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Abstract

Large pretrained multilingual models, trained
on dozens of languages, have delivered promis-
ing results due to cross-lingual learning capa-
bilities on a variety of language tasks. Further
adapting these models to specific languages,
especially ones unseen during pre-training, is
an important goal toward expanding the cover-
age of language technologies. In this study, we
show how we can use language phylogenetic
information to improve cross-lingual transfer
leveraging closely related languages in a struc-
tured, linguistically-informed manner. We per-
form adapter-based training on languages from
diverse language families (Germanic, Uralic,
Tupian, Uto-Aztecan) and evaluate on both syn-
tactic and semantic tasks, obtaining more than
20% relative performance improvements over
strong commonly used baselines, especially on
languages unseen during pre-training. 1

1 Introduction

Language models have now become the standard
for building state-of-the-art Natural Language Pro-
cessing (NLP) systems. Beyond monolingual mod-
els, large-scale multilingual models covering more
than 100 languages are now available, such as XLM-
R by Conneau et al. (2020) and mBERT by Devlin
et al. (2019), achieving competitive performance
across languages from a variety of families and
using various scripts.

Still, most of the 6500+ spoken languages in
the world (Hammarström, 2016) are not covered
–remaining unseen– by those models. Even lan-
guages with millions of native speakers like Lin-
gala (with 15-20 million speakers in central Africa,
mostly D.R. Congo) or Bambara (spoken by around
5 million people in Mali and neighboring countries)
are not covered by any available language models
at the time of writing.

1Code and data are publicly available: https://github.
com/ffaisal93/adapt_lang_phylogeny

A recent line of work (see §2) has shown that
these large multilingual language models (MLMs)
can be finetuned on individual languages to further
improve performance. Even better, they can be
even adapted to languages unseen during the pre-
training stage.2

This work focuses on using adapters, a popu-
lar framework for such adaptation that has been
proven successful for zero-shot and few-shot cross-
lingual transfer. In particular, we significantly im-
prove the adapter framework by drawing inspira-
tion from a simple insight: that the adapters of
related languages would likely need to perform
the same function, and thus adapters could be
trained leveraging multiple related languages. We
impose a phylogenetically-inspired tree hierarchy
for parameter-sharing between adapters and show
empirically that our approach leads to large im-
provements with experiments on three NLP tasks
on several language families.

2 Background

Adapting Large-Scale Models to Low-Resource
Languages Multilingual language models
(MLMs) can be used directly on unseen languages,
or they can also be adapted using unsupervised
methods. For example, Han and Eisenstein (2019)
successfully used continued training with masked
language modeling on unlabeled data to adapt an
English BERT model to Early Modern English
for sequence labeling. More recently, Muller et al.
(2021) employed the same strategy (enhanced
with transliteration to handle languages with
different scripts) to adapt models for several
unseen-during-pretraining languages.

Adapter Units Instead of fine-tuning the whole
model, a more promising approach for adaptation
uses dedicated units (adapter units) that are in-

2The potential of such approaches is conditioned on the
language’s script and data availability, of course.

https://github.com/ffaisal93/adapt_lang_phylogeny
https://github.com/ffaisal93/adapt_lang_phylogeny
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Figure 1: Incorporating phylogeny into neural models with adapters: starting with an unadapted model (a), current
practice uses language-specific adapters between layers (b). We instead impose a phylogeny-informed tree hierarchy
over adapters as in (c).

jected between the layers of the pre-trained model
(see example in Figure 1.b) and can be trained
on a new language, domain, or task (Vilar, 2018;
Houlsby et al., 2019a; Pfeiffer et al., 2020a,c).
There are two advantages in fine-tuning only these
adapter components. Since they consist of only a
small number of parameters, they can be adequately
trained with a small number of training examples.
In addition, as the pre-trained model remains in-
variant, they render catastrophic forgetting (French,
1999; Kirkpatrick et al., 2017) a non-issue.

Nevertheless, the application of these adapters
has so far followed a simple, straight-forward proto-
col: insert the adapters, and train them individually
for a new task or language. In our work, we investi-
gate how we can improve this process, by incorpo-
rating additional linguistic information. The core
idea is to incorporate phylogenetic information in
the adapters’ organization.

3 Phylogeny-Inspired Adaptation

Motivation Intuitively, given the similarities be-
tween two related lects (e.g. Catalan and Asturian),
one should exploit that relationship to inform the
adapters of both languages.

Thankfully, prior linguistic studies provide ex-
actly the information we need in the form of phy-
logeny trees. Relationships between languages are
typically represented as tree or network diagrams.
In the phylogenetic trees we will use, languages
are grouped based on their similarities; an inter-
nal node may (but not necessarily) correspond to
a hypothesized linguistic ancestor. While often
a phylogenetic network is more appropriate than
a tree (e.g. in cases of borrowing, or when two
languages influence each other in a bidirectional
manner), in this work we will focus on trees as a
first step towards phylogeny-inspired adaptation.

Implementation In a standard setting of adapt-
ing a language model from a source language to
another target language, the typical approach (e.g.
Pfeiffer et al., 2020c) is to have source and target
specific language adapters, trained separately on
unlabeled monolingual text with the masked lan-
guage modeling (MLM) objective (Devlin et al.,
2019). Then, one can train a task adapter on source
language task data, stacking it on top of the source
language adapter. At evaluation time, the source
language adapter is replaced with the target lan-
guage one.

As example, shown in Figure 1, consider three
languages: Spanish, Catalan, and Asturian. To
adapt a model for e.g. Named Entity Recogni-
tion (NER), the standard practice trains Spanish,
Catalan, and Asturian language adapters separately:
L:Spanish, L:Catalan, and L:Asturian. Using a
language with labeled NER data (e.g. Spanish)
then trains a task adapter T:Spanish using a stack
of adapters [L:Spanish, T:Spanish]. At infer-
ence time we can then use a stack with the appro-
priate language adapter to perform the task in that
language e.g., stack [L:Asturian, T:Spanish].

Our approach follows the same principles, but
adapters for multiple languages/genera/families
are organized in a hierarchy following phyloge-
netic information and trained jointly. To con-
tinue with our running example, consider that
all three languages belong to the Romance lan-
guage group of the Indo-European family. We
hence train five language type adapters jointly:
F:IndoEuro, G:Romance, L:Spanish, L:Catalan,
and L:Asturian which are stacked following the hi-
erarchy depicted in Figure 1(c). So, examples from
all IndoEuropean languages in our training mix are
used to train the F:IndoEuro adapter, G:Romance
is only trained on Romance languages data (if we
have e.g. English or Danish in our mix, these data
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are directed through a G:Germanic adapter), and
we also have language-dedicated adapters. We en-
sure that each training batch includes data from
a single language; so, for an Asturian batch we
train the following stack of adapters: [F:IndoEuro,
G:Romance, L:Asturian]. At inference time, we
also add the task adapter, trained as before on a
language with labeled data, on top of our language-
hierarchy adapters.

