embeddings of words as
input and pass them through a non-linear transfor-
mation function to compute retrofitted embeddings,
i.e., xtwi

= T(xwi). This function is realized using
a multi-layer feed-forward neural network with a
corresponding set of network weights NT .
3. Linear projection to VAD space: We lin-
early project the retrofitted embeddings xtwi

to a
3-dimensional space that corresponds to valence,
arousal and dominance dimensions, i.e., V̂ ADwi =
W T · xtwi

+ b where W ∈ R300×3; b ∈ R3

4. Loss function: The VAD scores (V̂ ADwi)
predicted for the word wi using linear projection
are compared to the corresponding VAD scores
V ADwi , as present in the lexicon. We use mean
squared error (MSE) as a loss function. As de-
scribed earlier, we incorporate cost-sensitive learn-
ing to give higher sample weights to words hav-
ing rare values for the affect scores. The sample
weighted loss function used by our model is then,

Lvad =
∑

wi
sw(wi) ·MSE(V̂ ADwi , V ADwi)

It should be noted that the parameters for the linear
projection (W and b) as well as the transformation

function (NT ) are learned jointly by our model. To
obtain affective embeddings post training, we only
require the transformation function, and the linear
projection weights are discarded.
Vector Space Preservation: Pre-trained embed-
dings learned using the distributional hypothesis
contain useful lexico-semantic relations. The trans-
formation function learned by our model should
preserve these relations while attending to the af-
fective meaning of words. Similar to (Mrkšić et al.,
2016; Glavaš and Vulić, 2018), we use a regulariza-
tion term that penalizes transformations that dras-
tically change the topology of pre-trained vector
space. It measures the Euclidean distance between
the pre-trained vector xwi and its transformed ver-
sion T(xwi), i.e., Lv =

∑
wi
‖xwi − T(xwi)‖2.

The final loss function used by our model is then,

L = Lvad + λvLv (1)

where λv is a hyper-parameter that controls how
strictly the topology of the original vector space
is preserved. The loss function also includes L2-
regularization for the parameters NT , W , and b.

4 Experimental Results

To evaluate our method, we experimented with 300-
dimensional pre-trained embeddings in Word2vec1

(Mikolov et al., 2013) and GloVe2 (Pennington
et al., 2014). Due to space constraints, we discuss
only Word2vec results here (refer Appendix B for
GloVe). The complete hyper-parameter grid search
details, computational cost, etc. are detailed in Ap-
pendix A. As discussed earlier, the transformation
function that maps pre-trained word embeddings to
an affective vector space is learned in a regression
setting using the loss function in Eq. 1. This loss
function contains two contrasting terms, viz. VAD
regression loss (Lvad) and vector space preserva-
tion loss (Lv). The hyper-parameter λv provides a
knob to balance these contrasting terms and needs
to be set at the right value to learn a meaningful
transformation function. Setting a very high value
for λv will make our model ignore the affective con-
tent of words, thereby learning retrofitted embed-
dings nearly identical to their pre-trained version.
Conversely, a low value of λv may produce embed-
dings that predominantly contain affective meaning
at the expense of forgetting lexico-semantic rela-

1https://code.google.com/archive/p/word2vec/
2https://nlp.stanford.edu/data/glove.42B.300d.zip
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tions present in the pre-trained vector space, possi-
bly leading to degraded performance on end-tasks.

To select the best hyper-parameter configuration,
we conduct two experiments. (1) We directly select
the configuration that gives the least MSE3 in pre-
dicting VAD scores (referred as VADProjW) (2)
We first compute the mean cosine distance between
the pre-trained and affective embeddings of words
and select configurations with a distance < 0.15.
We then choose the best configuration (with the
least MSE in VAD prediction) amongst the filtered
list (referred as VADProjWBal).

