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Abstract

Open-Domain Generative Question Answering
has achieved impressive performance in En-
glish by combining document-level retrieval
with answer generation. These approaches,
which we refer to as GENQA, can generate
complete sentences, effectively answering both
factoid and non-factoid questions. In this pa-
per, we extend GENQA to the multilingual
and cross-lingual settings. For this purpose,
we first introduce GEN-TYDIQA, an exten-
sion of the TyDiQA dataset with well-formed
and complete answers for Arabic, Bengali, En-
glish, Japanese, and Russian. Based on GEN-
TYDIQA, we design a cross-lingual genera-
tive model that produces full-sentence answers
by exploiting passages written in multiple lan-
guages, including languages different from the
question. Our cross-lingual generative system
outperforms answer sentence selection base-
lines for all 5 languages and monolingual gen-
erative pipelines for three out of five languages
studied.

1 Introduction

Improving coverage of the world’s languages is
essential for retrieval-based Question Answering
(QA) systems to provide a better experience for
non-English speaking users. One promising direc-
tion for improving coverage is multilingual, multi-
source, open-domain QA. Multilingual QA sys-
tems include diverse viewpoints by leveraging an-
swers from multiple linguistic communities. Fur-
ther, they can improve accuracy, as all facets nec-
essary to answer a question are often unequally
distributed across languages on the Internet (Valen-
tim et al., 2021).

With the advance of large-scale language mod-
els, multilingual modeling has made impressive
progress at performing complex NLP tasks without
requiring explicitly translated data. Building on

∗ Work conducted during internship at Amazon Alexa.
† Work conducted while employed at Amazon Alexa.

pre-trained language models (Devlin et al., 2019;
Conneau et al., 2020; Xue et al., 2021; Liu et al.,
2020), it is now possible to train models that ac-
curately process textual data in multiple languages
(Kondratyuk and Straka, 2019) and perform cross-
lingual transfer (Pires et al., 2019) using annotated
data in one language to process another language.

At the same time, answer generation-based ap-
proaches have been shown to be effective for
many English QA tasks, including Machine Read-
ing (MR) (Izacard and Grave, 2021; Lewis et al.,
2020c), question-based summarization (Iida et al.,
2019; Goodwin et al., 2020; Deng et al., 2020), and,
most relevant to this work, answer generation for
retrieval-based QA (Hsu et al., 2021) — that we
refer to as GENQA.

Compared to generative MR models, GENQA
approaches are trained to produce complete and
expressive sentences that are easier to understand
than extracted snippets (Choi et al., 2021). Most
importantly, they are trained to generate entire sen-
tences, allowing them to answer both factoid or
non-factoid questions, e.g., asking for descriptions,
explanation, or procedures.

In this paper, we study and propose a simple
technique for open-domain QA in a cross-lingual
setting. Following Hsu et al. (2021) (and as illus-
trated in Figure 1), we work with a pipeline made
of 3 main modules. First, a document retriever
that retrieves relevant documents given a question;
second, an answer sentence selection (AS2) model
(Garg et al., 2020; Vu and Moschitti, 2021) that
ranks the sentences from the retrieved documents
based on how likely they are to include the answer;
and third, a generative model that generates a full
sentence to answer the question given the sentence
candidates.

Our contribution focuses on the generative
model. We introduce CROSSGENQA. CROSS-
GENQA can generate full-sentence answers using
sentence candidates written in multiple languages



338

Figure 1: Illustration of our proposed Cross-Lingual, Retrieval-based GENQA pipeline.

including languages different from the question and
English.

Given the scarcity of annotated corpora for
GENQA, especially in languages different from
English, we introduce the GEN-TYDIQA dataset.
GEN-TYDIQA is an extension of TyDiQA, a
dataset for typologically diverse languages in
which questions are answered with passages and
short spans extracted from Wikipedia (Clark et al.,
2020). Our GEN-TYDIQA includes human-
generated, fluent, self-contained answers in Arabic,
Bengali, English, Russian and Japanese, making it
a valuable resource for evaluating multilingual gen-
erative QA systems. We found human-generated
answers to be essential in evaluating GENQA: com-
pared to the standard approach of providing refer-
ence documents, they dramatically speed-up anno-
tations and improve inter-annotator agreement.

Our evaluation shows that our CROSSGENQA
system outperforms AS2 ranking models, and
matches or exceeds similar monolingual pipelines.

In summary, our contribution is three-fold:

(i) We introduce GEN-TYDIQA1, an evalua-
tion dataset that contains natural-sounding an-
swers in Arabic, Bengali, English, Russian
and Japanese, to foster the development of
multilingual GENQA systems.

(ii) We confirm and extend the results of Hsu et al.
(2021) by showing that monolingual genera-
tive QA (MONOGENQA) outperforms extrac-
tive QA systems in Arabic, Bengali, English
and Russian.

(iii) We demonstrate that CROSSGENQA outper-
forms all our QA systems for Arabic, Russian,
and Japanese, answering questions using in-
formation from multiple languages.

1We make GEN-TYDIQA available at the follow-
ing URL: s3://alexa-wqa-public/datasets/
cross-genqa/

2 Related Work

Multilingual Datasets for QA Researchers have
introduced several datasets for QA in multiple lan-
guages. Unlike our GEN-TYDIQA, to the best
of our knowledge, they are designed exclusively
for extractive QA. Artetxe et al. (2019) extended
the English machine reading SQuAD dataset (Ra-
jpurkar et al., 2016) by translating the test set to 11
languages. Similarly, Lewis et al. (2020a) collected
new question and answer pairs for 7 languages fol-
lowing the SQuAD format. Recently, Longpre et al.
(2020) released MKQA, which includes question
and answer pairs (predominantly Yes/No answers
and entities) for 26 languages. Clark et al. (2020)
released TyDiQA, a dataset for extractive QA in
11 typologically diverse languages. Riabi et al.
(2020) and Shakeri et al. (2021) have explored the
use of techniques to synthetically generate data for
extractive question answering using cross-lingual
transfer.