4 Experimental Setup

Tasks We experiment on three NLP tasks:

1. Dependency Parsing (DEP),

2. POS tagging (POS), and

3. Natural Language Inference (NLI).

For (1) and (2), we evaluate on 31 languages from
Universal Dependencies v2.9 (Zeman et al., 2021).
For (3), we use 4 indigenous low-resource lan-
guages from AmericasNLI (Ebrahimi et al., 2021),
an extension of XNLI (Conneau et al., 2018). The
choice of tasks and datasets is to ensure broad lan-
guage coverage and especially to ensure we can
study language families with only partial represen-
tation in the MLM pre-training stage.

Language Families We study dependency pars-
ing and POS-tagging on languages from the Ger-
manic, Uralic and Tupian families.3 For NLI, we
work with languages from Uto-aztecan and Tupian
families. See Appendix Table 7 for the complete
list of languages we use to train family, group and
language adapters.

Pretraining Corpora For language adapter train-
ing we collect corpora from a variety of sources.
See Appendix A for the complete list of our data
sources. As we experiment with a large number of
low-resource and endangered languages, the num-
ber of sentences per language ranges from 3000
sentences to 1 million (i.e. the high resource ones).
Following previous work, we experiment with up-
sampling for the low-resource languages in our
mix, to reduce data sparsity and to ensure they are
adequately modeled.

3To be accurate, the Germanic languages are a branch
(genus) of the Indo-European family, not a distinct language
family themselves.

Family Genus Tasks

Germanic East Germanic, West
Germanic

POS, DEP

Uralic Finnic, Hungarian,
Permic, Mordvinic,
Sami

POS, DEP

Tupian Tupari, Tupi-
Guarani, Munduruku

NLI, POS,
DEP

Uto-
Aztecan

Tepiman, Corachol,
Yaqui, Aztecan,
Tarahumaran

NLI

Table 1: Language families and genera we study.

Adapter Training For jointly training
phylogeny-inspired adapters, we select training
data from the language families/group presented
in Table 1. Irrespective of task and setting, we
train standard adapter architectures (Üstün et al.,
2020) leveraging the AdapterHub.ml (Pfeiffer
et al., 2020b) framework.

We train the task adapter by stacking it on top
of the hierarchical language adapters. We follow
the cross-lingual transfer setting of Pfeiffer et al.
(2020c) where we select a high-resource language
for task training: we use English for transfer for
all families except Uralic, for which we switch to
Estonian. In terms of base model choice, we use
mBERT for DEP, POS and XLM-R for NLI.4 For
dependency parsing we train using the objective
of Glavaš and Vulić (2021), which is a modified
variant of the standard deep biaffine attention de-
pendency parser (Dozat and Manning, 2017). For
all other tasks, we use simple classification heads
as in previous literature.

Baselines and Model Variations We evaluate
two common baselines for cross-lingual transfer:

1. [T]: Using only the task adapter trained on
some high-resource language; and

2. [LT]: Using the stack of target language and
task adapter.

We will denote our phylogeny inspired adapted
models as [FGLT]: jointly trained [Family,

Group, Target Language] stack and task adapter.
We also perform analyses and ablations without
some parts of the task: for instance, [FT] and [FGT]

4Results with both models for all tasks are available in
Appendix: B.



437

denote stacks using only family (and genus) and
task adapters without language-specific ones.

5 Results

General Observations We present our experi-
mental results covering all three tasks in Table 2,
showing average performance for the baselines and
our proposed method. We further split the results
for languages seen and not seen by mBERT dur-
ing pretraining. Compared to the [T] and [LT]

baselines, we observe substantial performance im-
provements in 10 out of 12 task-family specific
settings using [FGLT]. A visualization of all three
task results with a breakdown per language is also
available in Figure 2.

Looking at Figure 2, it is quite apparent how
phylogeny inspired adaptation uplifts the perfor-
mance of low-resource languages, especially the
ones unseen during pretraining. For example, we
evaluate dependency parsing on 3 such Germanic
languages (Faroese, Gothic and Swiss German).
All 3 languages benefit from the proposed adapta-
tion approach with maximum 16.46% improvement
over the best performing baseline for Gothic (see
Table 8).

This positive drift of performance becomes more
obvious for Uralic languages. Here, 8 out of 11 lan-
guages are extremely low-resource ones and unseen
during pretraining. We obtain improvements over
baseline in 7 out of these 8. We further observe
similar trends in POS-Tagging for both Germanic
and Uralic languages irrespective of the choice of
base language model (see Appendix Tables 8—11).

The other language families we focus on are
Tupian, Uto-Aztecan, comprised of indigenous
and very low-resource languages (Ebrahimi et al.,
2021). In case of Tupian languages on DEP-
Parsing and POS-Tagging, we observe model adap-
tation does not result in improvement over base-
lines on mBERT. However, when we use XLM-R
with model adaptation, average performance im-
proves all around for these two tasks. In addition,
for NLI, which is a task requiring higher semantic
capabilities, we conduct experiments on four lan-
guages from Uto-Aztecan and Tupian families. As
before, the combination of XLM-R with phyloge-
netic adaptation outperforms all other settings.

Among the baselines, the task-adapter-only base-
line [T] performs better in Germanic and Tupian
DEP-Parsing compared to the [LT] baseline. This
points out the known problems with negative inter-

ference (Wang et al., 2019, 2020, inter alia). On
the contrary, token classification tasks like POS-
Tagging gets significant benefits from using the
[LT] baseline. Compared to these, [FGLT] leads
to consistent performance improvements. Even
though our method does not uplift the result for
Tupian DEP-Parsing and POS-Tagging, it is worth
noting that it does not hurt either, unlike e.g. [T]
which hurts in DEP-Parsing (-0.3 points compared
to -5.1 points). Last, outperforming the aver-
age baseline of four indigenous American lan-
guages (Ebrahimi et al., 2021), points out the ef-
fective adaptation capabilities of phylogeny-based
adaptation. See Appendix B for detailed language
specific results.