Quantifying affective content

Our primary objective is to incorporate affective
meaning into pre-trained embeddings. A few rele-
vant questions in this context are: how much affec-
tive content do pre-trained embeddings have? Does
our retrofitting method improve it? As discussed
earlier, it should be easy to extract VAD scores if
the vector space is sensitive to affective aspects. In
other words, a simple linear combination of values
present in the embeddings vector shall predict the
VAD scores with reasonable accuracy. To investi-
gate this, we built a linear regression model for pre-
dicting VAD scores using the VAD lexicon dataset.
With pre-trained Word2vec, the model achieved
an MSE of 0.0345. On the other hand, the affec-
tive embeddings in VADProjWBal resulted in an
MSE of 0.0157, about 55% reduction in error (25%
with affective GloVe embeddings). These results
indicate that the retrofitted vector space learned
by our method is sensitive to the affective mean-
ing of words. Indeed, the neighbours computed
using VADProjWBal embeddings are affect-aware,
as evident from the exemplar words in Table 1.

Compared work

The retrofitting approaches proposed in the litera-
ture employ two types of constraints: attract con-
straints that pull similar (e.g., synonyms, hyper-
nyms, etc.) words together, and repel constraints
that push non-similar (e.g., antonyms) word pairs
away from each other. Counterfit (Mrkšić et al.,
2016) uses a loss function that brings attract pairs
closer and pushes repel pairs apart. However, it
updates embeddings of words present in attract
and repel constraints in isolation without consider-
ing their relations to other words. To address this,
Attract-Repel (AR) (Mrkšić et al., 2017) performs

3computed using 10% words set aside as a validation set

context-sensitive vector updates using a hinge loss
function that additionally considers in-batch neg-
ative example words. Both the Counterfit and AR
methods retrofit vectors of only those words that
are present in the constraints (seen words). The
embeddings for all other words are not updated.
Post-specialization methods use a mapping func-
tion that takes embeddings of seen words as input
to learn a non-linear transformation and then uses
it to retrofit unseen words. The approach proposed
by Ponti et al. (2018) uses a generative adversarial
network to learn the mapping function (AR+PS),
with AR to retrofit seen words.

The methods described above use general pur-
pose resources for updating pre-trained embed-
dings. We also compare our work with methods
that use resources created for discrete or dimen-
sional models of affect. Agrawal et al. (2018)
(EWE) use distant supervision to create emotion
labelled data and then apply a recurrent neural net-
work to learn emotion embeddings. The embed-
dings (EEArmin) proposed by Seyeditabari et al.
(2019), on the other hand, employ the counterfit
method directly on (word, emotion) pairs. Both
these approaches use NRC EmoLex (Mohammad
and Turney, 2013), a resource that provides discrete
emotion labels. Khosla et al. (2018) propose 303-
dimensional affective embeddings (Aff2vec) by ap-
pending valence, arousal, and dominance scores
of words to their counterfitted embeddings. The
embeddings in SentiEmbs (Yu et al., 2017) are re-
fined to incorporate sentiment information using
valence scores in the Warriner’s lexicon.

In addition to retrofitting, we also compare our
method with two joint learning approaches. Seman-
tic word embeddings (SWE) developed by Liu et al.
(2015) directly integrate constraints from Word-
Net into the optimization objective of Word2vec.
Chawla et al. (2019) (JointAff2vec) first gener-
ate constraints by combining relations in WordNet
with the affect scores in Warriner’s lexicon. These
constraints are then used as part of the cost function
of pre-trained embedding models.

We use pre-trained embeddings as a baseline.
Additionally, we concatenate the embeddings of
words with their valence, arousal, and dominance
scores to create an affect-aware baseline (referred
as Word2vec⊕VAD, 303-dimensional vectors).
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Embeddings ARI↑ FMS↑ AMIS↑ V-measure↑ VDist↓ RankAvg↓
Word2vec 0.0492(9) 0.1849(9) 0.075(9) 0.0768(9) 0(1) 5
Word2vec⊕VAD 0.0995(4) 0.229(4) 0.1417(8) 0.1434(8) NA(7) 6.5
Counterfit 0.0762(8) 0.1814(10) 0.1495(7) 0.1518(7) 0.1803(4) 6
AR 0.0794(7) 0.186(8) 0.1538(5) 0.1561(5) 0.2556(5) 5.63
AR+PS 0.0913(6) 0.2051(6) 0.159(3) 0.1613(3) 0.1326(3) 3.75
SWE††† 0.0215(10) 0.1713(11) 0.044(10) 0.0459(10) 0.9903(10) 10.13
Aff2vec 0.0914(5) 0.1978(7) 0.1567(4) 0.1591(4) NA(7) 6
EEArmin††† 0.3655(1) 0.4468(1) 0.5495(1) 0.5507(1) 0.9986(11) 6
SentiEmbs††† 0.0007(11) 0.3000(2) 0.0085(11) 0.0126(11) 0.4382(9) 8.89
VADProjW 0.1237(2) 0.2466(3) 0.1842(2) 0.1858(2) 0.3461(6) 4.13
VADProjWBal 0.1036(3) 0.2288(5) 0.1529(6) 0.1546(6) 0.1006(2) 3.5