Generating Fluent Answers for QA The Gen-
eration of fluent and complete-sentence answers is
still in its infancy, as most generative models for
QA are used for extractive QA (e.g., (Guu et al.,
2020; Lewis et al., 2020b; Asai et al., 2021a,b).
Approaches to ensure response fluency have been
explored in the context of dialogue systems (Baheti
et al., 2020; Ni et al., 2021), but remain neverthe-
less understudied in the context of QA. Providing
natural sounding answers is a task of particular
interest to provide a better experience for users
of voice assistants. One resource for this task is
the MS-MARCO dataset (Nguyen et al., 2016). It
includes 182,669 question and answer pairs with
human-written well-formed answers. However, it
only contains samples in English.

Our GEN-TYDIQA extends TyDiQA (Clark
et al., 2020) adding natural human-generated an-
swers for Arabic, Bengali, English, Japanese, and
Russian. To the best of our knowledge, it is the first

s3://alexa-wqa-public/datasets/cross-genqa/
s3://alexa-wqa-public/datasets/cross-genqa/
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work that provides well-formed, natural-sounding
answers for non-English languages.

Multilingual Extractive QA Designing QA
models for languages different from English is chal-
lenging due to the limited number of resources and
the limited size of those datasets. For this reason,
many studies leverage transfer learning across lan-
guages by designing systems that can make use
of annotated data in one language to model an-
other language. For instance, Clark et al. (2020)
showed that concatenating the training data from
multiple languages improves the performance of
a model on all the target languages for extractive
QA. In the Open-Retrieval QA setting, multilin-
gual modeling can be used to answer questions
in one language using information retrieved from
other languages. Da San Martino et al. (2017)
showed how cross-language tree kernels can be
used to rank English answer candidates for Ara-
bic questions. Montero et al. (2020) designed a
cross-lingual question similarity technique to map
a question in one language to a question in English
for which an answer has already been found. Asai
et al. (2021a) showed that extracting relevant pas-
sages from English Wikipedia can deliver better
answers than relying only on the Wikipedia cor-
pora of the question language. Vu and Moschitti
(2021) showed how machine translated question-
answer pairs can be used to train a multilingual QA
model; in their study, they leveraged English data
to train an English and German AS2 model.

Finally, Asai et al. (2021c) introduced CORA
and reached state-of-the-art performance on open-
retrieval span-prediction question answering across
26 languages. While related to our endeavor, it is
significantly different in several key aspects. First,
unlike CROSSGENQA, CORA does not produce
full, complete sentences; rather, it predicts spans
of text that might contain a factoid answer. Sec-
ond, it mainly relies on sentence candidates that
are written in English and in the question language;
by contrast, in our work we choose to translate
the questions into a variety of languages, allow-
ing us to use monolingual retrieval pipelines to
retrieve candidate sentences in diverse languages.
We show that this form of cross-lingual GENQA
outperforms monolingual GENQA in a majority of
the languages studied.

Answer Sentence Selection (AS2) The AS2
task originated in the TREC QA Track (Voorhees,

2001); more recently, it was revived by Wang et al.
(2007). Neural AS2 models have also been ex-
plored (Wang and Jiang, 2017; Garg et al., 2020).
AS2 models receive as input a question and a (po-
tentially large) set of candidate answers; they are
trained to estimate, for each candidate, its likeli-
hood to be a correct answer for the given question.

Several approaches for monolingual AS2 have
been proposed in recent years. Severyn and Mos-
chitti (2015) used CNNs to learn and score question
and answer representations, while others proposed
alignment networks (Shen et al., 2017; Tran et al.,
2018; Tay et al., 2018). Compare-and-aggregate
architectures have also been extensively studied
(Wang and Jiang, 2017; Bian et al., 2017; Yoon
et al., 2019). Tayyar Madabushi et al. (2018)
exploited fine-grained question classification to
further improve answer selection. Garg et al.
(2020) achieved state-of-the-art results by fine-
tuning transformer-based models on a large QA
dataset first, and then adapting to smaller AS2
dataset. Matsubara et al. (2020) showed how, sim-
ilar in spirit to GENQA, multiple heterogeneous
systems for AS2 can be be combined to improve a
question answer pipeline.

3 The GEN-TYDIQA Dataset

To more efficiently evaluate our multilingual gener-
ative pipeline (lower cost and higher speed), we
built GEN-TYDIQA, an evaluation dataset for
answer-generation-based QA in Arabic, Bengali,
English, Japanese, and Russian. This extends the
TyDiQA (Clark et al., 2020) dataset.

TyDiQA is a QA dataset that includes questions
for 11 typologically diverse languages. Each entry
is composed of a human-generated question and
a single Wikipedia document providing relevant
information. For a large subset of its questions,
TyDiQA also contains a human-annotated passage
extracted from the Wikipedia document, as well as
a short span of text that answers the question. We
extend the TyDiQA validation set2 by collecting
human-generated answers based on the provided
questions and passages using Amazon Mechanical
Turk3 (cf. Appendix C.1 for hiring criteria and
rewards). Collecting human-generated answers is
crucial for properly evaluating GENQA models, as
we will show in section 5.4. We use a two-stage
data collection process:

2The TyDiQA test set is not publicly available.
3https://requester.mturk.com

https://requester.mturk.com
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(EN) Question: What do pallid sturgeons eat?
TyDiQA Span: –
GEN-TYDIQA Answer: Pallid sturgeons eat various species
of insects and fish depending on the seasons.

(RU) Question: Когда закончилась Английская рево-
люция? When did the English Revolution end?
TyDiQA Span: 1645
GEN-TYDIQA Answer: Английская революция, из-
вестная также как Английская гражданская вой за-
кончилась в 1645, когда Кромвель создал «Армию
нового образца», одержавшую решающую победу в
сражении при Нэйcби The English Revolution, also known
as the English Civil War; ended in 1645, when Cromwell
created the "Army of the new model", which won a decisive
victory at the Battle of Naysby.

(JA) Question: ストーンズリバーの戦いによる戦死者
は何人 How many were the deaths from the Battle of Stones
River?
TyDiQA Span: 23,515名 23,515 people
GEN-TYDIQA Answer: ストーンズリバーの戦い
で23,515人が川で殺されました。 23,515 people were
killed in the river in the Battle of Stones River.

Table 1: GEN-TYDIQA question and answer samples.