True Zero-Shot Adaptation For a large num-
ber of extremely low-resource languages not seen
during the pre-training of current language models,
there may be no easily obtainable textual data to
even perform MLM training to train a language-
specific adapter. We explore such a scenario and
investigate whether the language-family adaptors
can be used instead of language-specific ones.

We simulate this scenario in two settings. First
for 3 Uralic languages: Skolt Sami (sms), Mok-
sha (mdf) and Karelian (krl). We discard their
data from the training set and train other adapters
jointly as before. During evaluation, we just use
a high-resource language adapter (L:Estonian) in-
stead of the missing language adapters. In addition,
we explore this scenario in 4 Tupian languages:
Akuntsu (aqz), Makuráp (mpu), Tupinambá (tpn)
and Kaapor (urb) where we actually do not have
any available training data (except (urb). So we
replace the language adapter with a higher-resource
one (L:Guajajára).

Results are presented in Table 3. Looking at
the rows with phylogenically inspired adaptation
[FGLT], we see 1.82% improvement on average for
Tupian languages over the best performing baseline
([T]). Except Makuráp (mpu), all other 3 Tupian
languages benefit from using our family adapters.
Perhaps the most important result is the one on
Tupinambá (tpn) which gets drastically impacted
when using only baseline language adapter [LT](-
13.16% from [T]) but performs much better with
[FGLT](+9.21% over [T]).

For Uralic languages, even our model ablations
(shown in Table 3) perform better than the base-
lines: these are [FT] and [FGT] where we get
rid of the language adapter part and just draw in-
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(a) Dependency Parsing

(b) POS tagging (POS)

(c) Natural Language Inference (NLI)

Figure 2: Visualizing three different task results across languages (marker size relative to MLM training data size).
In most cases, and especially in languages unseen during pre-training, our hierarchical phylogeny-inspired adapters
outperform the baselines.

Task (metric): Dep-Parsing (UAS) POS-Tagging (F1-score) NLI (Acc.)

Language-Family Germanic Uralic Tupian Germanic Uralic Tupian Uto-Aztecan Tupian
Language
(Unseen,

-Count
Total) (3,12) (8,11) (8,8) (3,12) (8,11) (8,8) (3,3) (1,1)

Baselines
BASE-LM+ [T] 52.5 (70.6) 36.9 (48.3) 24.1 51.1 (77.3) 41.9 (52.5) 9.9 39.6 45.3
BASE-LM+ [LT] 50.8 (69.2) 41.1 (51.4) 19.0 57.9 (79.6) 47.5 (56.7) 13.2 41.3 44.4

Phylogenically inspired
BASE-LM+ [FGLT] 60.1 (72.3) 50.5 (58.3) 23.8 73.3 (83.7) 54.7 (62.2) 12.6 41.8 46.3

Table 2: Average results per language family across different tasks. We report averages both for languages unseen
during pretraining, and for all languages in the mix (the latter in parentheses). Base language model (BASE-LM)
is mBERT for Dep-Parsing, POS-Tagging and XLM-R for NLI. We use the following language for task adapter
training: English for Germanic, Tupian and Uto-Aztecan and Estonian for Uralic.

ference from family and genre adapters. Specifi-
cally, [FGT] shows consistent improvement for all
3 Uralic languages, even though the model never
observed the target language texts during neither
base model pretraining nor adapter training.

6 Further Discussion

We perform additional ablation studies where we
show that our proposed approach provides sustain-
able performance in constrained settings with re-

duced parameter counts. In addition, we explore
data up-sampling for low-resource languages in lan-
guage families with large data imbalances across
the language members. This simple approach
points towards the further improvement scope with
limited data availability. Detailed analysis of both
these experiments are presented below.

Parameter Reduction Stacking multiple
adapters instead of a single language adapter
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Uralic (language adpater: est)
Model Training sms mdf krl avg

Baselines
MBERT+ [T] (est) 23.37 40.89 55.53 39.93
MBERT+ [LT] (est) 23.82 41.08 53.68 39.53
Phylogenically inspired
MBERT+ [FGLT] (est) 23.74 42.01 53.98 39.91
Ablations
MBERT+ [FT] (est) 25.81 39.37 57.18 40.78
MBERT+ [FGT] (est) 24.48 41.35 58.99 41.60

Tupian (language adpater: gub)
Model Training aqz mpu tpn urb avg

Baselines
MBERT+ [T] (eng) 27.50 23.97 22.37 24.59 24.61
MBERT+ [LT] (eng) 22.50 17.81 9.21 25.41 18.73
Phylogenically inspired
MBERT+ [FGLT] (eng) 27.50 19.86 31.58 26.78 26.43
Ablations
MBERT+ [FT] (eng) 21.25 17.81 14.47 17.76 17.82
MBERT+ [FGT] (eng) 22.50 17.12 19.74 22.13 20.37

Table 3: Dependency parsing with extremely low-
resource languages in the absence of language specific
adapters (true zero-resource scenario).

comes with extra parameter cost.5 To assess
whether we can integrate phylogenetic infor-
mation while keeping the adapter parameter
counts limited, we perform parameter reduction
using a constant factor. For example, con-
sider a single language adapter [L] which has
down/upword projections with L:Proj×Layer

parameters leading to a parameter count of
2×48×768. Instead we can use a dimension
reduced by a factor of 3 and add two extra adapters
([FGL]) without increasing the parameter count
2×(F:Proj+G:Proj+L:Proj)×FGL:Output; to be
accurate: 2×(16+16+16)×768. Contrast these with
our solution without this constant factor parameter
reduction, which will add 2×(48+48+48)×768

parameters to be learned.
The results, tested on Uralic languages for the de-

pendency parsing task, are reported in Table 4. Im-
portantly, we observe consistent performance im-
provement in [FGLT] over baseline [LT] irrespec-
tive of the parameter count. Among these two selec-
tions, the [FGLT] one with constrained parameter
count (885312) comes with a 1.29% performance
trade off which still outperforms the baseline by 4
points on average. Further looking into each indi-
vidual language result, we find an interesting trend
in Skolt Sami (sme). This is the only language
where performance drops in constrained [FGLT]

compared to the baseline which then drops further

5We note, though, that this additional cost is still a very
small fraction of the overall model’s parameter count.

when we move to the upscaled [FGLT]. Likewise,
we observe performance improvement in any lan-
guage using sustained model elevates further in
upscaled model.