Table 3: External cluster validity indices with pre-trained Word2vec and its updated versions, our method in last
two rows - [↓: lower values are better; ↑: higher values are better] - The value in bracket specifies the rank of a
given embedding for the metric (lower ranks are better); The embeddings marked with ††† may not perform well on
affective end-tasks since they change the topology of pre-trained vector space drastically (very high VDist)

4.1 Clustering of Emotion-bearing Words

The primary objective of our retrofitting method is
to incorporate the affective meaning of words into
pre-trained embeddings. In this context, it is natu-
ral to ask, do the affective embeddings learned by
our method also reliably capture emotion aspects?
One way to quantify this is to check whether the
learned embeddings are similar for words that ex-
hibit the same emotion. Alternatively, are words
having the same emotion clustered together in the
vector space? To study this, we use NRC EmoLex
(Mohammad and Turney, 2013), a lexicon that pro-
vides English words and their associations with
Plutchik’s eight basic emotion categories. A few ex-
ample (word, emotion) pairs present in the lexicon
include (adorable, joy), (suffering, fear), and so
on. We cluster all the words present in EmoLex us-
ing K-means (#means k=8) algorithm, which uses
the embeddings of words as input features. Since
the true emotion category labels are available, we
apply various external cluster validity indices (refer
to Scikit-learn user guide) such as adjusted rand in-
dex (ARI), Fowlkes Mallows score (FMS), adjusted
mutual information score (AMIS) and V-measure,
to quantify clustering quality. In addition to good
clustering, affective embeddings shall also preserve
the topology of pre-trained vector space. To mea-
sure this, we compute the average cosine distance
between pre-trained and affective embeddings for
words in EmoLex (referred as VDist).

The pre-trained Word2vec embeddings perform
poorly across all clustering indices, as shown in
Table 3. This result indicates that they do not

consider the emotion aspects of words. The pre-
trained embeddings, when made affect-aware us-
ing a simple concatenation with the VAD scores
(Word2vec⊕VAD baseline), perform significantly
better. However, vector distances perturbed due
to the extra 3-dimensions may adversely impact
other useful semantic relations captured originally
by the distributional hypothesis. The embeddings
from past retrofitting methods (Counterfit, AR, and
AR+PS) that use general resources, reasonably
improve clustering beyond the pre-trained base-
line. However, their (except for AR+PS) VDist
is high, suggesting that they did not maintain se-
mantic relations present in Word2vec. The embed-
dings produced by the joint learning approach in
SWE perform poorly on both the clustering and
vector space preservation metrics. The EEArmin
embeddings have completely overfitted for clus-
tering, with extremely poor VDist. On the other
hand, the EWE embeddings4 have poor clustering
quality as they are nearly identical to their pre-
trained version (VDist=0.0085). The embeddings
in SentiEmbs are optimized only for coarse-grained
sentiments, possibly leading to poor clustering on
fine-grained emotions. Although Aff2vec embed-
dings achieve reasonably good clustering, simi-
lar to Word2vec⊕VAD, we cannot measure their
VDist due to the extra 3-dimensions. VADProjW
embeddings, selected based only on VAD predic-
tion accuracy, achieve substantially good clustering
but have poor VDist, as expected. The affective