(1) Answer Generation We show each turker a
question and its corresponding passage, and ask
them to write an answer that meets the following
three properties: (i) The answer must be factually
correct and aligned with the information provided
in the passage. If a passage is not sufficient to an-
swer a question, turkers will respond “no answer”.
(ii) The answer must be a complete and grammat-
ically correct sentence, or at most a few sentences.
(iii) The answer should be self-contained; that is,
it should be understandable without reading the
question or the passage. Based on this condition,
“yes” or “no” are not acceptable answers.

(2) Answer Validation We show each question
alongside its corresponding passage and the human-
generated answer from Step (1) to five turkers. We
ask them to label if the collected answer meets
the three properties listed above: correctness, com-
pleteness, and self-containedness. We aggregate
labels and keep only answers that received at least
3/5 positive judgements for each property. Table 1
contains some examples of the data collected.

Data Statistics We report the number of GEN-
TYDIQA collected human-generated natural an-
swers in table 2, and our coverage of the TyDiQA
dataset. We do not reach 100% coverage due to our
highly selective validation stage: we only accept
answers that receive 3/5 votes for each property, a
process that guarantees a high-quality dataset.

Lang. (iso) #Answers Avg. Length (utf-8) %TyDiQA

Arabic (AR) 859 152.5 75.7
Bengali (BN) 89 177.2 63.6
English (EN) 593 64.0 79.5
Japanese (JA) 550 112.0 62.1
Russian (RU) 595 277.9 52.6

Table 2: Statistics on GEN-TYDIQA Answers

4 Multilingual GenQA Systems

Our goal is to build a QA system that, given a
question in a target language, retrieves the top-k
most relevant passages from text sources in multi-
ple languages, and generates an answer in the target
language from these passages (even if the passages
are in a different language from the question).

4.1 Task Definition and System Architecture

We first describe the AS2 and GENQA tasks in
a language-independent monolingual setting, and
then generalize to the cross-lingual setting.

In the monolingual setting for a language Li,
an AS2 system takes as input a question q and a
possibly large set of candidate answers CLi (e.g.
all sentences from Wikipedia in the language Li),
ranks each candidate answer given q, and returns
the top-ranking candidate cm ∈ CLi . A GENQA
system uses the top k AS2-ranked answers in CLi

to synthesize a machine-generated answer g in lan-
guage Li.

The cross-lingual GENQA task extends this
setup as follows: Consider a set of languages
{L1, . . . , Lr}. Given a question q in language Li,
let M = ∪r

j=1CLj be the set of relevant candi-
date sentence answers for q in any language. A
cross-lingual GENQA system uses the top k ranked
answers in M — regardless of language — to gen-
erate an answer g in Li.

Our architecture, illustrated in Figure 1, consists
of the following components: (i) question trans-
lation4 from Li to produce queries qLj in each
language Lj , (ii) a document retriever for each
Lj to get CLj , (iii) a monolingual AS2 model for
each language, which sorts the candidates in CLj

in terms of probability to be correct given qLj ,
where CLj is created by splitting the retrieved doc-
uments into sentences, (iv) an aggregator compo-
nent, which builds a multilingual candidate set M
using the top k candidates for each language, and

4We used Amazon’s AWS Translate service, https://
aws.amazon.com/translate/service. We validate
the quality of AWS Translate on the languages we study in the
Appendix section A.3.

https://aws.amazon.com/translate/service
https://aws.amazon.com/translate/service
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(v) a cross-lingual answer generation model, which
generates g from M .

We now present in more details each component
of our system.

4.2 Multilingual Passage Retrieval

To obtain candidates for our multilingual pipeline,
we used Wikipedia snapshots collected in May
2021. We processed each snapshot using WikiEx-
tractor (Attardi, 2015), and create monolingual in-
dices using PyTerrier (Macdonald and Tonellotto,
2020). During retrieval, we first translate queries in
each language using AWS Translate. We validate
the good quality of this system for all our languages
in table 9 in the Appendix. We then use BM25
(Robertson et al., 1995) to score documents. We
choose BM25 because, as shown by Thakur et al.
(2021), it is competitive with DPR-based models
(Karpukhin et al., 2020) and it outperforms DPR
across a great diversity of domains.

Evaluation We evaluate the different retrievers
independently: for each question, we compare the
exact match of the title of the retrieved document
with the gold document’s title provided by TyDiQA.
We compute the Hit@N at the document level, i.e.,
the percentage of questions having a correct doc-
ument in the top-N predicted documents. In our
experiments, we retrieve the top-100 documents
from Wikipedia to feed them to the AS2 model.

4.3 AS2 models for different languages

We build AS2 models by fine-tuning the mul-
tilingual masked-language model XLM-R (Con-
neau et al., 2020) into multiple languages, us-
ing question/sentence pairs, which we created
with the TyDiQA dataset. We followed the
procedure by Garg et al. (2020) performed on
the NQ dataset (Kwiatkowski et al., 2019) to
build the ASNQ dataset for English. For each
⟨question,Wikipedia document, span⟩ triplet from
the TyDiQA dataset, we use the span to identify
positive and negative sentence candidates in the
Wikipedia document. We first segment each doc-
ument at the sentence level using the spacy li-
brary5. We define positive examples to be the
sentences that contain the span provided by the
TyDiQA dataset, and negative examples to be all
other sentences from the same Wikipedia docu-
ment. We report statistics on AS2-TyDiQA in the

5https://spacy.io/

Appendix in table 11. For more details, we refer
the reader to Garg et al. (2020).

Model We fine-tune XLM-R extended with a
binary classification layer on the AS2-TyDiQA
dataset described above. At test time, we rank the
candidates using the model output probability. Pre-
liminary experiments confirmed the results of Clark
et al. (2020) regarding machine reading models on
TyDiQA : the best performance is obtained when
concatenating the datasets from all languages.

4.4 Multilingual Answer Generation Models

We extended the work of Hsu et al. (2021) on mono-
lingual GENQA modeling. For each question, this
model takes the top-5 candidates ranked by AS2 as
input. For CROSS-LINGUAL GENQA, we build a
set of multiligual candidates M with two methods:
(i) TOP 2 / LANG., which selects the top 2 candi-
dates for each language and concatenates them (in
total 2× 5 = 10); and (ii) TOP 10, which selects
the 10 candidates associated with the highest scores
regardless of their language.

