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Abstract

Recently, emerging approaches have been pro-
posed to deal with robotic navigation problems,
especially vision-and-language navigation task
which is one of the most realistic indoor navi-
gation challenge tasks. This task can be mod-
elled as a sequential decision-making problem,
which is suitable to be solved by deep reinforce-
ment learning. Unfortunately, the observations
provided from the simulator in this task are
not fully observable states, which exacerbate
the difficulty of implementing reinforcement
learning. To deal with this challenge, this pa-
per presents a novel method, called as attentive
variational state tracker (AVAST), a variational
approach to approximate belief state distribu-
tion for the construction of a reinforced navi-
gator. The variational approach is introduced
to improve generalization to the unseen envi-
ronment which barely achieved by traditional
deterministic state tracker. In order to stabilize
the learning procedure, a fine-tuning process
using policy optimization is proposed. From
the experimental results, the proposed AVAST
does improve the generalization relative to pre-
vious works in vision-and-language navigation
task. A significant performance is achieved
without requiring any additional exploration in
the unseen environment.1

1 Introduction

Reinforcement learning (RL) has become a cru-
cial and successful solution in many sequential
decision-making problems, such as video game
playing AI (Bellemare et al., 2013) and robotic
control (Todorov et al., 2012). In theory, RL al-
gorithms are designed for solving problems under
the assumption of Markov decision process (MDP),
which means that the observation provided from
the environment needs to exactly represent the com-
plete state information of the environment (Chien

1The dataset, simulator and training code are publicly avail-
able at: https://github.com/NYCU-MLLab/

et al., 2021). However, most of the real-world
problems, such as bridge-playing AI, dialogue sys-
tems (Rohmatillah and Chien, 2021b; Hsu et al.,
2021; Rohmatillah and Chien, 2021a), autonomous
driving, and first-person navigation (Kempka et al.,
2016), can not be directly modeled as Markov de-
cision processes, because of the incomplete state
information. For example, in dialogue task, sys-
tem does not have an access to the user goal (Jang
et al., 2022). In order to improve the generaliza-
tion, partially observable Markov decision process
(POMDP) (Åström, 1965) was designed to model
the process in which the agent does not have access
to observe complete state information.

In case of vision-and-language navigation (VLN)
task, the problem formulation is considered as
POMDP problem, as the agent does not receive
full information about the state. It only receive the
information about the images of surroundings and
the texts which describe the navigation task and
agent pose information. There is no information
which explicitly tells about agent and goal location
coordinates. Furthermore, as each observation is
unique and complex in the VLN task, the common
methods which turn POMDP problem into MDP
problem by aggregating the observations and es-
timating the belief states do not work very well.
Aggregation methods usually use either a frame-
stacking trick (Mnih et al., 2015) or a recurrent
neural network (Hausknecht and Stone, 2015) to
aggregate the history observation or the belief state
information. These methods mostly work only for
either computer vision or natural language process-
ing tasks by considering sufficient information pro-
cess (Striebel, 1965) assumption as well as Bayes
theory (Igl et al., 2018; Lee et al., 2020). Mean-
while, the VLN task requires agent to consider both
domains to solve the problem.

Motivated by the aforementioned issues, this
work formulates VLN task as a POMDP problem
and solves it by using RL algorithms. We propose a

https://github.com/NYCU-MLLab/AVAST_Attentive_Variational_State_Tracker_for_Vision-and-Language-Navigation
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new method named as Attentive VAriational State
Tracker (AVAST) to estimate the belief state dis-
tribution of the complex observations in the VLN
task. AVAST follows sufficient information process
assumption to reduce VLN task into an MDP prob-
lem. By using variational inference approach, the
generalization property of the belief state sampled
from AVAST is accordingly held. Based on the ex-
periment result, the proposed method can achieve
better performance compared to the baselines due
to its generalization property. The organization of
this work is arranged as follows. In Sections 2
and 3, the recent approaches to deal with POMDP
state tracking and VLN task are discussed, respec-
tively. The proposed method, AVAST, is explained
in Section 4. The experimental setup and result are
described in Section 5. Finally, Section 6 shows
the conclusions.

