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Abstract

In recent years, top-down neural models have
achieved significant success in text-level dis-
course parsing. Nevertheless, they still suffer
from the top-down error propagation issue, es-
pecially when the performance on the upper-
level tree nodes is terrible. In this research,
we aim to learn from the correlations in be-
tween EDUs directly to shorten the hierarchi-
cal distance of the RST structure to alleviate
the above problem. Specifically, we contribute
a joint top-down framework that learns from
both discourse dependency and constituency
parsing through one shared encoder and two
independent decoders. Moreover, we also ex-
plore a constituency-to-dependency conversion
scheme tailored for the Chinese discourse cor-
pus to ensure the high quality of the joint learn-
ing process. Our experimental results on CDTB
show that the dependency information we use
well heightens the understanding of the rhetori-
cal structure, especially for the upper-level tree
layers.

1 Introduction

According to the representative Rhetorical Struc-
ture Theory (RST) (Mann and Thompson, 1988),
a text can be presented as a hierarchical discourse
tree (DT) built on a set of elementary discourse
units (EDUs). Given a piece of text, RST-style
discourse parsing identifies such a DT with EDUs
serving as terminal nodes. Moreover, it labels the
rhetorical relations and nuclearity attributes associ-
ated with each non-terminal node of the DT. Due
to its far-reaching effects on text understanding and
downstream NLP applications, text-level discourse
parsing has been drawing more and more attention
in the past decade.

From the early bottom-up approaches (Feng
and Hirst, 2014; Ji and Eisenstein, 2014; Heil-
man and Sagae, 2015; Li et al., 2016; Braud et al.,
2017; Yu et al., 2018; Mabona et al., 2019) to
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the more recent top-down frameworks (Lin et al.,
2019; Kobayashi et al., 2020; Zhang et al., 2020,
2021; Koto et al., 2021), previous studies gradu-
ally switch from feature-based machine learning
methods to deep neural models and have achieved
particular success. Among current neural models,
top-down parsers, in most cases, perform better
than bottom-up ones due to their capability of cap-
turing global context information. Nevertheless,
due to the long-distance dependencies in between
textual units and the notorious lack of training data,
top-down text-level discourse parsing still faces the
following possible bottlenecks:

• At the initial parsing stage, top-down parsers
consider each entire text to determine the upper-
level DT nodes. However, the whole text segment
usually consists of diverse information, too much
for the machine to understand thoroughly. As
a result, our experimental statistics show that
the parsing performance decreases by about 30%
when the DT level is greater than 5.

• In RST-style constituency trees, there are far
fewer training instances for the upper-level dis-
course tree layers when compared with the lower-
level ones. For example, just as noted by Zhang
et al. (2020), among the 933 test instances in the
CDTB corpus, only 13 instances have a height of
8 or greater, occupying only about 1.3%.

• According to the above two points, on the one
hand, the incorrect decisions made for the upper-
level nodes may seriously impact the lower-level
ones due to error propagation. On the other, the
lack of upper-level training instances exacerbates
the impact of error propagation.

Facing the above challenges, some recent studies
have done certain preliminary explorations, hop-
ing to improve top-down parsing by expanding the
original small-scale training data (Kobayashi et al.,
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2021) or introducing global optimization objec-
tives (Zhang et al., 2021). Unlike previous work,
we aim to improve the accuracy of upper-level
node prediction to reduce error propagation for
better RST parsing performance. To achieve this
goal, we set our sights on discourse-level depen-
dencies, aiming at employing the dependencies in
between EDUs to dig out clues hidden within those
head EDUs that are conducive to the understanding
of rhetorical structures. Specifically, we cast dis-
course constituency tree (DCT) parsing as the main
task and discourse dependency tree (DDT) parsing
as the auxiliary one and joint the two tasks through
one shared encoder and two different decoders. In
this way, on the one hand, we enhance the EDU
representation with multi-task knowledge through
the shared EDU encoder. On the other, since the
converted DDTs derive from the manually anno-
tated DCTs, perceiving the dependencies between
EDUs will conversely stimulate the DCT parsing
model to produce better results, especially for the
upper-level DT nodes1.