Deep vs Wide Adapters Our FGLT setting
makes two important changes to the baseline LT

one. First, it stacks 3 language-related adapters
as opposed to a single one. Second, it shares
some of these adapters between languages. An
important question is whether the performance
improvements are due to stacking (making the
model deeper) or due to the parameter sharing
between languages. To answer this question, we
perform another ablation where we replace the
2×(F:Proj+G:Proj+L:Proj)×FGL:Output setting
with 2×(L:Proj+L:Proj+L:Proj)×LLL:Output.
Essentially, we create a stack of 3 language-specific
adapters.

We will first contrast the baseline [LT] (which
has a single wide adapter) to this deeper version
[LLLT]. We keep the parameter count equal be-
tween the two using the same parameter reduc-
tion as in the previous paragraph. We find that the
[LLLT] setting does indeed improve performance,
but only for high-resource languages, even exceed-
ing the upscaled phylogenetic setting [FGLT] (see
Table 4). For 7 out of 8 low-resource languages
unseen by mBERT, however, the performance de-
grades in [LLLT] compared to [LT]. Hence, we
conclude that deeper stacks of adapters are better
than a single wide adapter, but without the adapter
parameter sharing this only benefits high-resource
languages.

We want to further focus on this second point
about parameter sharing: in Table 4, compare rows
[LLLT] and [FGLT] under the reduced parameter
count. For all unseen languages, [FGLT] yields
significant improvements, leading to almost 5 UAS
points higher on average.

Effect of Upsampling For most of the Uralic,
Germanic and all of the Tupian and Uto-Aztecan
low-resource languages, we had very little amount
of training data available. As a result, this limited
data availability creates within-family data imbal-
ance, especially for Germanic and Uralic languages.
To address this issue, we perform a simple data
upsampling on all low resource languages from
these two families. Here, the upsampling factor
is inversely proportional to the per-language token
count. A language with very low word count is
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Uralic (DEP-Parsing)

MBERT-SEEN MBERT-UNSEEN
Model Training est fin hun koi kpv krl mdf myv olo sme sms avg

Adapter Parameter count: constrained (885312)
MBERT+ [LT] (est) 84.05 79.08 73.00 32.30 26.85 53.52 37.52 35.08 54.30 26.23 25.89 47.98
MBERT+ [LLLT] (est) 86.01 79.51 74.47 32.30 27.71 49.23 37.39 33.34 51.21 25.73 20.56 47.04
MBERT+ [FGLT] (est) 83.23 78.48 72.63 37.43 32.21 64.06 44.12 39.79 64.78 30.75 24.26 51.98
Adapter Parameter count: Upscaled (2655936 or, 3×885312)
MBERT+ [FGLT] (est) 84.20 79.59 73.10 38.14 35.55 65.77 44.52 42.77 67.94 31.62 22.78 53.27

Table 4: Effect of parameter reduction in dependency parsing (Metric: UAS) on Uralic languages.

Model Training sme koi fin* myv olo mdf hun* sms kpv est* krl avg

Original datasize: 10k 10k 1M 29k 19k 5k 1M 3k 13k 1M 5k
MBERT+ [FGLT] (et) 31.62 38.14 79.59 42.77 67.94 44.52 73.10 22.78 35.55 84.20 65.77 53.27

Upsampled: 100k 60k 1M 87k 116k 28k 1M 29k 40k 1M 36k
MBERT+ [FGLT] (et) 45.16 44.10 79.45 53.77 69.62 55.88 73.73 23.00 42.40 84.10 69.65 58.26

Table 5: Dependency parsing result (UAS) upsampling datasize (* columns are the high-resourced ones and not
up-sampled, the presented datasize is approximate sentence count per language)

Model Training fao kpv urb avg

DEP (task adpater: eng)

Baselines
MBERT+ [T] 72.80 24.15 24.59 40.51
MBERT+ [LT] 66.93 30.87 25.41 41.07
Phylogenically inspired
MBERT+ [FGLT] 75.70 42.40 26.78 48.29
Random Tree
MBERT+ [FGLT] 66.19 28.53 24.04 39.59

POS (task adpater: eng)

Baselines
MBERT+ [T] 80.70 24.02 4.79 36.50
MBERT+ [LT] 79.93 35.96 7.13 41.01
Phylogenically inspired
MBERT+ [FGLT] 88.88 41.74 7.10 45.91
Random Tree
MBERT+ [FGLT] 86.66 35.96 13.66 45.43

Table 6: Adapters arranged following a
phylogenetically-inspired tree perform signifi-
cantly better than ones following random counterfactual
tree. Parameter sharing between similar languages leads
to significantly better results for the unseen languages
in both tasks.

sampled in large numbers compared to the ones
with higher word count.

We use the upsampled dataset for all the depen-
dency parsing and POS tagging experiments we
perform on these two language families (Appendix
Table 2, 8, 9, 10, 11). The positive upsampling
effect is obvious when we compare the dependency
parsing results on Uralic upsampled dataset with
the one with original datasize in Table 5. Note that
we do not upsample the 3 high resource ones: Es-
tonian (et), Finnish (fi), and Hungarian (hu) and

experiment on the other languages, where we can
make a number of interesting observations.

First, though the original sentence count is same
(10k) for North Sami (sme) and Komi Permyak
(koi) the upsampled size is different for these two
languages: 100k and 60k respectively. The rea-
son behind this difference is, we perform word-
count based upsampling and the average sentence
length turns out to be less for koi thus assigned
with a low sampling factor. Hence, the one with
higher upsampled sentence count (sme) results in
large performance improvement of 13.54 points,
while it was the one with second lowest score in
the non-upsampled setting. Secondly, we observe
performance improvements for all low-resource
languages. It would be interesting to explore the re-
source dependent performance variation that could
be attributed to data sampling choices. For now,
we keep this open for future studies.

On the other hand, we cannot clearly claim that
extremely low-resource languages always benefit
from upsampling. For example, Skolt Sami (sms) is
the one with lowest data availability (3k) and low-
est original score (22.78). Upsampling more than
9x times results in only 0.22% improvement. We
suspect that data quality might play an important
role here, considering that we had to scrape the few
data available online for sms (wan), whereas the
corpus we use for sme was collected by Goldhahn
et al. (2012) following standard approaches and
with NLP applications in mind.
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Random vs Phylogenetic Tree One key hypoth-
esis of ours is that language family tree information
is beneficial for modeling low-resource languages.