Model We used the pre-trained multilingual T5
language model (MT5) by Xue et al. (2021). This
is an encoder-decoder transformer-based model
(Vaswani et al., 2017) pre-trained with a span-
masking objective on a large amount of web-based
data from 101 languages (we use the base version).
We fine-tuned MT5 following (Hsu et al., 2021):
for each sample, we give the model the question
concatenated with the candidates M as input and a
natural answer as the generated output. GENQA
models are trained on MS-MARCO (Nguyen
et al., 2016)6, which includes 182,669 examples of
⟨question, 10 candidate passages, natural answer⟩
instances in English. When the language of the
question (and answer) is not English or when
we use candidates in multiple languages, we
translate the training samples with Amazon’s
AWS Translate service and fine-tune the model
on the translated data. For instance, to design a
GENQA model answering questions in Arabic
using input passages in Arabic, English, and
Bengali, we fine-tune the model with questions
and gold standard answers translated from English
to Arabic, and input candidates in English, Arabic,
and Bengali, where the latter two are translated
from the MS-MARCO English passages.

6Using the train split of the NLGEN(v2.1) version.

https://spacy.io/
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Evaluation As pointed out by Chen et al. (2019),
automatically evaluating generation-based QA sys-
tems is challenging. We experimented with
BLEU (Papineni et al., 2002) and ROUGE-L (Lin,
2004), two standard metrics traditionally used for
evaluating generation-based systems, but found
that they do not correlate with human judgment.
For completeness, we report them in the Ap-
pendix D.2 along with a detailed comparison with
human judgment. Thus, we rely on human evalu-
ation through Amazon Mechanical Turk7: we ask
three turkers to vote on whether the generated an-
swer is correct, and report the

∑
PositiveV otes∑
TotalV otes as

system Accuracy.

5 Experiments

Multilinguality and the different components of
our system pipeline raise interesting research ques-
tions. Our experimental setup is defined by the
combinations of our target set of languages with
respect to questions, candidates, and answers. We
experiment with GENQA in the monolingual (one
model per language) and multilingual (one model
for several languages) settings, where the question
and candidates in the same language are used to
generate an answer. Then we experiment with a
cross-lingual GENQA model that is fed candidates
in multiple languages. Despite being an apparent
more complex task, we find that in many cases, the
cross-lingual model outperform all other settings.

5.1 Setup
We approach multilingual generation-based ques-
tion answering in three ways:

MONOLINGUAL GENQA (MONOGENQA)
The candidate language is the same as the question.
For each language (Arabic, Bengali, English,
Japanese and Russian), we monolingually fine-tune
MT5, and report the performance of each GENQA
model on the GEN-TYDIQA dataset (Tab. 5).

Our contribution is to show that this approach,
first introduced by Hsu et al. (2021) for English,
delivers similar performance for other languages.

MULTILINGUAL GENQA (MULTIGENQA)
We train one MT5 for all five languages by con-
catenating their training and validation sets. This
single model can answer questions in multiple lan-
guages, but it requires that answer candidates be
in the same language as the question. We report

7We describe in C.1 how we choose and reward turkers.

Model CANDIDATES Accuracy

MONOGENQA EN 77.9
CROSSGENQA DE 70.5
CROSSGENQA DE ES FR IT 68.8
CROSSGENQA AR JA KO 31.4
Clozed-Book NONE 21.0

Table 3: Impact of the candidate language set on CROSS-
LINGUAL GENQA in English on MS-MARCO. The
language set is controlled with machine translation.

the performance of this MULTIGENQA model in
table 5.

For this set of experiments, we show that a single
multilingual GENQA model can compete with a
collection of monolingual models.

CROSS-LINGUAL GENQA (CROSSGENQA)
We use candidates in multiple languages (Arabic,
Bengali, Russian, English, Arabic) to answer a
question in a target language. We retrieve and
rerank sentence candidates in each language, ag-
gregate candidates across all the languages, and
finally generate answers (in the same language as
the question). We report the performance on the
GEN-TYDIQA dataset (table 5).

These experiments aim to determine whether our
generative QA model can make use of information
retrieved from multiple languages and outperform
the baseline methods.

Manual Evaluation We stress the fact that all
the results derived in the following experiments
were manually evaluated with Amazon Mechanical
Turk. In total, we run 34 tasks (system evaluations),
requiring around 60k Hits, for a total manual eval-
uation of 20k QA pairs (times 3 turkers).

5.2 Feasibility Study

To explore whether a model fed with candidates
written in languages different from the question
can still capture relevant information to answer the
question, we conduct a feasibility study using the
MS-MARCO dataset with English as our target
language and machine translated candidates.

For each question, we translate the top 5 candi-
date passages to different languages and provide
these translated candidates as input to the model.
We experiment with three translation settings: all
candidates translated to German (DE); each can-
didate translated to a random choice of German,
Spanish, French or Italian (DE-ES-FR-IT); trans-
lated to Arabic, Japanese or Korean (AR-JA-KO).
We compare all these CROSS-LINGUAL GENQA
models with a Clozed-Book QA Model (Roberts
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Language BLEU ROUGE Accuracy

MONOLINGUAL GENQA
AR 24.8 / 17.2 47.6 / 38.8 77.1 / 68.4
BN 27.4 / 21.7 48.6 / 43.0 82.0 / 67.4
EN 31.5 / 23.0 54.4 / 46.4 68.5 / 43.6
JA 24.5 / 19.4 50.2 / 45.0 72.3 / 64.3
RU 10.2 / 6.4 30.2 / 23.4 82.6 / 61.3

MULTILINGUAL GENQA
AR 24.3 / 17.4 47.9 / 39.0 74.9 / 72.7
BN 27.3 / 23.7 47.8 / 44.9 84.3 / 76.5
EN 30.8 / 21.8 54.5 / 46.2 65.3 / 37.4
JA 23.9 / 19.1 50.0 / 45.5 76.8 / 65.5
RU 10.6 / 6.4 31.0 / 23.2 76.6 / 66.7

Table 4: Performance of our GENQA models fine-tuned
on MSMARCO and evaluated on GENTYDIQA using
Gold-Passage from TyDiQA/Ranked Candidates from
Wikipedia.

et al., 2020) for which no candidates are fed into
the model.

Results We report the performance in table 3. All
CROSS-LINGUAL GENQA models outperform sig-
nificantly the Clozed-book approach. This means
that even when the candidates are in languages
different from the question, the model is able to
extract relevant information to answer the question.
We observe this even when the candidates are in
languages distant from the question language (e.g.,
Arabic, Japanese, Korean).