4EWE applicable only for GloVe (refer Appendix B); em-
beddings not available for JointAff2vec
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Task Dataset #class Size #token Type Vocab Source

Sentiment
analysis

SST2 2 9,613 162,783 sentence 17,6301 (Socher et al., 2013)
SST5 5 11,855 199,120 sentence 19,6311 (Socher et al., 2013)
SemEval 3 61,854 1,174,626 tweet 23,0052 (Rosenthal et al., 2017)

Sarcasm
detection

Mustard++ 2 1,202 14,219 utterance 2,6321 (Ray et al., 2022)

Table 4: Dataset statistics for affective end-tasks (subscript in Vocab indicate minimum frequency threshold)

Embeddings SVM AttnNet
SST2 SST5 SemEval Mus++ SST2 SST5 SemEval Mus++

Word2vec 0.8155 0.4249 0.6203 0.5565 0.8012 0.4036 0.6347 0.5208
Word2vec⊕VAD 0.816 0.4385 0.6369 0.5481 0.7957 0.3584 0.6374 0.5583
Counterfit 0.8122 0.4271 0.6294 0.569 0.7315 0.3683 0.6303 0.4667
AR 0.8133 0.3946 0.5947 0.5607 0.7738 0.3869 0.6289 0.5125
AR+PS 0.8149 0.4167 0.6007 0.5272 0.7952 0.4109 0.6283 0.5292
SWE 0.7304 0.3593 0.555 0.4979 0.6524 0.3054 0.5634 0.5167
Aff2vec 0.8166 0.407 0.6119 0.5439 0.7814 0.4036 0.629 0.5458
EEArmin 0.771 0.3887 0.5964 0.5732 0.7529 0.3751 0.6191 0.5167
SentiEmbs 0.7551 0.3647 0.5726 0.569 0.7057 0.3394 0.5529 0.5583
JointAff2vec* 0.7534 0.405 - - - - - -
VADProjW 0.8089 0.419 0.6402 0.5858 0.8144 0.3819 0.6373 0.525
VADProjWBal 0.8204 0.4425 0.6411 0.5649 0.8105 0.429 0.6379 0.5667

Table 5: Micro F1-scores for SVM and AttnNet with various embeddings as input: Experiments with Word2vec as
baseline (Bold+Underline: highest; Bold: next highest) (*JointAff2vec: Chawla et al. (2019) report results only
for SST2 and SST5; **EWE embeddings applicable only for GloVe, not available for Word2vec)

embeddings in VADProjWBal provide the right
balance overall with substantially good clustering
along with a low value for VDist.

In addition to scores, Table 3 also reports the
rank (mentioned in bracket) of various embeddings
for each metric. The weighted average5 (RankAvg
in Table 3) computed across metrics suggests that
VADProjWBal achieves the best performance over-
all, closely followed by AR+PS embeddings.

4.2 Evaluation on Downstream Tasks

We evaluate our method on two affective end-
tasks: (1) Sentiment analysis on Stanford senti-
ment treebank with both the binary (SST2) and
graded (SST5) variants and SemEval 2017 task
4A containing tweet messages; (2) Sarcasm de-
tection using Mustard++ dataset that contains sit-
com utterances. Table 4 details the statistics of
these datasets. We use a probing framework, sim-
ilar to (Agrawal et al., 2018), to evaluate embed-

5both clustering metrics and VDist are given equal weights,
i.e., 0.25 for each clustering metric and 1 for VDist; In VDist,
the mean score across all methods is used to arrive at ranks
for ‘NA’

dings on downstream tasks. Specifically, we use
two classification models: support vector machine
(SVM), and attention network (AttnNet). The in-
put features for SVM are computed by averaging
the embeddings of tokens present in a given sen-
tence/tweet/utterance. Whereas the token embed-
dings, as a sequence, are passed as input to an
attention layer followed by softmax to compute
cross-entropy loss for AttnNet.