2 Partially Observable Markov Decision
Process State Tracking

Real-world problems usually cannot directly be
modelled as MDP problems, because of the in-
formation limitation. Accordingly, the partially
observable Markov decision process (POMDP)
(Åström, 1965) is fitted to implement an agent
decision process in presence of incomplete state
information. In general, a POMDP problem can
be described by a 6-tuple set {S,A,P,R, γ,O}.
Identical to MDP problem, S,A,P,R, γ denote
the state, action, transition probability, reward, and
discount factor, respectively. The main difference
is that the agent can not observe the complete state
s ∈ S. It only receives an observation o ∈ Ω. Ac-
cording to the probability distribution O(s), the ob-
servation o is generated from the underlying system
state as o ∼ O(s). Generally, estimating a policy
distribution from an observation can be arbitrary
due to π(a|o;ϕ) ̸= π(a|s;ϕ). Following the suffi-
cient information process (Striebel, 1965), POMDP
state distribution can be approximated by using a
state tracker to produce the belief state distribu-
tion p(s|ICt ). ICt denotes the complete information
state at time t which represents the history informa-
tion from the beginning to time t. ICt is defined as,
ICt = ⟨ρ(s0),o1,a1, . . . ,at−1,ot⟩, where ρ(s0) is
a distribution over initial stated. Once the well-
trained state tracker is obtained, a belief state st
can be sampled from the distribution p(s|ICt ), and
RL agent will consider it as the system state to
generate the action at.

Traditionally, common sequential learning using
recurrent neural network (RNN) was applied to en-
code the observations history to produce an appro-
priate belief state as the input to agent (Hausknecht
and Stone, 2015). such method was likely to sum-
marize history by remembering features from the
past trajectories rather than actually estimating be-
lief states. Furthermore, naively applying RNN
would output suboptimal belief states due to the
deterministic computation without any distribution
constraint. Other approaches (Igl et al., 2018; Lee
et al., 2020) estimated the belief states by intro-
ducing Bayesian theory. Compared to the purely
RNN-based methods, introducing stochastic esti-
mation can improve generalization to complex en-
vironments. However, dealing with unseen environ-
ment is still a major stumbling block in designing a
state tracker. Therefore, different from the previous
works, in this paper, an attentive variational state
tracker is proposed to improve the state tracking
generalization for vision-language navigation.

3 Vision-and-Language Navigation

In general, the reinforcement learning agent which
is designed for VLN task (Anderson et al., 2018),
will not receive complete state information. Instead,
the observation o ∈ Ω, generated from the under-
lying system state according to the probability dis-
tribution o ∼ O(s), will be obtained by the agent
in VLN. The observations o can be separated into
three parts which are instructions, visions, and pose
information. Instructions are provided in natural
language (Chu et al., 2022) to guide the agent about
how to reach the target position ρgoal from the ini-
tial position ρ1. At different positions ρt, agent will
receive different panoramic visions and pose infor-
mation. Given such a process, VLN agent must
understand the current situation using the provided
instructions, panoramic visions and pose informa-
tion, and navigate to the target position. Formally,
an agent will receive one instruction U ∈ Ωu at
the beginning, and at the same time receive an ini-
tial panoramic vision V1 ∈ Ωv and an initial pose
information p1 ∈ Ωp, generated from the initial po-
sition ρ1. Then, it will receive a current panoramic
vision Vt ∈ Ωv, current pose information pt ∈ Ωp,
and reward rt ∈ R, generated from the current
position ρt at each time step t after acting an action
at−1.