2 Related Work

In the literature, previous work on discourse pars-
ing can be classified into two categories: bottom-up
and top-down approaches.

For a long time, many researchers manually ex-
ploited various lexical, syntactic, and semantic fea-
tures (Hernault et al., 2010; Joty et al., 2013; Feng
and Hirst, 2014) or automatically captured hidden
information (Li et al., 2014a, 2016) to compute the
probability distribution of relations between two
adjacent discourse units (DUs) and then selected
the two units with the highest probability to merge
into an upper-level unit. Recursively in this way, a
discourse constituency tree is created from bottom
to up. Besides, there are also some studies that cast
RST parsing as a transition action determination
process, where the discourse parser makes shift
or reduce action decisions in a greedy way to
determine whether to merge the current two DUs
or not (Ji and Eisenstein, 2014; Wang et al., 2017;
Braud et al., 2017; Yu et al., 2018).

Until recent years, top-down neural architectures
gained much more popularity. In the literature, Lin

1Although most of the existing conversion methods, in-
cluding ours, have irreversible problems (Morey et al., 2018),
that is, the reverse conversion of DDT to DCT structure is not
unique, but in most cases, the correlation between EDUs is
helpful for DCT parsing, especially for the upper nodes. This
point will be further analyzed in Subsection 5.3.

et al. (2019) proposed the first top-down sentence-
level discourse parser based on pointer nets, which
operates in a linear time. Zhang et al. (2020; 2021)
cast text-level discourse parsing as a top-down split
point ranking process and introduced an adversar-
ial method to optimize the parsing steps from a
global perspective. Kobayashi et al. (2020; 2021)
proposed parsing a document in three levels of
granularity (i.e., document-level, paragraph-level,
and sentence-level) and further introduced a semi-
supervised method to extend the original RST-DT
corpus for performance improvement. Notably,
some recent studies also proved the effectiveness
of pre-trained language models on discourse pars-
ing (Koto et al., 2021; Nguyen et al., 2021).

In general, compared with bottom-up parsing,
current top-down parsers obtain more outstanding
performance since they benefit from the global in-
formation of the entire article. However, the global
context information is known to be multifarious
and complicated. It is challenging for the top-down
parsers to grasp all the textual details accurately,
especially at the initial stage of parsing, which may
aggravate the issue of top-down error propagation.
In this work, we build our parser based on the
top-down framework of Zhang et al. (2020) and
explore tackling the above problem via discourse
dependency information.

3 Motivation

In order to make better choices at the initial stage
of discourse parsing to lay a good foundation for
succedent parsing of subtrees, we consider incorpo-
rating discourse-level dependencies. To support our
argument, we present an example in Figure 1 where
Figure (a) shows a native DCT tree2 and Figure (b)
shows the converted DDT structure corresponding
to the tree. Subsequently, our motivation comes
from the following two observations:

• First, compared to the constituency structure,
which joins EDUs with nuclearity and rhetori-
cal relations, the dependency structure represents
a more direct parent-child relationship between
EDUs. The dependency structure is more con-
ducive to weakening the hierarchical nature of
the RST constituency tree and shortening the dis-
tance between EDUs.

2For brevity, we omit the discourse rhetorical relations
and only present the nuclearity information (either Nucleus or
Satellite) of each non-terminal node in the DCT structure.
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Figure 1: Figures (a) and (b) denote the example DCT structure and the converted DDT structure, respectively.

• Second, as the example shows, our constituency-
to-dependency conversion method (described in
Subsection 4.2.1) ensures that each sub-DCT in
the tree corresponds to a unique single-rooted
sub-DDT in the dependency structure. In this
way, the rhetorical connection between two adja-
cent DUs is converted to a more straightforward
correlation between two sub-DDTs, or more nu-
ancedly, between their respective head EDUs. In
this case, we believe that the direct connection be-
tween head EDUs can provide valuable structural
or textual clues for better DCT parsing.

In short, the converted dependency arcs can help
reduce the complexity of DCT trees to some extent,
and the more direct connections between EDUs
could provide valuable clues for better parsing per-
formance, especially for the upper-layer tree nodes
with a deep hierarchy. On this basis, we propose a
multi-task learning approach to jointly learn DCT
and DDT parsing, aiming to enhance the discourse
representation via discourse dependencies for a bet-
ter understanding of the rhetorical structure.