To further solidify this claim, we compare
adapters based on a linguistically-informed tree
(like the one we have been using in all previ-
ous experiments) to adapters based on a counter-
factual (hypothetical) language tree. We construct
a random language family hierarchy and train the
adapter stacks jointly like before instead of using
the phylogenetically informed ones. We make the
random tree structure typologically diverse while
keeping one low-resource language from either
Germanic (Faroese), Uralic (Komi Zyrian) or Tu-
pian (Kaapor) present in each newly defined genus
(see Table 15 in Appendix D for the random fam-
ily tree structure). In Table 6, we report results
in Dependency parsing and POS tagging tasks for
these 3 languages under each of these settings. The
results for dependency parsing are to a large ex-
tent conclusive: the adapters following the ran-
dom tree perform worse than the baselines, while
the phylogenetically-inspired ones are significantly
better. The random-tree adapters do indeed outper-
form the baselines for POS tagging, but again for 2
of the 3 low-resource languages fall short compared
to the phylogenetically-inspired ones. Curiously,
for Kaapor, this random-tree model outperforms all
other models, but all of them are still extremely bad
(with only an accuracy of 13% in the best case);
nevertheless, we will further investigate this result
in future work.

Indo-European Family Tree Going beyond our
original setup, we conduct one additional exper-
iment where we do joint-training on the whole
Indo-European language family as shown in Fig-
ure 1. The only difference is that essentially, by
adding a root adapter R we have a stack of four
jointly trained adapters [RFGL] (R:IndoEuro) in-
stead of just three (i.e. [FGL]). Interestingly, the
performance on the dependency parsing tasks gets
negatively impacted for almost all languages (see
Table 14). We hypothesize that this is due to
the inherent diversity of the Indo-European fam-
ily. Despite sharing a common ancestor (Proto-
Indo-European), the IE family groups that we work
with here (Germanic, Romance, Slavic, Celtic,
Greek, Indo-Aryan) are too typologically different
from each other, and forcing them to share a com-
mon root negates the gains of the group-specific
adapters. We plan to investigate this further in fu-

ture work.

7 Related Work

Continuous effort is being put to improve cross-
lingual transfer across languages as well as making
language models capable enough to go beyond high
resource domains. Recently, Wang et al. (2022),
proposed an approach to combine lexicons with
monolingual/parallel data for pretraining. It ex-
pands the modeling capability to thousands more
languages largely including under-represented lan-
guages with limited to zero corpus availability. It
is now proven that, pretraining on closely related
languages yields better result for zero-shot trans-
fer (Pires et al., 2019) and continued pretraining
on a larger number of languages leads to further
improvement (Fujinuma et al., 2022). However,
training on some specific languages can still hurt
the performance of other languages (Conneau et al.,
2020). As a result, it is crucial to prevent negative
inference while keeping the performance equitable
and robust across languages (Wang et al., 2019,
2020).

To make the performance robust across lan-
guages, it is important to identify how much lin-
guistic information is currently in place inside these
big multilingual models. Recent studies have done
investigation on this hypothesis by probing lan-
guage models for linguistic typology (Choenni and
Shutova, 2022; Stańczak et al., 2022) as well as
phylogheny (Rama et al., 2020). These studies
have measured phylogenetic distance and typologi-
cal similarity across languages so that we can make
informed cross-lingual transfer. In line with these
findings, (Zhao et al., 2021) has done experiments
to remove the language specific information by
stackable vector operations which further improve
the cross-lingual representation. One recent study
(Foroutan et al., 2022) dives further into identifying
language-neutral and language-specific subspace
inside the representation space of multilingual mod-
els and now it is proven that the shared representa-
tion space is the one helping to perform effective
cross-lingual transfer.

As opposed to the standard fine-tuning of large-
scale language models, a more focused trend is to
perform efficient parameter selection thus reduc-
ing the overall computation cost and carbon foot-
prints (Houlsby et al., 2019b). Adapters are such
highly customized light-weight neural network lay-
ers on top of base models. Because of this higher
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flexibility, there are studies already in place look-
ing into the adapter-level optimization according
to the nature of data and network layers (Moosavi
et al., 2022). In addition, using language specific
units in a modular fashion in the pre-training stage
was shown to be beneficial in recent work (Pfeiffer
et al., 2022).

8 Limitations and Future Work

While we already incorporated task evaluation on
a diverse set of language families ranging from ex-
tremely low resourced Uralic ones to indigenous
AmericasNLI (Ebrahimi et al., 2021) languages,
our experiments are still limited in terms of typo-
logical diversity. In future, we want to further ex-
tend the typological diversity of languages we use.
At the same time, we would like to democratize the
full force of language genetical properties in steps
beyond just finetuning thus making the resource
scarce languages more accessible.

9 Conclusion

In this work, we present an adapter-based approach
to leverage language phylogenetic information for
better cross-lingual adaptation. Our experiments
on a diverse set of tasks and languages show signif-
icant performance improvements over commonly-
used strong baselines. Even better, we show that
under the exact same adapter parameter count set-
tings, using smaller adapters but forcing adapter
sharing between genetically related languages im-
proves performance on true zero-resource scenar-
ios. These improvements are particularly stark for
languages unseen in the pre-training stage of large
multilingual language models, providing a direct
path towards better adaptation and language cover-
age for language technologies.
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A Dataset

Detailed data source with statistics are presented in
table 7.

B Language Specific Task Results

Detailed language specific task results are pre-
sented in table 8, 9, 10, 11, 12 and 13.

Dependency Parsing For dependency parsing,
we perform experiments on Germanic, Uralic and
Tupian languages. We observe, phylogeny based
joint training performs better for 10 out of 11 Ger-
manic and Uralic languages unseen by mbert. In
addition all of the Tupian ones are unseen by mbert
and joint training performs better than the language
based adapter baseline [LT]. Similar trend is visi-
ble in case of Germanic high resource languages
where using the language based adapter baseline
[LT] hurts the overall performance. Though, joint
training does not cross the performance threshold
of just using the task adapter baseline [T] in case of
majority high resource ones, it doesn’t do negative
interference like language adapter based baseline
either. At the same time, the performance improve-
ment for unseen low resource languages are signif-
icant while using joint training. Thus phylogeny
based joint training keeps a performance balance
across languages with diverse data availability.

POS Tagging For POS tagging task, we select
the same language and settings like before we used
in dependency parsing. In POS tagging, the lan-
guage adapter does not make negative interference
like it made in case of dependency parsing. How-
ever, using phylogny based joint training still per-
forms better than all the baseline in majority Ger-
manic and Uralic languages. In case of Tupian
languages, we see improvement using phylogeny
based adaptation in 4 out of 8 languages.