Due to the difficulty of VLN task, the most in-
tuitive way to deal with this task is to apply imita-
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(a) pre-training stage

(b) fine-tuning stage

Figure 1: Framework for the agent with two steps opti-
mization in vision-and-language navigation task.

tion learning by utilizing expert trajectories through
behaviour cloning (Pomerleau, 1991; Fried et al.,
2018). However, behaviour cloning was prone to
the out-of-distribution trajectory once it was ap-
plied into the environment. Previous approach
used the adversarial inverse reinforcement learning
(AIRL) (Fu et al., 2018) which defined the reward
function based on the expert trajectories (Zhou and
Small, 2021) and used the learned reward func-
tion to train the agent through interactions with
the environment. Other works developed the cross-
modality matching (Wang et al., 2019) and model-
based RL (Wang et al., 2018) to improve RL agent
performance. Although previous methods have
shown promising results, all of them required the
exploration to the unseen environment to obtain
additional training data when being evaluated in
the unseen validation set. This scenario clearly
did not represent real-world implementation where
robot needed to provide appropriate actions with-
out requiring any explorations. Therefore, in this
work, the variational state tracking is proposed to
improve generalization. Therefore, the agent can
perform properly in unseen environments without
requiring any environment exploration.

4 Attentive State Tracker and Navigator

4.1 Framework overview
Figure 1 illustrates the framework of agent in VLN
task. The process of learning can be divided into
two stages, the pre-training (Figure 1(a)) and the
fine-tuning stages (Figure 1(b)). Meanwhile, the

common setup of VLN agent consists of three main
components including state tracker, agent policy,
and recurrent experience replay. The state tracker
involves an observation encoder, a summarization
module, and a tracking module. The observation
encoder takes the inputs of instruction U, vision
V, and pose information p to extract the obser-
vation features o. The summarization module is
constructed according to an attention mechanism
to summarize the given instruction to the meaning-
ful representations for the agent. Then, the agent
will pay more attention to the components of in-
struction which have higher attention score. Lastly,
the tracking module can be implemented in either
deterministic or stochastic way.

This paper presents two kinds of state trackers,
deterministic and stochastic tracking module which
are named as the attentive state tracker (AST) and
the attentive variational state tracker (AVAST), re-
spectively. AST is similar to the state tracker used
in some of the prior works (Fried et al., 2018;
Wang et al., 2019; Zhou and Small, 2021). Mean-
while, AVAST is a new state tracker that is pro-
posed in this work. In a common VLN setup, an
agent can be designed either using sequence-to-
sequence (Seq2Seq) or RL agent by fine-tuning
the Seq2Seq model through interactions with the
environment. As shown in the figure, a Seq2Seq
agent will be used in the pre-training stage based on
the behavior cloning to provide stable state tracker
which will carry out a stationary state representa-
tion. Meanwhile, in the fine-tuning stage, REIN-
FORCE (Williams, 1992) is implemented to im-
prove the performance. Due to POMDP property
in VLN task, the transition information {ot,at, rt}
stored in the experience replay is dependent on the
previous trajectories because of the incomplete in-
formation provided by the environment. Therefore,
a recurrent experience replay is used to replace
standard experience replay which was commonly
used in MDP task.

4.2 Observation encoder

Both AST and AVAST involve an observation en-
coder that will extract meaningful features from
[U;Vt;pt]. The natural language instruction ma-
trix is denoted as U = [u1, . . . ,ul, . . . ,uL]

⊤,
where ul is a word embedding from GloVe (Pen-
nington et al., 2014) to represent the l-th word in
the instruction and L is the length of the instruc-
tion. We feed the instruction matrix U into a re-
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current model fu(·) to obtain the initial context
Hu = [hu

1 , . . . ,h
u
l , . . . ,h

u
L]

⊤, and send the last
hidden feature state hu

L into a fully-connected net-
work gτ (·) to capture the initial trajectory informa-
tion hτ

0 as follows

hu
1 = fu (u1,h

u
0)

...

hu
L = fu

(
uL,h

u
L−1

)
hτ
0 = gτ (h

u
L) .