4 Joint DCT and DDT Parsing

Adopting the multi-task strategy, our model simul-
taneously conducts discourse constituency parsing
and discourse dependency parsing by sharing the
EDU representations, where discourse constituency
parsing is the main task, and discourse dependency
parsing serves as the auxiliary one. The whole ar-
chitecture can be framed as an encoder-decoder
model that contains one encoder and two different
decoders, as illustrated in Figure 2.

4.1 Discourse Constituency Parsing

For DCT parsing, we follow Zhang et al. (2020)
to cast the discourse parsing task as a recursive
top-down split point selection process. The parsing

Split Point 
Encoder

Discourse 
Parsing

Dependency 
Parsing

EDUs 
e1~e5

EDU 
encoder

EDU rep.
s1~s5 enhance

Figure 2: Joint parsing of DCT and DDT structures.

model comprises three parts, i.e., EDU encoder,
split point encoder, and attention-based encoder-
decoder. Firstly, a bi-GRU network and the self-
attention mechanism are conducted over each EDU
text to obtain EDU representation. Then, the split
point encoder containing another bi-GRU network
and a CNN network with a window size of 2
will work on the achieved EDU representations
to model the representation for each split point be-
tween two adjacent EDUs. After that, the split
point representations are further fed into a stack-
augmented RNN decoder for discourse parsing. In
this work, we employ the publicly-available imple-
mentation3 of the parser of Zhang et al. (2020) for
DCT parsing. For details of the parsing process,
please refer to their paper.

4.2 Discourse Dependency Parsing

4.2.1 Discourse Dependency Trees Acquisition

In the literature, Hirao et al. (2013) and Li et
al. (2014b) have proposed two different methods to
convert from DCTs to DDTs automatically. Unlike
the method of Li et al. (2014b), different EDUs
in a sentence could have multiple heads outside
the sentence in the DDT structure of (Hirao et al.,
2013). In other words, their method often loses the
single-rooted tree for each sentence. In order to re-
duce the complexity of DDTs, Hayashi et al. (2016)
improve the method of (Hirao et al., 2013) by set-

3github.com/NLP-Discourse-SoochowU/
t2d_discourseparser
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Figure 3: Diagram of grandchild and sibling structures.

ting constraints to restrict EDUs in a sentence for a
single-rooted tree.

To our knowledge, all the abovementioned con-
version methods are applied on the RST-DT cor-
pus, while for the Chinese CDTB corpus, there
are few related studies. Different from RST-DT,
each sentence in the CDTB corpus occupies a com-
plete sentence-level discourse tree. Under this cir-
cumstance, a discourse dependency structure that
assigns each sentence with a single-rooted depen-
dency tree is more appropriate for the CDTB cor-
pus. Given this, we introduce a conversion method
tailored for the Chinese corpus as follows:

• For each tree node N , we take the head node of
its leftmost Nucleus child as its head node (noted
as H value); if no child is Nucleus, we take the
head of the leftmost child as the head of N .

• For each non-terminal node, if it maintains a
multi-nucleus relation, we follow the principle
of leftmost priority and treat the right child as a
Satellite node.

• For each leaf node, we pick the nearest Satellite
on the path from the leaf node to the root node
and define the head of the Satellite node’s parent
as its head. If there exists no such Satellite node,
the EDU is just the root of this dependency tree.

Following the above rules, the DCT structure
shown in Figure 1 is finally converted into a com-
plete dependency graph. As stated before, each
sentence in the CDTB corpus corresponds to an
independent sub-DCT. Similarly, using our method
for conversion, each sentence, or more broadly,
each sub-DCT, still yields a single-rooted sub-DDT
in the converted structure, which vastly reduces the
complexity of the resulting DDT structure.

4.2.2 Discourse Dependency Parsing

Concerning the dependency parsing module, we
refer to (Ma et al., 2018) on parsing syntactical de-
pendency based on a top-down neural architecture
and view the EDUs in a text as words in a sentence.
Unlike the parsing procedure in (Zhang et al., 2020)
which employs pointer nets to select split points

from top to down to build the DCT structure, DDT
parsing utilizes the pointer nets to select EDUs di-
rectly. Therefore, the split point encoding phase is
omitted during DDT parsing.