NLI Our NLI results are presented in table 12
and 13. In addition, we reprot the zero-shot base-
line results from (Ebrahimi et al., 2021) where the
pretrained language model was continually trained
on monolingual task language before training on
downstream english task data. In our adaptation
settings, we follow the [FGLT] combinations. Our
approach does better for low resource ones (i.e.)
while joint training results in optimal performance.

C Dependency Parsing on Indo-European
Family

The dependency parsing results comprising Indo-
European family branches are presented in table
14.

D Random Family Tree

In our random family tree construction, we se-
lect 9 languages from 9 different language family
branches. We group these languages into 3 genus
while keeping one language in each genus from
either Germanic, Tupian or Uralic language family
on which we report our experimental result. The
tree structer is presented in table 15.
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Family Genus Language ISO 639-3 Size Source

Germanic

North Danish dan 1M OSCAR (Ortiz Suárez et al., 2019)
North Faroese fao 300K (Goldhahn et al., 2012)
North Icelandic isl 1M OSCAR (Ortiz Suárez et al., 2019)
North Norwegian nor 1M OSCAR (Ortiz Suárez et al., 2019)
North Swedish swe 1M OSCAR (Ortiz Suárez et al., 2019)
West Afrikaans afr 120K OSCAR (Ortiz Suárez et al., 2019)
West German deu 1M OSCAR (Ortiz Suárez et al., 2019)
West English eng 1M OSCAR (Ortiz Suárez et al., 2019)
West Gothic got 4.4K Bible (wul)
West Low Saxon nds 95.5K (Siewert et al., 2020)
West Dutch nld 1M OSCAR (Ortiz Suárez et al., 2019)
West Swiss German gsw 100K (Goldhahn et al., 2012)

Tupian

Munduruku Munduruku myu 8.7K Bible (spl)
Tupi Guaraní Guaraní grn 26K (Chiruzzo et al., 2020)
Tupi Guaraní Simba Guaraní gnw 6.7K Bible (spl)
Tupi Guaraní Guajajára gub 33.9K Bible (spl)
Tupi Guaraní Mbya Guaraní gun 50.5K Bible (spl)
Tupi Guaraní Kaapor urb 9.3K Bible (spl)
Tupari Akuntsu aqz - -
Tupari Makuráp mpu - -
Tupi-Guarani Tupinambá tpn - -

Uralic

Finnic Estonian est 1M OSCAR (Ortiz Suárez et al., 2019)
Finnic Finnish fin 1M OSCAR (Ortiz Suárez et al., 2019)
Finnic Karelian krl 5K Bible (krl)
Finnic Livvi olo 19K (Boyko et al., 2022)
Hungarian Hungarian hun 1M OSCAR (Ortiz Suárez et al., 2019)
Mordvinic Moksha mdf 5K Bible (krl)
Mordvinic Erzya myv 29K (Rueter, 2018)
Permic Komi Permyak koi 10K (Goldhahn et al., 2012)
Permic Komi Zyrian kpv 13K (kpv)
Sami North Sami sme 10K (Goldhahn et al., 2012)
Sami Skolt Sami sms 3K (wan)

Uto-Aztecan

Aztecan Nahuatl nah 16K (Gutierrez-Vasques et al., 2016)
Corachol Cora crn 10.1K Bible (spl)
Corachol Huichol hch 8.9K (Mager et al., 2017)
Tarahumaran Rarámuri tar 14.7K (Bright and Brambila, 1976)
Tepiman Northern Tepehuan ntp 6.5K Bible (spl)
Tepiman O’odham ood 6.5K Bible (spl)
Tepiman Southern Tepehuan stp 7K Bible (spl)
Yaqui Mayo mfy 7K Bible (spl)
Yaqui Yaqui yaq 6.5K Bible (spl)

Table 7: Dataset statistics and sources of the language datasets we work with.
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Germanic

MBERT-SEEN MBERT-UNSEEN
Model Training afr dan deu eng isl nds nld nor swe fao got gsw avg

Baselines
MBERT+ [T] (eng) 69.83 76.65 78.27 89.95 73.90 56.86 79.49 81.47 83.09 72.80 28.20 56.43 70.58
MBERT+ [LT] (eng) 67.97 75.56 76.89 89.28 72.22 56.65 77.79 80.07 81.72 66.93 30.15 55.23 69.20
Phylogenically inspired
MBERT+ [FGLT] (eng) 68.34 76.26 77.13 89.56 73.51 61.50 78.64 80.30 81.87 75.70 46.61 57.94 72.28
Ablations
MBERT+ [LT] (eng) 63.41 69.39 71.22 79.97 63.77 56.51 72.11 72.03 75.03 64.85 38.69 50.32 64.78
MBERT+ [FLT] (eng) 68.26 76.10 77.47 89.38 73.10 62.40 78.52 80.39 82.12 75.05 46.02 57.81 72.22

Uralic
MBERT-SEEN MBERT-UNSEEN

Model Training est fin hun koi kpv krl mdf myv olo sme sms avg

Baselines
MBERT+ [T] (est) 83.67 78.51 73.42 29.08 24.15 55.53 40.89 36.45 56.65 29.34 23.37 48.28
MBERT+ [LT] (est) 83.95 79.41 73.10 34.68 30.87 63.41 39.23 37.58 63.10 31.85 28.18 51.40
Phylogenically inspired
MBERT+ [FGLT] (est) 84.10 79.45 73.73 44.10 42.40 69.65 55.88 53.77 69.62 45.16 23.00 58.26
Ablations
MBERT+ [LT] (est) 75.68 71.45 66.97 36.83 32.51 60.60 41.28 39.57 62.70 33.12 23.89 49.51
MBERT+ [FLT] (est) 83.72 78.84 73.78 37.31 34.55 68.13 50.13 47.24 68.95 41.71 24.63 55.36

Tupian
MBERT-UNSEEN

Model Training aqz arr gub gun mpu myu tpn urb avg

Baselines
MBERT+ [T] (eng) 27.50 33.82 26.07 9.11 23.97 25.46 22.37 24.59 24.11
MBERT+ [LT] (eng) 22.50 26.66 19.69 11.55 17.81 19.19 9.21 25.41 19.00
Phylogenically inspired
MBERT+ [FGLT] (eng) 27.50 26.01 28.46 10.45 19.86 19.56 31.58 26.78 23.77
Ablations
MBERT+ [LT] (eng) 21.25 24.20 23.78 10.30 15.75 23.62 18.42 26.50 20.48
MBERT+ [FLT] (eng) 25.00 26.45 26.66 9.86 17.12 20.30 19.74 22.68 20.97