(1)

The panoramic vision Vt is a representation of 36
first-person camera view images at time step t, and
it is denoted as Vt = [vt,1, . . . ,vt,i, . . . ,vt,36]

⊤,
where vt,i is a vision feature to represent the i-
th camera view image at time step t. The vision
feature vt,i = [vResNet

t,i ;vOrientation
t,i ] is a concatena-

tion of an image feature vResNet
t,i and an orienta-

tion feature vOrientation
t,i . An image feature vResNet

t,i

is a 2048-dimensional vector extracted from a pre-
trained ResNet-152 model (He et al., 2016), and
an orientation feature is a 128-dimensional vec-
tor that repeats [sinαt,i, cosαt,i, sinβt,i, cosβt,i]
32 times representing environmental views where
αt,i and βt,i are the relevant heading and elevation
to the current camera pose, respectively. The vi-
sion embedding evt is extracted by a cross-attention
(Vaswani et al., 2017) module. This paper uses
trajectory information hτ

t−1 from the state tracker
as a query to attend the panoramic vision Vt using
parameters {Wq

v,Wk
v} via

evt = fv
(
Vt,h

τ
t−1

)
= (Softmax(q⊤

v Kv) ·Vt)
⊤

(2)
where qv = hτ

t−1W
q
v, Kv = VtW

k
v . The pose

information pt represents the current camera pose,
and it is an 128-dimensional vector that repeats
[sinαt, cosαt, sinβt, cosβt] 32 times. αt and βt
are the absolute heading and absolute elevation of
the agent. To calculate the pose embedding ept , we
feed the pose information pt into a fully connected
network fp(·) in a form of

ept = fp (pt) . (3)

4.3 Attentive variational state tracker
After the raw features [U;Vt;pt] are encoded into
[Hu; evt ; e

p
t ], these encoded features are fed into

the tracker, which is constructed by an attentive
summarization module for instructions Hu and a
stochastic tracking module for vision and pose in-
formation [evt ; e

p
t ]. The tracker will generate the

belief state st = [sut ; s
τ
t ] and the trajectory informa-

tion hτ
t at each time step t. The attentive summa-

rization module aims to summarize the instruction
from initial context Hu into context belief state sut
to inform which words should the agent pay more
attention. Next, the agent takes the context belief
state sut as a part of consideration to predict the
action at at each time step t. In order to do so,
the summarization module is constructed based on
the attention mechanism. The trajectory informa-
tion hτ

t can be used as the query to attend over
the instruction Hu, and the word representation
hu
l can be weighted by the attention weight. Then,

the weighted sum is treated as the context belief
state sut . The procedure for generating the context
belief state can be formulated using parameters
{Wq

u,Wk
u,W

v
u} via

sut = gu (H
u,hτ

t ) = (Softmax(q⊤
uKu) ·Vu)

⊤

(4)
where qu = hτ

tW
q
u, Ku = HuWk

u, Vu =
HuWv

u. Considering the sufficient information
process (Striebel, 1965), the belief state st is es-
timated based on the complete information state
ICt . In VLN task, the observation ot can be divided
into, instruction U, vision Vt, and pose informa-
tion pt, and the previous action information at−1

can be implied by the current pose information pt.
So, the complete information state ICt in VLN can
be reshaped as follows

ICt = ⟨ρ(s0),U,V1,p1,V2,p2, . . . ,Vt,pt⟩.
(5)

The tracking module aims to generate the track-
ing belief state sτt based on the complete informa-
tion state ICt . Referring to some prior methods
(Hausknecht and Stone, 2015; Lee et al., 2020),
approaches for generating tracking belief state can
be divided into two main methods, aggregation and
estimation. In this work, we build two kinds of
tracking model by using deterministic aggregation
and stochastic estimation, which can be constructed
by LSTM and Variationl Recurrent Neural Network
(VRNN) (Chung et al., 2015) respectively. Both
methods equip an aggregation module gτ to en-
code the history into trajectory information hτ

t to
represent the complete information state ICt . The
aggregation modules can be generally expressed as

hτ
t =

{
gτ0 (h

u
L) t = 0

gτ (o≤t) t > 0
(6)

where o≤t = {o1, . . . ,ot}.
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The tracking module constructed by LSTM is
a straightforward and deterministic method to ag-
gregate the history information. This method has
also been proposed to address POMDP problem
(Hausknecht and Stone, 2015). gLSTM