5.3 GEN-TYDIQA Experiments
This section reports experiments of the full
GENQA pipeline tested on the GEN-TYDIQA
dataset with candidates retrieved from Wikipedia.
For each question, we retrieve documents with a
BM25-based retriever, rank relevant candidates us-
ing the AS2 model, and feed them to the GENQA
models. We note that we cannot compare the model
performance across languages: as pointed out in
(Clark et al., 2020) regarding TyDiQA.

MONOGENQA Performance We measure the
impact of the retrieval and AS2 errors by com-
puting the ideal GENQA performance, when fed
with gold candidates (TyDiQA gold passage). We
report the results in table 4. We evaluate the per-
formance of the GENQA models, also comparing
it to AS2 models on the GEN-TYDIQA dataset
of each language. We report the results in table 5
(cf. MONOGENQA). The first row shows the doc-
ument retrieval performance in terms of Hit@100
for the different languages considered in our work.
We note comparable results among all languages,
where Arabic reaches the highest accuracy, 70.7,
and Japanese the lowest, 57.0. The latter may be

Model AR BN EN JA RU

RETRIEVER (Hit@100 doc.) 70.7 66.3 66.9 57.0 67.8

AS2 68.0 58.0 39.0 70.4 60.8
MONOGENQA 68.4 67.4 43.6 64.3 61.3
MULTIGENQA 72.7 76.5 37.4 65.5 66.7
CROSSGENQA TOP 10 72.0 25.3 31.0 70.3 74.3
CROSSGENQA TOP. 2 / LANG. 73.2 18.5 29.3 71.6 74.7

Table 5: Hit@100 doc. of the retriever and Accuracy
of GENQA models on GEN-TYDIQA. All CROSS-
GENQA experiments use candidates aggregated from
all the languages (AR, BN, EN, JA, RU).

due to the complexity of indexing ideogram-based
languages. However, a more direct explanation is
the fact that retrieval accuracy strongly depends
on the complexity of queries (questions), which
varies across languages for GEN-TYDIQA. Simi-
larly to Clark et al. (2020), we find that queries in
English and Japanese are more complex to answer
compared to other languages.

Regarding answering generation results, rows 2
and 3 for English confirm Hsu et al. (2021)’s find-
ings: GENQA outperforms significantly AS2 by
4.6% (43.6 vs. 39.0). We also note a substantial
improvement for Bengali (+9.4%, 67.4 to 58.0). In
contrast, Arabic and Russian show similar accu-
racy between GENQA and AS2 models. Finally,
AS2 seems rather more accurate than GENQA for
Japanese (70.4 vs 64.3). Results reported by Xue
et al. (2021) show MT5 to be relatively worse for
Japanese than all other languages we consider in
many downstream tasks, so the regression seen
here might be rooted in similar issues.

MULTIGENQA Performance We compare the
performance of the MONOLINGUAL GENQA mod-
els (one model per language) to the performance
of the MULTILINGUAL GENQA model fine-tuned
after concatenating the training datasets from all
the languages. We report the performance in ta-
ble 5 (cf. MULTIGENQA): multilingual fine-tuning
improves the performance over monolingual fine-
tuning for all languages except English. This shows
that models benefit from training on samples from
different languages. For Bengali, we observe an
improvement of around 9% in accuracy. This result
has a strong practical consequence: at test time,
we do not need one GENQA model per language,
we can rely on a single multilingual model trained
on the concatenation of datasets from multiple lan-
guages (except for English, where we find that the
monolingual model is more accurate). This result
generalizes what has been shown for extractive QA
(Clark et al., 2020) to the GENQA task.
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Model Candidates Accuracy

MONOGENQA EN 57.8
CROSSGENQA JA 60.3
CROSSGENQA AR-BN-EN-JA-RU TOP 10 56.9
CROSSGENQA AR-BN-EN-JA-RU TOP 2 / LANG 63.8

Table 6: GENQA scores in English on Japanese-culture-
specific questions extracted from TyDiQA. CANDI-
DATES defines the language set of the input candidates.

CROSSGENQA Performance Our last and most
important contribution is in table 5, which reports
the performance of a GENQA model trained and
evaluated with candidates in multiple languages.
This model can answer a user question in one lan-
guage (e.g., Japanese) by using information re-
trieved from many languages, e.g., Arabic, Ben-
gali, English, Japanese, and Russian). For Arabic,
Japanese, and Russian, we observe that CROSS-
LINGUAL GENQA outperforms other approaches
by a large margin, e.g., for Russian, 13.8% (74.6-
60.8) better than AS2, and an 8% percent improve-
ment over MULTIGENQA.

For Bengali, the model fails at generate good
quality answers (CROSSGENQA models reach at
best 25.3% in accuracy compared to the 76.9%
reached by the MULTIGENQA model). We hypoth-
esize that this is the consequence of a poor transla-
tion quality of the question from Bengali to other
languages such as English, Arabic, or Japanese,
which leads to poor candidate retrieval and selec-
tion, ultimately resulting in inaccurate generation.

Finally, we compare the two candidate aggrega-
tion strategies used for CROSS-LINGUAL GENQA:
TOP 2 / LANG. and TOP 10 (see section 4.4). We
observe that the aggregation strategy impacts mod-
erately the downstream performance. For English,
Arabic, Japanese and Russian the gap between the
two methods is at most 2 points in accuracy. We
leave the refinement of candidate selection in the
multilingual setting for future work.

5.4 Analysis

Examples Table 7 shows the output of AS2,
MULTILINGUAL GENQA, and CROSS-LINGUAL

GENQA models to questions in Russian and Ben-
gali. For Bengali, the GENQA models provide
a correct and fluent answer while the AS2 model
does not. For Russian, only the CROSS-LINGUAL

GENQA model is able to answer correctly the ques-
tion. This because AS2 does not rank the right
information in the top k, while CROSS-LINGUAL

GENQA can find the right information in another

Question:
When was Justin Drew Bieber born?
AS2 Prediction:

Matthew Lawrence Hayden, AM (born October 29, 1971) is
a former Australian cricketer born in Kingroy, Queensland.
MULTIGENQA Prediction:

Justin Drew Bieber was born on March 1, 1994.
CROSSGENQA Prediction

Justin Drew Bieber was born on March 1, 1994.