Table 8: Dependency Parsing Task Results (base model: MBERT, metric: UAS).
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Germanic

XLM-R-SEEN XLM-R-UNSEEN
Model Training afr dan deu eng isl nds nld nor swe fao got gsw avg

Baselines
XLM-R+ [T] (eng) 68.36 74.82 77.07 85.00 74.36 44.73 77.01 79.66 81.94 70.20 25.04 42.87 66.75
XLM-R+ [LT] (eng) 69.78 76.38 78.54 87.22 76.12 56.60 78.70 81.43 83.46 74.17 23.47 56.37 70.19
Phylogenically inspired
XLM-R+ [FGLT] (eng) 69.74 76.56 78.00 87.38 75.80 58.54 78.68 81.33 83.31 73.47 38.18 63.09 72.01
Ablations
XLM-R+ [LT] (eng) 67.67 73.73 75.52 83.65 73.30 53.16 76.33 78.65 80.86 68.68 32.45 55.40 68.28
XLM-R+ [FLT] (eng) 69.66 76.41 78.11 87.29 75.97 57.63 78.75 81.49 83.44 73.67 36.88 62.53 71.82

Uralic
XLM-R-SEEN XLM-R-UNSEEN

Model Training est fin hun koi kpv krl mdf myv olo sme sms avg

Baselines
XLM-R+ [T] (est) 82.02 78.59 73.16 31.94 30.25 61.47 34.41 34.46 56.45 26.27 31.07 49.10
XLM-R+ [LT] (est) 84.25 80.11 74.72 33.37 31.31 65.03 33.62 31.91 58.47 25.72 28.25 49.71
Phylogenically inspired
XLM-R+ [FGLT] (est) 83.39 79.40 73.61 40.76 39.00 67.84 37.71 38.66 67.07 29.11 31.21 53.44
Ablations
XLM-R+ [LT] (est) 81.67 77.80 72.14 33.85 30.71 62.57 30.18 33.44 63.44 23.96 30.33 49.10
XLM-R+ [FLT] (est) 83.22 79.41 74.05 39.93 38.12 66.52 37.25 38.20 66.20 28.23 31.73 52.99

Tupian
XLM-R-UNSEEN

Model Training aqz arr gub gun mpu myu tpn urb avg

Baselines
XLM-R+ [T] (eng) 33.75 29.47 17.40 3.95 24.66 30.63 19.74 25.14 23.09
XLM-R+ [LT] (eng) 32.50 28.99 17.88 3.96 21.92 27.68 22.37 24.86 22.52
Phylogenically inspired
XLM-R+ [FGLT] (eng) 27.50 28.52 28.51 3.84 23.29 28.41 25.00 28.69 24.22
Ablations
XLM-R+ [LT] (eng) 27.50 29.25 19.40 3.38 21.23 26.57 28.95 19.40 21.96
XLM-R+ [FLT] (eng) 23.75 28.82 23.59 3.50 19.86 28.04 23.68 26.50 22.22

Table 9: Dependency Parsing Task Results (base model: XLM-R, metric: UAS).
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Germanic

MBERT-SEEN MBERT-UNSEEN
Model Training afr dan deu eng isl nds nld nor swe fao got gsw avg

Baselines
MBERT+ [T] (eng) 85.08 87.55 85.04 95.50 83.18 69.53 87.88 90.49 89.74 80.70 14.50 58.18 77.28
MBERT+ [LT] (eng) 85.93 88.23 86.16 95.64 84.49 72.93 87.70 90.22 90.10 79.93 22.60 71.07 79.58
Phylogenically inspired
MBERT+ [FGLT] (eng) 86.09 88.31 86.27 95.66 84.83 74.54 88.06 90.50 90.10 88.88 56.03 74.86 83.68
Ablations
MBERT+ [LT] (eng) 85.03 87.40 84.68 94.23 82.89 71.82 86.37 88.18 88.61 82.31 47.23 70.25 80.75
MBERT+ [FLT] (eng) 86.08 88.36 86.08 95.62 84.45 73.86 88.15 90.52 89.95 88.15 55.47 73.65 83.36

Uralic
MBERT-SEEN MBERT-UNSEEN

Model Training est fin hun koi kpv krl mdf myv olo sme sms avg

Baselines
MBERT+ [T] (est) 89.39 82.85 70.07 32.22 24.02 62.79 46.53 43.79 62.67 40.15 23.21 52.52
MBERT+ [LT] (est) 89.49 83.29 70.38 46.78 35.96 70.78 46.55 41.26 65.37 44.46 29.03 56.67
Phylogenically inspired
MBERT+ [FGLT] (est) 90.88 84.93 69.98 49.01 41.74 79.17 60.69 57.69 73.75 55.27 20.32 62.13
Ablations
MBERT+ [LT] (est) 87.12 82.21 68.67 39.83 34.73 72.90 50.58 45.83 67.80 49.13 25.44 56.75
MBERT+ [FLT] (est) 90.55 83.99 70.45 41.96 36.64 76.76 52.89 50.25 70.62 51.28 20.56 58.72

Tupian
MBERT-UNSEEN

Model Training aqz arr gub gun mpu myu tpn urb avg

Baselines
MBERT-R+ [T] (eng) 9.60 3.06 23.02 0.37 4.95 15.52 18.02 4.79 9.92
MBERT-R+ [LT] (eng) 19.35 4.88 26.21 2.42 6.25 19.33 20.00 7.13 13.20
Phylogenically inspired
MBERT-R+ [FGLT] (eng) 12.28 5.44 26.32 0.23 5.62 19.49 24.39 7.10 12.61
Ablations
MBERT-R+ [LT] (eng) 13.79 3.65 26.92 0.21 3.57 17.37 17.86 6.60 11.25
MBERT-R+ [FLT] (eng) 18.64 3.71 26.62 0.20 4.68 21.01 21.31 7.43 12.95

Table 10: Parts of Speech Task Results (base model: MBERT, metric: F1).
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Germanic

XLM-R-SEEN XLM-R-UNSEEN
Model Training afr dan deu eng isl nds nld nor swe fao got gsw avg