Having obtained the EDU representation vec-
tors, s1, . . . , sn, through the shared EDU encoder
described before, we use the stack-pointer network
with two kinds of subtree information (grandchild
and sibling) integrated for discourse dependency
parsing. The definitions of the grandchild and sib-
ling structures are described as follows, and their
diagrams are shown in Figure 3.

• grandchild structure: a pair of dependencies
connected head-to-tail. For the modifier m, the
parent of its head h is noted as its grand node g.

• sibling structure: a head word with two suc-
cessive modifiers. For the modifier m, the most
recent child s of its head node h is noted as its
sibling.

Figure 4 illustrates partial of the decoding proce-
dure. At the very beginning of the parsing process,
the stack only contains the root node. For the con-
venience of calculation, we set a virtual root node
$ pointing to the first node of the dependency tree,
and its representation is zero-initialized. At each
step of decoding, we pop out the top element of the
stack, noted as eh, and lookup for its sibling node
es and grandparent node eg from the converted
DDT structure, then the input of decoder is created
by summing up the representation vectors of them,
as shown in Equation 1. If there exists no sibling
or grandparent of eh, the value of ss or sg will be
assigned with zero vectors.

St = sh + ss + sg (1)

We use a uni-directional RNN as the decoder.
At each time step t, it receives the structure infor-
mation St as input and outputs the hidden vector
noted by ht. Then, the biaffine attention mecha-
nism is utilized to calculate the probability score eti
of each EDU as the dependence of the current unit.
Equations 2-4 show the details, where w, u, v and
b are parameters, denoting the attention weight of
the bi-linear term, the two linear terms, and the bias
term, respectively. It is worth noting that before
attention calculation, we let ht and si go through a
one-layer perceptron with elu activation function
for dimension reduction to reduce the risk of over-
fitting. We choose the most probable EDU ec as the
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Figure 4: The decoding architecture used for discourse dependency parsing.

dependence of eh, thus one dependency arc is ob-
tained, (eh, ec). Then we push the newly selected
element ec onto the stack for the following steps.
Moreover, a self-directed dependency arc will ap-
pear when c equals h. In this case, all the children
of the head node eh have been successfully found.
Then we pop eh out of the stack and go into the
next parsing period. The parsing process will be
terminated when the stack becomes empty.

s0i = elu (w1si + b1) (2)
h0t = elu (w2ht + b2) (3)

eti = h0t
Tws0i + uTh0t + vTs0i + b (4)

Considering that one head node may have multi-
ple child nodes, we follow the inside-out strategy
to order the child nodes according to the distances
between these nodes and the head node, the left
side first and then the right side, which ensures that
the parsing path is unique. Taking the instance in
Figure 4 for example, the ordered parsing path is
{($, e3), (e3, e2), (e3, e1), (e3, e5), (e5, e4)}.

4.3 Model Training

Our training objective is composed of two parts,
i.e., jointly minimizing the discourse constituency
parsing loss and the discourse dependency pars-
ing loss. Since both tasks can be recognized as
multi-step classification problems, we employ the
negative log-likelihood (NLL) loss to calculate and
optimize the two loss terms.

On the one hand, for discourse constituency pars-
ing, we need to identify three parts, including the
bare tree structure, the rhetorical relation, and the
nuclearity category. Therefore, the loss function
consists of three parts, i.e., split point prediction
loss Ls, relation prediction loss Lr, and nuclearity

prediction loss Ln. Supposing that the correct in-
dex of the gold standard split point at the t-th step
is i, the value of Ls is calculated as follows:

Ls =
X

steps
� log (p̂st | ✓) (5)

p̂st =
ast,iP
ast

(6)

where ast denotes the probability distribution of
split points at the current time step and p̂st denotes
the probability of selecting the i-th one as the pre-
dicted split point. The calculation of Lr and Ln

is similar to that of Ls. In consideration of the
different convergence rates of the three loss terms,
we obtain the overall discourse rhetorical structure
parsing loss through weighted summation:

Lc = ↵sLs + ↵nLn + ↵rLr (7)

On the other hand, the discourse dependency
tree is essentially converted from the original dis-
course constituency tree according to the nuclear-
ity property while ignoring the internal relations.
So we only need to consider the correctness of
dependency arcs. The calculation of discourse de-
pendency parsing loss Ld is similar to that of split
point prediction in DCT parsing. Finally, we merge
the weighted dependency loss to the original con-
stituency loss, and the final optimization objective
is formalized as follows:

L = Lc + ↵dLd (8)

5 Experimentation

This section systematically evaluates our top-down
discourse parser and primarily focuses on the im-
pact of the dependency information on DCT pars-
ing. We merely focus on the performance of the
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main task of DCT parsing, while the auxiliary DDT
parsing task only works for representation enhance-
ment. Therefore, we do not discuss the perfor-
mance of DDT parsing in the following parts.

5.1 Experimental Settings

Datasets. In this paper, we employ the Chinese
connective-driven discourse treebank (CDTB4) (Li
et al., 2014c) as the benchmark data set. The cor-
pus consists of 500 newswire articles, divided into
2336 paragraphs, and each paragraph yields an
independent CDT tree. Following (Zhang et al.,
2020), we divide the corpus into three parts, i.e.,
425 training documents containing 2002 discourse
trees and 6967 rhetorical relations, 25 development
documents containing 105 discourse trees and 396
relations, and 50 test documents containing 229
discourse trees and 993 relations.

Evaluation metrics. The metrics of discourse
parsing evaluation include bare tree structure re-
ferred to as span (S), tree structure with nuclearity
(N) indication, and tree structure with relation (R)
indication. We use Full (F) to evaluate the over-
all tree structure with both nuclearity and relation
considered. For a fair comparison, same as Zhang
et al. (2020), we adopt the original Parseval pro-
cedure to evaluate the performance of our parser
and report the micro-averaged F1 scores as our
parsing performance. Following previous work,
we evaluate our system with gold EDU segmenta-
tion and binarize those non-binary subtrees with
right-branching (Sagae and Lavie, 2005).

Hyper-parameters. For hyper-parameters, we
keep consistency with (Zhang et al., 2020) in the
shared EDU encoder, the split point encoder, and
the DCT parsing module. While for the DDT pars-
ing module, we set the size of hidden states after
dimension reduction to 64 and the weight ↵d in the
joint loss objective to 2. For other hyper-parameter
details, please refer to (Zhang et al., 2020).

4It should be noted that our proposed approach is language-
independent. Although previous studies on the English RST-
DT corpus (Carlson and Marcu, 2001) are much more affluent,
the corpus is not well suited to validate our approach. The RST-
DT corpus consists of 385 documents, and each document is
represented as a single DT. According to our statistics, the
heights of trees in the corpus range from 1 to 26. No matter
for training or testing, there are too few instances. In addition,
the quality of the high-level annotation is not good, which may
lead to poor performance of the converted dependency tree.
Considering the abovementioned quality and quantity issues,
we only conduct experiments on the CDTB corpus.

Systems S N R F
Sun and Kong (2018)* 84.8 55.8 52.1 47.7
Zhang et al. (2020)* 85.2 57.3 53.3 45.7
Ours (Joint) 86.4 60.5 54.3 49.5

Table 1: Performance comparison. Sign “*” denotes the
results are borrowed from (Zhang et al., 2020).

TLs (#) S (B/O) N (B/O) R (B/O) F (B/O)
1 (385) 339/340 251/255 233/232 213/216

2 (220) 183/191 117/126 116/121 94/103

3 (139) 119/120 71/80 71/74 59/69

4 (88) 75/73 52/47 44/39 39/35
5 (44) 34/38 17/26 16/23 10 /21

6 (26) 18/17 13/12 6/8 6/8
7 (18) 16/17 7/10 6/5 2/5
8+ (13) 11/10 0/8 0/5 0/5

Table 2: Performance over different tree levels (TLs) of
the DTs. Signs “B” and “O” denote the results of the
baseline system (Zhang et al., 2020) and our proposed
joint method, respectively.