Question: トゥールのグレゴリウスはいつ生まれた？
When was Gregory of Tours born?
AS2 Prediction: グ レ ゴ リ ウ ス14世 （Gregorius
XIV,1535年2月11日 - 1591年10月16日）はローマ教皇
（在位：1590年 - 1591年）。 Pope Gregory XIV (February
11, 1535 – October 16, 1591) is the Pope of Rome (reigned:
1590 – 1591).
MULTIGENQA Prediction:トゥールのグレゴリウス
は、1535年2月11日に生まれた。 Gregory of Tours was
born on February 11, 1535.
CROSSGENQA Predictionトゥールのグレゴリウス
は538年頃11月30日に生まれた。 Gregory of Tours was
born on November 30, 538.

Table 7: Example of predicted answers to questions in
Bengali and Japanese. Blue indicates correct predictions
while Red incorrect ones. Translations are intended for
the reader and are not part of the predictions.

language in the multi-language candidate set.

Error Propagation We observe (table 4) that
the GENQA models are highly impacted by the
retriever and AS2 quality. For example, English
GENQA performance drops of 27.9 (65.3-37.4)
points in Accuracy. This suggests that large im-
provement could be achieved by improving the
document retriever and/or AS2 modules.

Culture-Specific Questions in English One
striking result across our experiments is the lower
performance of CROSS-LINGUAL GENQA model
than GENQA model on English. We hypothesize
that English questions from the GEN-TYDIQA
dataset are more easily answered using informa-
tion retrieved from English compared to other lan-
guages because those questions are centered on

Eval mode Strong
agreement

Perfect
agreement

Fleiss’
kappa

No Reference 55.00 % 16.43 % 0.1387
With Reference 85.36 % 55.25 % 0.5071

Table 8: Comparison between providing a reference
answer and not for evaluating MONOGENQA predic-
tions (EN). Providing a reference increases agreement.
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cultures specific to English-speaking countries.
To verify our hypothesis, we re-run the same

set of experiments, using culture-specific Japanese
questions rather than English queries. To do so,
we (i) took the Japanese questions set from GEN-
TYDIQA, (ii) manually translated it in English,
(iii) manually select 116 questions that are cen-
tered on Japanese culture, and (iv) run the same
GENQA pipeline on those questions. The results
reported in table 6 show that CROSSGENQA out-
performs MONOGENQA, suggesting that the for-
mer improves also the English setting if the ques-
tion set is culturally not centered on English, i.e., it
requires answers that cannot be found in English.

Use of Reference Answer in Model Evaluation
We found the use of human-generated reference an-
swers to be crucial to ensure a consisted annotation
of each model. A comparison between annotation
with and without reference answer is provided in
table 8. When using a reference, we found annota-
tors to be dramatically more consistent, achieving
a Fleiss’ Kappa (Fleiss, 1971) of 0.5017; when pro-
viding no reference answer, the inter-annotation
agreement dropped to 0.1387. This trend is re-
flected in the number of questions with strong (4+
annotators agree) and perfect agreement.

6 Limits

Our system requires translating the questions. We
also use the standard BM25 approach. Even though
it was shown to be more robust compared to dense
retriever (Thakur et al., 2021; Rosa et al., 2022), us-
ing a cross-lingual retriever (Li et al., 2021) could
improve performance and save the cost of trans-
lating the question. This has been explored by
Asai et al. (2021c) but their retriever mainly re-
trieves passages in English and the question lan-
guage which may lead to English-centric answers.
Another limit is the fact that our system is not de-
signed to handle questions that are not answerable.
In the future, we may want to integrate a no-answer
setting to avoid unwanted answer.

7 Conclusion

We study retrieval-based Question Answering sys-
tems using answer generation in a multilingual
context. We proposed (i) GEN-TYDIQA, a new
multilingual QA dataset that includes natural and
complete answers for Arabic, Bengali, English,
Japanese, and Russian; based on this dataset (ii)

the first multilingual and cross-lingual GENQA
retrieval-based systems. The latter can accurately
answer questions in one language using informa-
tion from multiple languages, outperforming an-
swer sentence selection baseline for all languages
and monolingual pipeline for Arabic, Russian, and
Japanese.
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A Discussion

A.1 Machine Translation of the Questions and
BM25 Retriever Engines

Our work introduces CROSS-LINGUAL GENQA, a
system that can answer questions — with complete
sentence answers — in multiple languages using
candidates in multiple languages, possibly distinct
from the question. They were many possible design
choices to achieve such a goal. We chose to rely
on automatically translating the questions before
retrieving relevant documents in several languages
using multiple (monolingual) BM25 retrievers. We
could have chosen to use the recently released mul-
tilingual Dense passage Retrieval (mDPR) (Asai
et al., 2021b). We decided not to for the two follow-
ing reasons. First, as shown by Thakur et al. (2021),
BM25 is a very reasonable design choice for a re-
triever engine, that outperforms other approaches
in many settings (including dense retrievers). Sec-
ond, as seen in (Asai et al., 2021b), multilingual
dense retrievers usually retrieve passages in the
same language as the question or English. This
means that mDPR is highly biased toward the En-
glish language. In our work, by combining transla-
tion and monolingual retrievers, we can control the
language set that we use for answer generation. We
leave for future work the refinement of mDPR to
enable for more diversity in the retrieved passage
languages and to integrate it in our pipeline.