Baselines
XLM-R+ [T] (eng) 87.27 89.14 87.64 96.34 85.64 55.77 87.75 91.15 91.49 81.29 16.50 47.67 76.47
XLM-R+ [LT] (eng) 87.25 89.05 87.53 96.36 85.55 70.21 87.73 91.12 91.35 87.16 15.41 66.37 79.59
Phylogenically inspired
XLM-R+ [FGLT] (eng) 86.98 88.94 88.09 96.44 85.62 74.31 87.94 91.11 91.35 88.85 41.75 76.52 83.16
Ablations
XLM-R+ [LT] (eng) 86.75 89.05 87.77 96.36 85.80 71.16 87.89 91.08 91.52 88.23 34.60 68.65 81.57
XLM-R+ [FLT] (eng) 86.92 89.00 87.86 96.40 85.78 72.39 87.97 91.17 91.38 88.81 39.23 73.43 82.53

Uralic
XLM-R-SEEN XLM-R-UNSEEN

Model Training est fin hun koi kpv krl mdf myv olo sme sms avg

Baselines
XLM-R+ [T] (est) 96.61 89.31 83.98 47.30 38.39 70.39 43.15 44.21 64.99 37.74 34.84 59.17
XLM-R+ [LT] (est) 96.64 89.30 83.61 46.97 39.57 74.55 41.89 43.95 65.86 36.58 33.32 59.29
Phylogenically inspired
XLM-R+ [FGLT] (est) 96.69 89.23 83.31 56.93 47.37 81.41 47.88 49.40 73.71 46.68 35.79 64.40
Ablations
XLM-R+ [LT] (est) 96.54 89.22 83.61 48.42 41.07 80.00 43.87 46.01 72.15 41.63 35.15 61.61
XLM-R+ [FLT] (est) 96.71 89.21 84.24 50.38 42.94 80.70 44.88 46.29 72.71 42.05 35.96 62.37

Tupian
XLM-R-UNSEEN

Model Training aqz arr gub gun mpu myu tpn urb avg

Baselines
XLM-R-R+ [T] (eng) 6.25 5.92 26.05 5.13 8.16 16.07 21.62 6.91 12.01
XLM-R-R+ [LT] (eng) 6.96 4.80 27.16 2.67 6.10 20.96 26.79 6.56 12.75
Phylogenically inspired
XLM-R-R+ [FGLT] (eng) 11.86 4.89 37.35 4.35 7.27 23.86 23.53 12.74 15.73
Ablations
XLM-R-R+ [LT] (eng) 15.83 5.36 27.05 4.26 9.85 13.91 26.67 8.11 13.88
XLM-R-R+ [FLT] (eng) 12.60 4.36 32.19 4.58 4.52 17.53 25.64 8.98 13.80

Table 11: Parts of Speech Task Results (base model: XLM-R, metric: F1).
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Model Training grn hch nah tar avg

Baselines
MBERT+ [T] (eng) 33.60 33.20 33.60 33.33 33.43
MBERT+ [LT] (eng) 34.40 33.20 33.60 33.73 33.73

Phylogenically inspired
MBERT+ [FGLT] (eng) 36.13 33.47 33.88 33.33 34.20
Ablations
MBERT+ [LT] (eng) 33.33 33.33 33.20 33.07 33.23
MBERT+ [FLT] (eng) 33.73 33.73 33.47 33.33 33.57

Table 12: NLI Task Results on AmericasNLI (Ebrahimi
et al., 2021) languages (base model: MBERT, metric:
ACC).

Model Training grn hch nah tar avg

Baselines
XLM-R+ [T] (eng) 45.33 38.27 42.01 38.40 41.00
XLM-R+ [LT] (eng) 44.40 38.53 47.83 37.47 42.06

Phylogenically inspired
XLM-R+ [FGLT] (eng) 46.27 37.60 47.15 40.67 42.92
Ablations
XLM-R+ [LT] (eng) 46.27 37.20 44.17 40.27 41.98
XLM-R+ [FLT] (eng) 47.87 38.27 45.66 38.27 42.52

zero shot w/ mlm baseline:
XLM-R+mlm (eng) 52.44 37.25 46.21 39.82 43.93

Table 13: NLI Task Results on AmericasNLI (Ebrahimi
et al., 2021) languages (base model: XLM-R, metric:
ACC).
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Celtic

Model Training bre wel gle gla glv avg

MBERT+ [FGLT] (gle) 23.48 23.17 27.60 20.60 13.84 21.74
MBERT+ [RFGLT] (gle) 17.63 21.32 28.40 17.92 9.08 18.87

Germanic

Model Training afr dan deu eng fao got gsw isl nds nld nor swe avg

MBERT+ [FGLT] (eng) 69.18 76.51 77.79 90.34 76.86 48.28 65.30 73.25 54.88 78.86 81.20 82.59 72.92
MBERT+ [RFGLT] (eng) 63.79 70.82 70.75 84.52 65.79 41.63 53.81 66.55 49.59 70.98 73.99 76.07 65.69

Indic

Model Training bho ben hin mar san urd xnr avg

MBERT+ [FGLT] (mar) 16.61 54.69 19.55 58.25 23.67 14.72 32.42 31.42
MBERT+ [RFGLT] (mar) 18.50 31.25 18.55 49.76 17.42 10.61 30.63 25.24

Iranian

Model Training fas kmr avg

MBERT+ [FGLT] (fas) 91.07 41.64 66.35
MBERT+ [RFGLT] (fas) 86.02 36.95 61.49

Romance

Model Training cat spa fre fro glg ita lig nap por rum avg

MBERT+ [FGLT] (spa) 90.63 92.44 84.25 58.09 74.74 82.24 68.61 70.0 86.05 82.84 78.99
MBERT+ [RFGLT] (spa) 80.50 82.04 72.94 42.40 68.76 71.60 58.98 50.0 73.48 68.79 66.95

Slavic

Model Training bel bul chu ces hrv orv pol qpm rus slk slv srp avg

MBERT+ [FGLT] (rus) 77.28 79.98 32.25 78.35 79.17 62.26 80.39 62.57 77.83 82.07 81.48 80.31 72.83
MBERT+ [RFGLT] (rus) 68.77 69.54 28.54 67.72 68.69 55.96 68.59 49.13 65.93 69.05 71.39 72.08 62.95

Table 14: Dependency Parsing Task Results on Indo-European language family (base model: MBERT, metric: UAS).

Family Genus Language (Original Family) ISO 639-3

Random

R1 Bulgarian (Slavic) bul
R1 Irish (Celtic) gle
R1 Kaapor (Tupian) urb

R2 Basque (Language Isolate) baq
R2 Komi Zyrian (Uralic) kpv
R2 Telugu (Dravidian) tel

R3 Faroese (Germanic) fao
R3 Hebrew (Semitic) heb
R3 Hindi (Indic) hin

Table 15: Random Language Family construction.