τ denotes
aggregation module gτ constructed by a LSTM
model, and it is denoted as. The LSTM tracking
module will directly treat the hidden feature state
hτ
t from the aggregation module as the belief state

sτt . In the implementation, the initial hidden and
cell feature-state of the LSTM aggregation module
gLSTM
τ are both initialized from the last hidden and

cell feature-state of the instruction LSTM encoder
fu to memorize the guided information. The pro-
cedure of generating a tracking belief state based
on LSTM is formulated by

hτ
t =

{
gτ0 (h

u
L) t = 0

gLSTM
τ

(
[evt ; e

p
t ] ,h

τ
t−1

)
t > 0

sτt = hτ
t .

(7)

In order to improve model generalization, we
propose the stochastic version of tracking mod-
ule which is constructed by using VRNN. It will
estimate the distribution p(sτt |ICt ) which will be
sampled in every turn. Same as the original VRNN
(Chung et al., 2015), there also exists an aggre-
gation module gVRNN

τ to encode the trajectory in-
formation in this tracking module. Similar to the
LSTM tracking module gLSTM

τ , the embedding of
the last hidden feature-state hu

L from the instruction
LSTM encoder fu is used to be the initial trajec-
tory information hτ

0 = gτ0 (h
u
L) for the aggregation

module. However, the input of gVRNN
τ is different

from gLSTM
τ . The input of gVRNN

τ includes not only
the vision evt and pose information ept but also the
tracking belief state sτt to record the latent variable,
sampled from the tracking belief state distribution.
Identical to the LSTM tracking module, the com-
plete information state ICt can be represented as the
trajectory information hτ

t . The aggregation module
in VRNN (Chien and Wang, 2022; Chien et al.,
2017; Chien and Tsai, 2021) is also constructed by
a LSTM model and can be expressed by

hτ
t =

{
gτ0 (h

u
L) t = 0

gVRNN
τ

(
[evt ; e

p
t ; s

τ
t ] ,h

τ
t−1

)
t > 0.

(8)

To allow the sampling of tracking belief state sτt
at each time step t, VRNN aims to approximate
the belief state distribution. The variational in-
ference will sample a current belief state sτt from

the posterior based on the current observation and
previous trajectory information hτ

t−1 from the ag-
gregation model gτ . Furthermore, we also need to
build a prior distribution and conditional likelihood
to reconstruct the observation for the self-learning
criterion as shown in Eq. (16). The calculations
of prior, posterior and likelihood using this VRNN
are yielded by

prior:p(sτt |o<t, s
τ
<t) = p(sτt |hτ

t−1) (9)

post:q(sτt |o≤t, s
τ
<t) = q(sτt | [evt , e

p
t ] ,h

τ
t−1)

(10)

likel:p(ot|sτ≤t,o<t) = p(vt,̂i|s
τ
t ,h

τ
t−1) (11)

where vt,̂i = [vResNet
t,̂i

;vOrientation
t,̂i

] is the intention
vision embedding. Agent will change its current
perspective from i to î before it moves to the next
position at each time step. To provide stationary
state representation, both AST and AVAST will
be pre-trained based on a Seq2Seq agent. AST
can be constructed with an attentive summarization
module, a tracking module constructed by LSTM,
and the observation encoders mentioned previously.
The objective of AST pre-training is shown by

Jπ = E(ot,a⋆
t )∼D [π (a⋆t | [sut ; sτt ])] (12)

where

sτt = hτ
t = gLSTM

τ (ot,h
τ
t−1). (13)

Different from AST, AVAST replaces the LSTM
tracking module in AST with a variational track-
ing module using VRNN (Chien and Wang, 2019).
The objective Jπ for pre-training AVAST can be
expressed in a form of