5.2 Experimental Results

In this part, we compare our system with two pre-
vious state-of-the-art (SoTA) systems on CDTB
using the same evaluation metrics.

• Sun and Kong (2018): a transition-based system
that parses the discourse rhetorical structure in a
bottom-up way.

• Zhang et al. (2020): a top-down text-level dis-
course parser based on the pointer networks. In
this paper, our system directly inherits from their
system on DCT parsing. Therefore, we take their
implemented system as our baseline.

Table 1 presents the performances of our method
and the two previous SoTA systems. The results
show that our joint model significantly outperforms
the two SoTA systems on all four indicators. In
comparison with the bottom-up parser of Sun and
Kong (2018), the top-down approaches (the parser
of Zhang et al. (2020) and ours) show better perfor-
mance, on the whole, benefiting from global infor-
mation. In addition, with the help of dependency
information, our joint model achieves the gains of
1.2, 3.2, 1.0, and 3.8 on the four evaluation indi-
cators, respectively, when compared with (Zhang
et al., 2020). Moreover, to our knowledge, the
top-down parser of Zhang et al. (2020) shows ter-
rible performance on the Full metric because of
using three independent classifiers for span, nucle-
arity, and relation classification. With the global
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dependency graph harnessed for representation en-
hancement, our parser can significantly make up
for this problem.

As mentioned before, we aim at improving the
parsing performance of the upper-level discourse
tree nodes in this work. Here, we further count the
correctly identified nodes over different DT levels,
and the results are shown in Table 2. Comparing
the statistical results of the baseline system (Zhang
et al., 2020) and ours, we find that

• Our joint model performs better than the baseline
system at most levels. Among the three aspects,
the improvement on nuclearity is significant, and
that on bare tree structure is the weakest;

• When the height is larger than 5, our joint model
performs much better in nuclearity and relation
identification. This also contributes to the im-
provements on the Full metric;

• When the height is equal to or greater than 8,
our joint model fulfills the zero breakthroughs in
nuclearity, relation, and Full identification.

Same as Zhang et al. (2020), we also divide the
discourse trees into six groups by EDU number
and evaluate our joint model over different groups.
From the results in Table 3 we find that

• On the structure indicator, except for the case
with EDU number larger than 25, the contribu-
tion of dependency information is not apparent;

• On the nuclearity indicator, in most cases, our
joint model performs better. For the case when
the EDU number is larger than 25, the improve-
ment is very significant;

• On the relation indicator, our joint model is equal
to or better than the baseline system in all groups
of discourse trees.

In addition to how many EDUs a tree contains,
the tree height is another perspective to measure
the complexity of tree structures. Thus we further
divide the DTs into different groups according to
their heights and evaluate our model over different
tree groups using a macro-averaged evaluation, i.e.,
calculating the F1 score for each DT solely and
reporting the averaged F1 score in the test set. The
results in Table 4 show that the contribution to
structure building varies over different heights. For
nuclearity and relation detection, our joint model

EDU S N R
Num. Base Joint Base Joint Base Joint
1-5 97.7 96.7 67.1 64.8 56.6 57.0

6-10 86.0 88.5 57.3 63.2 59.9 60.5
11-15 75.2 74.9 50.3 55.9 41.4 43.3
16-20 56.2 56.2 25.0 37.5 25.0 25.0
21-25 76.6 73.5 57.7 51.6 40.8 45.5
26-30 69.2 76.9 42.3 50.0 19.2 19.2

Table 3: Performance over different EDU numbers.
Here, “Base” and “Joint” denote the baseline system
and our proposed joint model, respectively.

S N R
Height Base Joint Base Joint Base Joint

1 100 100 66.7 64.9 56.1 56.1
2 94.8 94.8 77.3 70.8 61.8 62.8
3 90.8 91.5 55.7 59.2 54.0 54.4
4 84.6 88.3 56.9 62.7 58.3 59.3
5 84.2 84.5 50.9 54.8 56.2 59.0
6 81.8 76.8 50.1 44.6 46.1 38.7
7 82.9 87.3 62.8 67.8 55.9 61.2

> 8 72.0 70.5 55.0 60.5 42.3 40.0

Table 4: Performance over different DT heights.

performs better than the baseline system in most
cases.