A.2 Machine Translation Errors

At test time, our system applies Machine Trans-
lation to the question to formulate queries in dif-
ferent languages and retrieve candidates for these
languages using the BM25 retrieval engine. To
our knowledge this is the best approach to gen-
erate queries in different languages, as MT sys-

ar bn en ja ru
ar 25.9/16.1 40.8/25.5 26.1/16.0 27.3/17.8
bn 22.8/10.7 32.8/22.9 23.5/16.5 21.8/14.7
en 39.5/17.9 32.7/23.0 34.2/22.8 36.6/27.1
ja 21.0/10.3 22.6/16.0 28.0/19.4 21.4/15.3
ru 25.9/13.5 24.9/18.1 37.3/27.5 26.4/20.3

Table 9: Performance measured with spBLEU of AWS
translate compared to a Many-to-Many (M2M) Multi-
lingual Transformer Model (reported in (Goyal et al.,
2022)) on the FLORES devtest dataset (Goyal et al.,
2022). Cell(i,j) reports the score of AWS/M2M from
language i to language j. AWS translate outperforms
the M2M model for all language pairs.

tems are very powerful tools, trained on millions
of data points and, thanks to Transformer model,
they take the entire question context into account
(other cross-query formulations can be applied but
they will be probably less accurate and multilin-
gual DPR is an excellent research line but not as
much assessed as BM25 as effective and general
approach). Clearly MT errors can impact the qual-
ity of our candidates. However, if a question is
badly translated the retrieved content will be in-
consistent with the candidates retrieved for the
question in the original language (and also incon-
sistent with candidates retrieved using questions
translated in other languages). Our joint modeling
through large generation-based Transformers can
recover from these random errors. For example,
for 3 languages out of 5, we show that the Cross-
GenQA pipelines that use MT for the question out-
perform monolingual pipelines (MONOGENQA
and MULTIGENQA). This shows that translation
errors are recovered by our approach.

A.3 AWS-Translation for Machine
Translation

For translating the questions automatically, we use
AWS Translate. AWS Translate is a machine trans-
lation API that competes and outperforms in some
cases other available translation APIs8. We com-
pare the performance of a strong baseline on the
FLORES dataset in table 9. We find that AWS
translate outperforms the baseline for all the lan-
guage pairs we work with. We leave for future work
the study of the impact of different machine trans-
lation systems on our CROSS-LINGUAL GENQA
models.

B Ethics Statement

B.1 Potential Harms of GENQA

All our GENQA are fine-tuned from a large pre-
trained language model, MT5 (Xue et al., 2021). In
general, large language models have been shown to
have a potential to amplify societal biases (Bender
et al., 2021), and might leak information about the
datasets they were trained on (Carlini et al., 2021).
In particular, the Colossal Cleaned Crawled Cor-
pus (C4) and its multilingual counterpart (MC4)
that were used to train MT5 have been shown to

8cf. https://aws.amazon.com/blogs/machine-
learning/amazon-translate-ranked-as-1-machine-translation-
provider-by-intento/
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disproportionately under-represent content about
minority individuals (Dodge et al., 2021).

In its use as a retrieval-based question answering
system, GENQA also can also cause harm due to
(i) the use of candidate sentences that are extracted
from web documents, and (ii) model hallucinations
that are produced during decoding. In this work,
(i) is mitigated by only relying on content from
Wikipedia, which, while not immune to vandal-
ism (Alkharashi and Jose, 2018), is of much higher
quality of unvetted web data. Regarding the risk of
model hallucinations, this work does not attempt to
directly mitigate any potential issue through mod-
eling; rather, we always show annotators reference
answer so that hallucination that result in factually
incorrect answers can be properly caught during
evaluation.

B.2 GEN-TYDIQA Copyright

Our GEN-TYDIQA dataset is based on the Ty-
DiQA dataset questions (Clark et al., 2020). Ty-
DiQA is released under the Apache 2.0 License
which allows modification and redistribution of the
derived dataset. Upon acceptance of this paper, we
will release GEN-TYDIQA and honor the terms of
this license.

GEN-TYDIQA answers were collected using
Amazon Mechanical Turk. No geolocation filters
or any personal information were used to hire turk-
ers. Additionally, GEN-TYDIQA questions treat
scientific or cultural topics that can be answered
objectively using Wikipedia. For these reasons, the
collected answers cannot be used to identify their
authors. Finally, to ensure the complete anonymity
of the turkers, we will not release the turkers id
along with the collected answers.

B.3 Energy Consumption of Training

All our experiments are based on the MT5 base
model. We run all our fine-tuning and evaluation
runs using 8 Tesla P100 GPUs9, which have a
peak energy consumption of 300W each. Fine-
tuning our CROSS-LINGUAL GENQA models on
MS-MARCO (Nguyen et al., 2016) takes about 24
hours.

9https://www.nvidia.com/en-us/
data-center/tesla-p100/

C Reproducibility

C.1 Mechanical-Turk Settings

In this paper, we rely on Amazon Mechanical Turk
for two distinct uses.

On the one hand, we use it to build the GEN-
TYDIQA dataset. For data collection, we request 1
turker per question to generate an answer. For the
GEN-TYDIQA data validation, we request 5 turk-
ers to select only answers that are correct, aligned
with the provided passage, self-contained and com-
plete.

On the other hand, we use Amazon Mechanical
Turk to estimate the answer accuracy of our models.
To do so, for each question, we provide the GEN-
TYDIQA reference and ask 3 turkers to vote on
whether the generated answer is correct or not.

For those two uses, we use the following Ama-
zon Mechanical Turk filters to hire turkers.

• We hire turkers that received at least a 95%
HIT10 approval rate.

• We request turkers that have performed at
least 500 approved HITs.

• When possible, we use the “master turker”
filter11 provided by Amazon Mechanical Turk.
We find that this filter can only be used for
English. For other languages, this filter leads
to a too-small turker pool making it unusable
in practice.

On Mechanical turk, the reward unit for work-
ers is the HIT. In our case, a HIT is the annota-
tion/validation of a single question. We make sure
that each turker is paid at least an average of 15
USD/hour. To estimate the fair HIT reward, we first
run each step with 100 samples ourselves in order
to estimate the average time required per task. For
data collection, we set the HIT reward to 0.50 USD
based on an estimation of 0.5 HIT/min. For data
validation, we set it to 0.15 USD based on an es-
timation of 1.6 HIT/min. For model evaluation,

10A HIT, as defined in Amazon Mechanical Turk, is a Hu-
man Intelligent Task. In our case, a HIT consists in generating,
validating, or accepting an answer to a single question.

11As stated on the Amazon Mechanical Turk website, "Ama-
zon Mechanical Turk has built technology which analyzes
Worker performance, identifies high performing Workers, and
monitors their performance over time. Workers who have
demonstrated excellence across a wide range of tasks are
awarded the Masters Qualification. Masters must continue to
pass our statistical monitoring to retain the Amazon Mechani-
cal Turk Masters Qualification."

https://www.nvidia.com/en-us/data-center/tesla-p100/
https://www.nvidia.com/en-us/data-center/tesla-p100/
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Parameter Value Bounds
Effective Batch Size 128 [1, 8192]
Optimizer Adam -
Learning Rate 5e-4 [1e-6,1e-3]
Gradient Clipping value 1.0 -
Epochs (best of) 10 [1, 30]
Max Sequence Length Input 524 [1, 1024]
Max Sequence Length Output 100 [1, 1024]

Table 10: Optimization Hyperparameter to fin-tune MT5
for the GENQA task. For each hyper-parameter, we
indicate the value used as well as the parameter lower
and upper bounds when applicable.