Table 5 reports the micro F1-scores for SVM
and AttnNet. The pre-trained Word2vec seems
to be a strong baseline to beat on both the
tasks. Using VAD scores explicitly as input makes
Word2vec⊕VAD an even stronger baseline, illus-
trating the role affect dimensions play, especially
for affective downstream tasks. Both retrofitting
(Counterfit, AR, AR+PS) and joint specialization
(SWE) methods have been shown to improve tasks
such as dialogue state tracking, text simplification,
etc. However, for the affective tasks, they could not
even beat the baselines. This is probably because
these methods focus only on relations such as syn-
onymy, antonymy, and hypernymy that are present
in general resources and are not tailored for affec-
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Figure 3: Data size vs. micro F1-score for pre-trained
Word2vec and VADProjWBal in limited data setting

tive dimensions of meaning. Though both Aff2vec
and EEArmin embeddings are retrofitted using
affective resources, they could not beat baseline
embeddings, possibly due to the drastic changes
they allow to the topology of pre-trained vector
space (high VDist). JointAff2vec embeddings, ob-
tained by the joint learning approach using both
affect resource and WordNet, could not perform
well. This finding coincides with the observation in
(Mrkšić et al., 2017) that joint learning approaches
generally have lower performance compared to
retrofitting methods. The lower value of VDist
(0.009) suggests that the EWE embeddings are
nearly identical to their pre-trained version hav-
ing no capacity to improve beyond the baseline.
Though optimized for sentiments, SentiEmbs could
not perform well even on the sentiment analysis
task. Overall, VADProjWBal, the embeddings
retrofitted by our method to respect affective mean-
ing while also being considerate to the topology of
input vector space, achieve the highest F1-score for
both SVM and AttnNet on sentiment analysis task.
On sarcasm detection, they perform better than
both the baselines and achieve the highest F1-score
with AttnNet.

4.2.1 Limited Data Experiments
We further evaluate embeddings for their perfor-
mance in a low resource setting. From the senti-
ment analysis datasets, we first sample sub-datasets
of various sizes, such as 10%, 30%, etc., and then
compare the F1-score of pre-trained Word2vec with
VADProjWBal across the data sizes. As evident
from Figure 3, VADProjWBal significantly outper-
forms pre-trained Word2vec in a low data regime.
The difference in performance decreases gradually
with an increase in dataset size. This result points to

the fact that the knowledge of the affective meaning
of words as captured by our method helps improve
end tasks, especially in a limited data scenario.

5 Related Work

Word embeddings built using the distributional hy-
pothesis have been studied extensively in the lit-
erature for the types of semantic relations they
encode. It has been observed that they mix se-
mantic similarity with other types of relatedness
(Hill et al., 2015), potentially leading to degraded
end-task performance. Various joint learning (Yu
and Dredze, 2014; Liu et al., 2015) or retrofitting
(Faruqui et al., 2015; Mrkšić et al., 2016; Shah
et al., 2020) models address this problem by lever-
aging semantic relations from resources such as
WordNet, Paraphrase Database, etc. However, they
focus mainly on synonymy, antonymy, and hyper-
nymy relations. To inject affective meaning into
word embeddings, a few attempts (Agrawal et al.,
2018; Seyeditabari et al., 2019) have recently used
resources such as EmoLex (Mohammad and Tur-
ney, 2013) and affect intensity lexicon (Moham-
mad, 2018b) that cater to discrete affective mod-
els. These methods, however, are limited by the
coarse-grained affect labelling and lack finer affec-
tive interpretations. Lately, Khosla et al. (2018)
and Chawla et al. (2019) have used dimensional
model resources such as Warriner’s lexicon (War-
riner et al., 2013) and VAD lexicon (Mohammad,
2018a) to encode fine-grained affective meaning.

Different from affect, there also exist lexicons
that can be used to ground the semantic meaning
of affect bearing words into other modalities. For
example, colors in the NRC word-color association
(e.g. danger - red) lexicon (Mohammad, 2011);
perceptual modalities and action effectors in Lan-
caster sensorimotor norms (Lynott et al., 2019);
robot state behavior (Moro et al., 2020), etc.