E(ot,a⋆
t )∼D

[
Esτt ∼q(sτt |ot,hτ

t−1)
[π (a⋆t | [sut ; sτt ])]

]
(14)

using

hτ
t−1 = gVRNN

τ

([
ot−1; s

τ
t−1

]
,hτ

t−2

)
. (15)

Rather than learning the signal which only depends
on the downstream task for the LSTM tracking
module, VRNN has an additional learning signal
to jointly enhance the performance for the tracking
belief state representation. The evidence lower
bound JELBO can be derived as shown in Eq. (16)
to be the additional learning criterion for VRNN
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Algorithm 1: Pre-training state tracker

Preprocess R2R dataset D
Initialize state tracker parameters ψ
Initialize Seq2Seq agent parameters ϕ
while not converged do

for each {U,V1:T ,p1:T ,a
⋆
1:T } ∈ D do

get Hu based on Eq. (1)
get ev1:T , e

p
1:T based on Eqs. (2)(3)

get su1:T based on Eq. (4)
if state tracker is AVAST then

get sτ1:T based on Eqs. (8)(11)
update ψ,ϕ based on
Eqs. (14)(16)

end
if state tracker is AST then

get sτ1:T based on Eq. (7)
update ψ,ϕ based on Eq. (12)

end
end

end

via

ln p(o≤T ) = ln

∫
p(o≤T , s

τ
≤T )

≥ Eq(sτ≤T |o≤T )

[
ln

p(o≤T , s
τ
≤T )

q(sτ≤T |o≤T )

]

= Eq(sτ≤T |o≤T )

[
T∑
t=1

ln p(ot|sτ≤T ,o<t)

−DKL (p (s
τ
t |oτ<t, s

τ
<t) ∥q (sτt |o≤t, s

τ
<t))

]
= JELBO.

(16)
Pre-training procedure of AST and AVAST based
on a Seq2Seq agent can be seen in Algorithm 1.

5 Experiments

5.1 Experimental setup

The proposed method was evaluated in VLN task
using room-to-room (R2R) dataset, which contains
pairs of path and instruction based on human an-
notation with Matterport3D simulator. It is built
based on Matterport3D dataset (Chang et al., 2017),
which is a large RGB-D dataset of building-scale
scenes. In order to meet the real-world situation,
the agent should be prevented from crossing the
wall and floor or jumping to a non-navigable place.
The action space in the simulator is based on a

pre-defined undirected graph over panoramic view-
points, G = ⟨P, E⟩. The agent’s actions are limited
in a way that they can only navigate to the view-
point, which is adjacent to the current viewpoint
based on the graph G. At each time step t, agent is
provided with next-step navigable viewpoints set
At in a form of

At = {ρt} ∪ {ρi ∈ P|⟨ρi, ρj⟩ ∈ E ∧ ρi ∈ Rt}
(17)

where ρt is the current viewpoint and Rt is the re-
gion of space enclosed by the left and right extents
of the camera view frustum at step t. The simulator
only define the navigable set At to the current view-
point ρt and handles how to update next viewpoint
ρt+1, camera heading α, and camera elevation β
after next viewpoint ρt+1 is selected by the agent
to navigate. Although the simplified discrete sim-
ulator provides a clear problem formulation, this
kind of low-level control interface is non-trivial to
be applied for training a navigation agent. More-
over, following the original approach (Anderson
et al., 2018), the simulator needs to aggregate two
possible ways to generate the visual observation,
from the raw RGB image and pre-trained ResNet
embedding to represent the current vision obser-
vation. This procedure makes the simulator to be
dependant on the huge Matterport3D dataset and
requires a complicated setup procedure.