Language # Candidates % Positive Candidates

AR 1,163,407 / 100,066 1.30 / 1.46
EN 688,240 / 197,606 0.56 / 0.49
BN 334,522 / 23892 0.76 / 0.74
JA 827,628 / 214,524 0.47 / 0.47
RU 1,910,388 / 245,326 0.34 / 0.48

Table 11: AS2-TyDiQA dataset extracted from the Ty-
DiQA dataset. We report Train/Dev set following the
TyDiQA split. We note that each question have at least
one positive candidate

we set the HIT reward to 0.10 USD based on an
estimation of 2.5 HIT/min.

C.2 Model Optimization
All the GENQA experiments we present in
this paper are based on fine-tuning MT5 base
(Xue et al., 2021). Models are implemented
in PyTorch (Paszke et al., 2019), and lever-
age transformers (Wolf et al., 2020) and
pytorch-lightning (Falcon and Cho, 2020).
For fine-tuning, we concatenate the question and
the candidate sentences, input it to the model and
train it to generate the answer. Across all our runs,
we use the hyperparameters reported in table 10.

D Analysis

D.1 Gold vs. Retrieved Candidates
We report in table 4 the performance of the MONO-
GENQA and MULTIGENQA models when we feed
them gold passages (using TyDiQA passage) and
compare them with the performance of the same
models fed with the retrieved candidates. We dis-
cuss those results in section 5.4.

D.2 Human Evaluation vs. BLEU and
ROUGE-L

For comparison with previous and future work,
we report the BLEU score (computed with Sacre-

LANGUAGE W. BLEU W. ROUGE

AR 9.5 24.5
BN 21.2 5.3
EN 11.7 23.5
RU 5.9 16.8

Table 12: Spearman Rank Correlation (%) of human
estimated Accuracy with BLEU and the ROUGE-L
F score. We run this analysis at the sentence level on
the MULTILINGUAL GENQA predictions.

LANGUAGE W. BLEU W. ROUGE

AR 30.0 30.0
BN -50.0 -50.0
EN 40.0 40.0
JA -90.0 -60.0
RU -87.2 100.0

Table 13: Spearman Rank Correlation (%) of human es-
timated Accuracy with the BLEU score and the ROUGE-
L F score at the model level across our 5 models (AS2,
MONOGENQA, MULTIGENQA, CROSSGENQA (x2))

BLEU (Post, 2018)) and the F-score of the
ROUGE-L metric (Lin, 2004) along with the hu-
man evaluation accuracy in table 14.

As seen in previous work discussing the auto-
matic evaluation of QA systems by Chaganty et al.
(2018) and Chen et al. (2019), we observe that for
many cases, BLEU and ROUGE-L do not correlate
with human evaluation. In table 12, we take the pre-
dictions of our MULTIGENQA model across all the
languages and compute the Spearman rank correla-
tion at the sentence level of the human estimated
accuracy with BLEU and ROUGE-L. We find that
this correlation is at most 25%. This suggests that
those two metrics are not able to discriminate be-
tween correct predictions and incorrect ones.

Additionally, we report the Spearman rank corre-
lation between the Accuracy and BLEU or ROUGE
across all our 5 models in table 13. We find that
neither BLEU nor ROUGE-L correlates strongly
with human accuracy across all the languages. This
means that those metrics are not able to rank the
quality of a model in agreement with human judg-
ment. Those results lead us to focus our analysis
and to take our conclusions only on human eval-
uated accuracy. We leave for future work the de-
velopment of an automatic evaluation method for
multilingual GENQA.
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MODEL QUESTION CANDIDATES BLEU ROUGE Accuracy

AS2 AR AR 5.9 20.6 68.0
MONOGENQA AR AR 17.2 38.8 68.4
MULTIGENQA AR AR 17.4 39.0 72.7
CROSSGENQA AR AR-BN-EN-JA-RU TOP 10 15.3 36.5 72.0
CROSSGENQA AR AR-BN-EN-JA-RU TOP 2 PER LANG. 14.7 36.3 73.2

AS2 BN BN 3.8 16.6 58.0
MONOGENQA BN BN 21.7 43.0 67.4
MULTIGENQA BN BN 23.7 44.9 76.5
CROSSGENQA BN AR-BN-EN-JA-RU TOP 10 35.2 56.5 25.3
CROSSGENQA BN AR-BN-EN-JA-RU TOP 2 PER LANG. 33.5 54.8 18.5

AS2 EN EN 5.6 20.0 39.0
MONOGENQA EN EN 23.0 46.4 43.6
MULTIGENQA EN EN 21.8 46.2 37.4
CROSSGENQA EN AR-BN-EN-JA-RU TOP 10 21.0 45.5 31.0
CROSSGENQA EN AR-BN-EN-JA-RU TOP 2 PER LANG. 20.2 44.8 29.3

AS2 JA JA 6.7 22.4 70.4
MONOGENQA JA JA 19.4 45.0 64.3
MULTIGENQA JA JA 19.1 45.5 65.5
CROSSGENQA JA AR-BN-EN-JA-RU TOP 10 17.6 42.2 70.3
CROSSGENQA JA AR-BN-EN-JA-RU TOP 2 PER LANG. 16.6 43.0 71.6

AS2 RU RU 7.4 13.3 60.8
MONOGENQA RU RU 6.4 23.4 61.3
MULTIGENQA RU RU 6.4 23.2 66.7
CROSSGENQA RU AR-BN-EN-JA-RU TOP 10 4.2 21.0 74.3
CROSSGENQA RU AR-BN-EN-JA-RU TOP 2 PER LANG. 5.3 22.8 74.7

Table 14: Performance of GENQA models on GEN-TYDIQA based on retrieved and reranked candidates. QUES-
TION indicates the language of the question and the answer while CANDIDATES indicates the language set of the
retrieved candidate sentences.