A large body of work focuses on learning task-
specific affective embeddings. These methods first
generate a noisy labelled dataset using distant su-
pervision and then use it to update word embed-
dings or learn them from scratch. Notable works
include sentiment-aware embeddings (Tang et al.,
2014, 2016) using tweet data, affective embeddings
(Felbo et al., 2017) using tweet emojis, emotion-
enriched embeddings (Agrawal et al., 2018) us-
ing product reviews, etc. However, the embed-
dings learned from these methods are customized
with dataset-specific nuances and might also model
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noise inherently present due to distant supervision.
Due to this, they do not generalize well across other
related tasks.

The affective embeddings learned by our
retrofitting method are not only accurate compared
to the methods described above, as evident from
the clustering experiments, but also work well on
the related affective end-tasks.

6 Summary and Future Work

We present a simple yet effective retrofitting
method to learn affective embeddings using the
NRC VAD lexicon. The affect scores in the lexicon
are used as training data to learn a transformation
function in a representation learning setting that
maps pre-trained embeddings to an affective vector
space. The embeddings learned by our method per-
form better than their pre-trained version and other
benchmarks in both the intrinsic task of cluster-
ing emotion-bearing words and the affective down-
stream tasks in sentiment analysis and sarcasm de-
tection. We are currently extending our retrofitting
approach to other affective resources such as af-
fect intensity lexicon (Mohammad, 2018b) and
EmoLex (Mohammad and Turney, 2013). We also
plan to develop a similar approach for contextual-
ized word embeddings.
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son, Milica Gašić, Lina M. Rojas-Barahona, Pei-
Hao Su, David Vandyke, Tsung-Hsien Wen, and
Steve Young. 2016. Counter-fitting word vectors to
linguistic constraints. In Proceedings of the 2016
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 142–148, San Diego,
California. Association for Computational Linguis-
tics.
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A Training details

This section details the hyper-parameters and the
best combinations selected thereof. The transfor-
mation function T in our retrofitting method is
implemented using a multi-layer feed-forward neu-
ral network. The corresponding hyper-parameters
are:- number of hidden layers: {1, 2, 3}, size of hid-
den layer: {200, 300}, activations: LeakyReLU,
dropout: 0.5, and L2 regularization: 1e−5. We
use Adam (Kingma and Ba, 2014) optimization
algorithm with batch size 128, number of epochs
200, and a learning rate of 0.001. The learning rate
is reduced on a plateau (patience=5) with a factor
of 0.2, with a minimum learning rate set to 1e−6.
We computed sample weights for the words in the
VAD lexicon with the α parameter in the weighting
function set to {0.75, 1, 1.1, 1.25, 1.5}. We finally
used sample weights obtained for α = 1.25 since
the corresponding weights seem to provide a good
balance between rare and common words. We use
max as the aggregation function to combine sam-
ple weights for valence, arousal, and dominance.
The hyper-parameter λv is varied from 0.01 to 0.05
with a step size of 0.01 and from 0.1 to 1 with a
step size of 0.2. We set aside 10% words in the
VAD lexicon for validation. For experimentation,
we used CPU machines with 64GB RAM and 20
core CPUs. Each configuration, on average, took
about 20 minutes to run.

For both Word2vec and GloVe, we conduct
experiments with two configurations to generate
retrofitted embeddings. One configuration is se-
lected only on the basis of VAD prediction quality
(the configuration with the least MSE on the val-
idation set). The second configuration considers
vector space preservation in addition to the VAD
prediction quality. Table 6 reports these configura-
tions.

B Experimental results for GloVe

Table 7 reports clustering experiments for GloVe
pre-trained baseline, the corresponding affective
embeddings, and other benchmarks. Table 8 reports
results for sentiment analysis and sarcasm detection
tasks for SVM and Attention network with GloVe
as the base embeddings.
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hyperparameter Word2vec GloVe
VADProjWBal VADProjW VADProjGBal VADProjG

#layers 1 2 1 2
#hidden units 300 300 300 200
activation LReLU LReLU LReLU LReLU
dropout 0.5 0.5 0.5 0.5
L2-regularization 1e−5 1e−5 1e−5 1e−5
batch-size 128 128 128 128
learning rate 0.001 0.001 0.001 0.001
α 1.25 1.25 1.25 1.25
λv 0.03 0.01 0.02 0.01