As described in Subsection 4.2.1, during the ac-
quisition of DDT structures, we only consider the
bare structure and nuclearity of each constituency
tree. So the incorporation of dependency informa-
tion can reasonably improve the performance of
tree structure and nuclearity detection. Curiously,
how can the discourse dependencies improve the
performance of relation prediction? To figure it out,
we give a further analysis in the following part.

5.3 Further Analysis

A certain number of cases have shown that the
dependency arcs between long-distance EDUs may
provide practical and explicit clues for predicting
the rhetorical relation between the upper tree nodes.
Here, we use an example in Figure 5 to analyze the
effects of RST dependencies on rhetorical relation
prediction.

Figure (a) shows the gold standard DCT and
DDT structures of the paragraph consisting of eight
EDUs. In the DCT structure, the relation “Cause”
shown in the red rectangle is associated with two
sub-trees, i.e., the left sub-tree with EDUs from e2
to e4 and the right sub-tree with EDUs from e5 to
e8. From the corresponding DDT structure, we can
find that the two sub-DCTs also correspond to two
independent single-rooted sub-DDTs, respectively,
where the head EDU of the left sub-DDT is e3, and
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e1 一九九五年广东制定 九五 规划时曾提出汽车作为支柱产业之一。/ When Guangdong formulated the "Ninth Five-Year 
Plan" (1996-2000) in 1995, automobiles were mentioned as one of the pillar industries.
e2 但从目前来看，广东不具备汽车制造的优势和条件，/ However, from the current point of view, Guangdong does not have the 
advantages and conditions for automobile manufacturing,
e3 难以形成支柱产业，/ it is difficult to form a pillar industry, 
e4 全国也有重复建设问题。 / and it also has the problem of repeated construction across the country.  
e5 因此，省里已明确汽车制造不再作为支柱产业，/ Therefore, the province has made it clear that automobile manufacturing is no 
longer a pillar industry, 
e6 而电子信息产业是广东省的优势，/ the electronic information industry is Guangdong Province s advantage 
e7 也是新的增长优势，/ and it is also a new growth advantage.
e8 应作为支柱产业加以重点扶持。/ It should be given priority support as a pillar industry.
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$  e1  e2  e3  e4  e5  e6  e7  e8

(a) Gold DCT and DDT structures of the given example.

(b) DCTs predicted by the baseline system and our joint model.
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Figure 5: Case study of the impact of DDTs on discourse rhetorical relation prediction.

the head EDU of the right sub-DDT is e5. Between
the two sub-DDTs, an explicit arc pointing from e5
to e3 connects the two parts, which strongly sug-
gests that there should be some relation between
the two parts. Looking into the two head EDUs, e3
expresses that “it is difficult to form a pillar indus-
try”, and e5 says that “Therefore, the province has
made it clear that automobile manufacturing is no
longer a pillar industry”. Obviously, the connective
“‡d / therefore” in e5 is crucial in determining the
“Cause” relation. This example indicates that the
DDT structure will build a unique arc between two
adjacent sub-DDTs (sub-DCTs), and their respec-
tive head EDUs may provide valuable clues for the
upper-level sub-DCTs to determine the rhetorical
relation between them. This result explains our
performance improvement in relation prediction.

6 Conclusion

This paper contributes a multi-task learning ar-
chitecture that jointly learns discourse-level con-
stituency and dependency parsing through one
shared encoder and two independent decoding mod-
ules. Moreover, we introduce a constituency-to-
dependency conversion method tailored for the Chi-
nese corpus to ensure the quality of the joint learn-
ing process. The experimental results on the CDTB
corpus show that the discourse dependency infor-
mation is efficient in improving the performance
of discourse constituency parsing on all metrics,
especially for the upper-level tree layers.

The results of this paper show that the use of tex-
tual knowledge such as rhetorical dependencies can
effectively improve the machine’s understanding
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of discourse parsing. Inspired by this, in our fu-
ture work, we will explore the use of meta-learning
techniques to learn the knowledge of dependencies
such as reference chains and topic chains to achieve
the ability to parse various discourse dependency
structures including the rhetorical dependencies.
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