Due to the aforementioned reasons, we build a
simpler VLN environment that is not dependant
on Matterport3D dataset and can be relatively eas-
ier to set up a simulation. Similar to the previous
approaches (Fried et al., 2018; Zhou and Small,
2021), the proposed VLN environment provides a
panoramic interface with discrete control for nav-
igation agents. The action space is different from
the original Matterport3D simulator in Eq. (17) in
a way of

At = {ρt} ∪ {ρi ∈ P|⟨ρi, ρj⟩ ∈ E}. (18)

As a result, the agent can navigate to a nearby
viewpoint, without any need to be enclosed by
the left and right extents of the camera view frus-
tum at step t. Furthermore, we directly build
a mapping table to look up the desired ResNet
embedding Vt at each time step t to eliminate
the dependancy on Matterport3D dataset. Dur-
ing setup, the VLN environment will initialize the
word embedding from GloVe (Pennington et al.,
2014) to transform natural language instructions
x = [x1, . . . , xl, . . . , xL] into instruction matrices
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(a) pre-training stage

(b) fine-tuning stage

Figure 2: Comparison of the results in unseen validation during pre-training and fine-tuning phases. Both pre-training
and fine-tuning experiments do not truncate the instructions or use the augmented data from Speaker-Follower. The
mean curve and standard deviation region are drawn by running the same experiment in multiple random seeds.

U = [u1, . . . ,ul, . . . ,uL] (Watanabe and Chien,
2015). The interface of VLN environment is de-
signed to be closer to the typical RL environment,
Gym. At the beginning of each episode, VLN en-
vironment provides instruction matrix U, vision
observation V1, pose information p1, and naviga-
ble viewpoint set A1. After the agent act an action
at, VLN environment will generate the next vision
observation Vt+1, pose information pt+1, naviga-
ble viewpoint set At+1, and reward rt. Reward rt
are defined as follows:

rt =

{
D(ρt−1, ρgoal)−D(ρt, ρgoal) t < T

1
[
D(ρt, ρgoal) ≤ 3

]
t = T

(19)
where D(ρi, ρj) denotes the shortest path distance
between locations ρi and ρj , and ρgoal denotes the
location of goal. For the evaluation metrics, this
paper consider two metrics which are navigation
error (NE) and success rate (SR). NE measures
the shortest path between the goal location and
final location of the agent’s path. SR measures the
average rate of the agent stopping within 3 meters
near to the goal location.

5.2 Experimental results

In order to evaluate the effectiveness of AVAST, we
highly focus on the unseen validation task, because
it represents more real-world scenario where the
agent frequently faces unseen environment during
implementation. To provide stationary state repre-
sentation for RL agent, both AST and AVAST were
initially trained based on Seq2Seq agent via be-
haviour cloning algorithm. The learning curves are
shown in Figure 2(a) where AVAST convincingly
outperformed AST indicated by higher success rate
and lower navigation turn over iterations. Next,
both AST+Seq2Seq and AVAST+Seq2Seq perfor-
mances were compared to the prior baseline meth-
ods, which are Speaker-Follower (SF) (Fried et al.,
2018) and Inverse Reinforcement Learning with
Natural Language Goals (LangGoalIRL) (Zhou
and Small, 2021). The performance of the pro-
posed method and baseline methods are shown in
Table 1. Based on the result, the generalization
improvement could be achieved by using AVAST,
indicated by the lowest navigation error and the
highest success rate compared to the baselines with
convincing performance gap.
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# Model NE ↓ SR ↑

1 SF†⋆ 7.07 31.2
2 LangGoalIRL†⋆ - 30.0

3 AST + Seq2Seq†⋆ 7.54 29.1
4 AVAST + Seq2Seq†⋆ 6.60 36.6

Table 1: Navigation errors (NE) and success rates (SR)
for different behavior cloning methods in VLN unseen
validation datasets. (†: trained without using augmented
data. ⋆: trained based on pure behavior cloning).