Table 6: Selected hyper-parameter configurations for affective retrofitted embeddings (1) Word2vec:- VADProjW
has the least MSE for VAD prediction; VADProjWBal additionally has VDist < 0.15 (2) GloVe:- VADProjG has
the least MSE for VAD prediction; VADProjGBal additionally has VDist < 0.15

Embeddings ARI↑ FMS↑ AMIS↑ V-measure↑ VDist↓ RankAvg↓
GloVe 0.0408(10) 0.1764(11) 0.0731(10) 0.0749(10) 0(1) 5.63
GloVe⊕VAD 0.0482(9) 0.1818(9) 0.0898(9) 0.0915(9) NA(7) 8
Counterfit 0.0897(4) 0.1969(5) 0.1634(3) 0.1657(3) 0.1740(6) 4.89
AR 0.0749(7) 0.1802(10) 0.1479(7) 0.1502(7) 0.0977(3) 5.38
AR+PS 0.0853(5) 0.1911(7) 0.1607(4) 0.1630(4) 0.1257(5) 5
EWE 0.0602(8) 0.1924(6) 0.1071(8) 0.1089(8) 0.0085(2) 4.75
Aff2vec 0.0824(6) 0.1877(8) 0.1574(5) 0.1598(5) NA(7) 6.5
EEArmin††† 0.3764(1) 0.4566(1) 0.5501(1) 0.5514(1) 1.0152(11) 6
SentiEmbs††† 0.0009(11) 0.2974(2) 0.0135(11) 0.0176(11) 0.4329(10) 9.38
VADProjG 0.106(2) 0.2278(3) 0.1658(2) 0.1674(2) 0.3247(9) 5.63
VADProjGBal 0.0976(3) 0.2203(4) 0.1543(6) 0.1559(6) 0.1029(4) 4.38

Table 7: External cluster validity indices (with k=8) for pre-trained GloVe and its retrofitted versions (↓: lower
values are better; ↑: higher values are better) - The value in bracket specifies the rank of a given embedding for the
metric (lower ranks are better); RankAvg is a weighted average of ranks across metrics (equal weights considered
for both the clustering metrics and VDist, i.e., 0.25 for each clustering metric and 1 for VDist); The embeddings
marked with ††† may not perform well on affective end-tasks since they change the topology of pre-trained vector
space drastically (very high VDist)

Embeddings SVM AttnNet
SST2 SST5 SemEval Mus++ SST2 SST5 SemEval Mus++

GloVe 0.8034 0.4122 0.6131 0.5333 0.782 0.4176 0.637 0.5458
GloVe⊕VAD 0.8029 0.4136 0.615 0.5333 0.7919 0.4253 0.6322 0.5
Counterfit 0.8007 0.4181 0.624 0.5105 0.7798 0.3855 0.6261 0.575
AR 0.8051 0.3932 0.5755 0.5063 0.7381 0.357 0.6381 0.5333
AR+PS 0.8078 0.4036 0.601 0.4979 0.743 0.4235 0.6276 0.525
EWE 0.7974 0.402 0.6049 0.5523 0.7727 0.3701 0.6182 0.4708
Aff2vec 0.7831 0.3893 0.5725 0.523 0.7655 0.4 0.6259 0.5125
EEArmin 0.7644 0.3805 0.5604 0.5397 0.7282 0.3561 0.6176 0.5792
SentiEmbs 0.7397 0.3633 0.5511 0.5356 0.67 0.3326 0.5418 0.475
JointAff2vec* 0.8035 0.4145 - - - - - -
VADProjG 0.8012 0.4149 0.6356 0.5625 0.7957 0.4244 0.6415 0.525
VADProjGBal 0.8083 0.4267 0.6414 0.5708 0.804 0.4262 0.6405 0.55

Table 8: Micro F1-scores for SVM and AttnNet with various embeddings as input: Experiments with GloVe as
baseline (Bold+Underline: highest; Bold: next highest); (*JointAff2vec: Chawla et al. (2019) reports results only
for SST2 and SST5; **SWE method is not applicable for GloVe)
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