To enhance the agent performance further, the
model was fine-tuned using REINFORCE algo-
rithm (Williams, 1992). In this fine-tuning evalua-
tion, two previous approaches were introduced to
be the experiment baselines. The first is discrete
version of soft actor critic (SACD) (Christodoulou,
2019; Chien and Yang, 2021) which has shown im-
provement in the LangGoalIRL. The second is the
curriculum learning with the recurrent replay dis-
tributed DQN from demonstrations (R2D3) (Paine
et al., 2020) which we name it as recurrent experi-
ence replay with curriculum expert demonstrations
(RECED). The learning curves of fine-tuning pro-
cess are shown in Figure 2(b). Meanwhile, the final
evaluation result can be seen in Table 2. In the
last evaluation, an additional baseline, reinforced
cross-modal matching (RCM) (Wang et al., 2019)
which involved instruction truncation to improve
the performance is introduced. Although this trick
can improve learning efficiency, it is not really fit
to the real-world scenario. Accordingly, in our
main experiments in Table 1 and Table 2, we did
not truncate natural language instructions into a
certain length. However, in order to show the gen-
eralization of AVAST, the experiments under same
setting with RCM was conducted, and the results
are shown in Table 3. Based on these results, there
are four findings which are summarized as follows.

1. Variational state tracker provided better
generalization in unseen validation. From
the learning curve as shown in Figure 2(a), we
can notice that agent performed better than
the one using AST as a state tracker without
suffering overfitting issue due to the ability
of AVAST in providing more general state
representation in unseen validation. Further-
more, as shown in Table 1, AVAST+Seq2Seq
outperformed the methods which were purely
trained via behavior cloning algorithm.

# Model NE ↓ SR ↑

1 SF⋆ 6.62 35.5
2 LangGoalIRL† - 30.8
3 LangGoalIRL - 35.7

4 AST + SACD + RECED† 7.06 31.3
5 AST + REINFORCE† 6.92 34.4

6 AVAST + SACD + RECED† 6.44 36.7
7 AVAST + REINFORCE† 6.22 38.5

Table 2: Navigation errors and success rates for different
methods in VLN unseen validation datasets (†: trained
without using augmented data; ⋆: trained based on pure
behavior cloning).

# Model NE ↓ SR ↑

1 SF⋆ 6.62 35.5
2 RCM‡ 6.02 40.6
3 LangGoalIRL - 35.7

4 AVAST + REINFORCE 6.01 42.2

Table 3: Navigation errors and success rates for different
methods in VLN unseen validation datasets under the
scenario of truncating instruction (⋆: trained based on
behavior cloning, ‡: trained without intrinsic rewards).

2. Agent’s performance was improved via fine-
tuning based on RL algorithms, leading to
outperforming the baseline methods. We
can notice from Table 2, after fine-tuning the
pre-trained model, AVAST+REINFORCE per-
formed better compared to the other baseline
methods in unseen validation. This result in-
dicates that the model has successfully taken
advantage of exploration property in the RE-
INFORCE algorithm.

3. Introducing expert could not improve the
agent performance. As it can be seen from
Figure 2(b), the performance of both AVAST
and AST trained with expert demonstrations
in a progressive way did not improve the per-
formance. Instead, it degraded the agent per-
formance compared to those that were trained
with REINFORCE algorithm. This result in-
dicates that the distribution of the unseen en-
vironment is quite different compared to the
training environment.

4. Hard exploration issue led to poor state-
action value estimation for policy to learn.
We can notice from Figure 2(b), the curves of
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both AVAST and AST with SACD dropped
in the beginning due to poor value estimation
from the critic network. Once the critic net-
work was unable to provide a precise value
estimation, the policy would be led to a bad
direction, resulting in harmed performance.

6 Conclusions

This paper has presented attentive variational state
tracker to deal with the generalization issue in
vision-and-language navigation task. This method
developed a variational approach to fulfill the par-
tially observable Markov decision process where
the belief states were sampled to implement the
stochastic machine to improve the generalization
to unseen environments. The experimental re-
sults demonstrated that the policy optimization
using REINFORCE in combination of the pro-
posed AVAST outperformed the previous methods
in terms of navigation errors and success rates. The
generalization was assured by the evaluation in the
unseen environments.
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