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Abstract

We present a novel architecture for explain-
able modeling of task-oriented dialogues with
discrete latent variables to represent dialogue
actions. Our model is based on variational re-
current neural networks (VRNN) and requires
no explicit annotation of semantic information.
Unlike previous works, our approach models
the system and user turns separately and per-
forms database query modeling, which makes
the model applicable to task-oriented dialogues
while producing easily interpretable action la-
tent variables. We show that our model outper-
forms previous approaches with less supervi-
sion in terms of perplexity and BLEU on three
datasets, and we propose a way to measure
dialogue success without the need for expert
annotation. Finally, we propose a novel way to
explain semantics of the latent variables with
respect to system actions.

1 Introduction

While supervised neural dialogue modeling is a
very active research topic (Wen et al., 2017b; Lei
et al., 2018; Peng et al., 2021), it requires a signif-
icant amount of work to obtain turn-level labels,
usually with dialogue state annotation. We argue
that in many real-world cases, it is very expensive
to obtain the necessary labels or even to design
an appropriate annotation schema. Consider a call
center with various dialogues that has a lot of tran-
scripts available, including the corresponding API
queries, but has no capacity to label them. This mo-
tivates our research of approaches that minimize
the need for expert annotation.

While most recent research focuses on pretrained
language models (PLMs) and reaches state-of-the-
art performance in standard supervised (Peng et al.,
2021; Zhang et al., 2020b) or even few-shot (Peng
et al., 2020; Wu et al., 2020) settings, these mod-
els still require full supervision. Furthermore,
they lack the potential to interpret the model de-
cisions. Some recent works try to address PLM

interpretability with some success (Lin et al., 2019;
Stevens and Su, 2021), but still face considerable
difficulties due to PLMs’ huge number of param-
eters and their structure. On the other hand, dia-
logue models using latent variables are able to infer
interpretable attributes from unlabeled data (Wen
et al., 2017a; Zhao et al., 2019). These models
are mostly trained using variational autoencoders
(VAE; Kingma and Welling, 2014; Serban et al.,
2017). Improvements with discrete variables (Zhao
et al., 2018; Shi et al., 2019) offer better inter-
pretability, but the approaches are not directly ap-
plicable to task-oriented response generation as no
distinction between the system and user roles is
made, and database access or goal fulfillment are
not considered; most research on unlabeled data
only applies to a chit-chat setting.

Since interpretability and the ability to learn
from unlabeled data are our primary goals, we
choose working with RNN-based latent variable
models over Transformer-based PLMs in our work.

Unlike previous latent-variable approaches, we
shift the focus towards task-oriented systems and
take tracked entity values and database access into
account. Specifically, we base our approach on
Shi et al. (2019)’s architecture. Shi et al. (2019)
employ the VRNN model (Chung et al., 2015) and
experiment with conditioning the prior distribution.
However, their focus is on uncovering dialogue
structure, and they model user and system utter-
ances together. In contrast, we fully take advantage
of the VRNN model’s generative capabilities and
apply it for response generation. Specifically, we
train a specialized decoder for system response
generation. Furthermore, we extend the VRNN
model so that the system and the user utterances
are modeled separately. This modification brings
the following major advantages: (1) We can model
different behaviors on the side of the system and
the user, which is expected in a task-oriented set-
ting; (2) We can focus on modeling latent system
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Figure 1: Visualization of our model architecture (one dialogue turn). Yellow boxes represent the turn-level VRNN’s
hidden state h'. The user utterance is represented as the last hidden state of the encoder network ¢, ., which is
trained as an autoencoder along with the decoder ¢}, .. The system utterance, encoded by the network ¢ ., is
an input to the posterior network (,,,,; that helps to train the prior network ;o to construct meaningful latent
variables z,, which initialize the system utterance decoder ¢, .. Training uses the whole architecture, including the
posterior network (s, while only uses the part shaded in green is used for inference.

Lc g stands for cross-entropy loss, L1, for KL-divergence loss.

actions in an explainable way; (3) We can predict

the system response easily.

Task-oriented dialogue systems typically need
to interact with an external database; otherwise,
their responses cannot be grounded. Therefore,
we assume that database queries and results are
known, but no dialogue state annotation is avail-
able. This allows a direct application of our model
for dialogue response generation in a task-oriented
setting while still keeping the amount of needed
supervision very low. This scenario reflects the in-
tended use case, i.e. automating a call center based
on recordings of previous human-human dialogues.
At some point of the dialogue, a database query
is performed by the human agent and we know
exactly when and with which parameters.

Our contributions in this paper are as follows:

1. We propose a novel modification of the VRNN-
based model for minimally supervised task-
oriented dialogue generation, with interpretable
latent variables to represent system actions.

2. We evaluate the system performance in a full
task-oriented setting including the database in-
teraction, going beyond previous works in this
family of models. Our approach outperforms
strong baselines in terms of BLEU and perplex-
ity on three datasets and compares favorably to
other baselines.

3. We present a straightforward way of interpreting
the latent variables using a decision tree model.

We show that our model’s latent variables ex-

plain most of our system’s predicted responses

and align well with gold-standard responses.
Our experimental code is released on GitHub.!

2 Related Work

In the area of supervised dialogue systems, current
leading research focuses on end-to-end sequence-
to-sequence models (Lei et al.,, 2018). Recent
works make use of large pre-trained language mod-
els (PLMs) based on the transformer architecture
(Vaswani et al., 2017) such as GPT-2 (Radford
et al., 2019) or BERT (Devlin et al., 2019). For ex-
ample, Wu et al. (2020) propose finetuning BERT
(Devlin et al., 2019) for task-oriented dialogue on
multiple datasets; Zhang et al. (2020b) extended
the GPT-2 PLM to model open-domain chit-chat.
However, we focus mainly on approaches that
require less supervision. The hierarchical recurrent
encoder-decoder (HRED) by Serban et al. (2016),
where RNN hidden states represent the latent dia-
logue state, was among the first unsupervised neu-
ral dialogue models. However, the latent repre-
sentations obtained from the vanilla autoencoder
model trained with reconstruction loss suffer from
poor generalization. For this purpose (Bowman
et al., 2016), the usage of Variational Autoencoders
(VAEs) (Kingma and Welling, 2014) was proposed.
The VAE training maximizes the variational lower

https://github.com/vojtsek/to-vrnn
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bound of data log-likelihood. VAE distributions are
invariant in time, therefore it are not suitable for
modeling sequences. Chung et al. (2015) address
this issue with the Variational Recurrent Neural
Network model (VRNN). Serban et al. (2017) then
used VRNN’s latent variables to represent dialogue
state. Recent works used modified Transformer
architectures with specific training tasks to obtain
in-context representations of dialogue utterances
(Bao et al., 2020; Liu et al., 2021).

While both VAEs and Transformers improve
generalization and consistency of the latent vari-
ables, they are not well interpretable. To obtain
more interpretable latent states, generative models
with discrete states such as hidden Markov models
were applied (Zhai and Williams, 2014; Brychcin
and Kral, 2017). Wen et al. (2017a) used discrete
latent variables to represent the state in a model
trained using reinforcement learning. Another pro-
posed approach was the usage of quantization tech-
niques by Gunasekara et al. (2017), who perform
clustering on utterances and model the dialogue as
a sequence of clusters to predict future responses.
Zhao et al. (2018) use VAEs in combination with
Gumbel-Softmax to model discrete latent variables
representing the dialogue utterances.

More recently, several works attempted to model
latent system actions without any action-level anno-
tation (Huang et al., 2020; Zhao et al., 2019; Lubis
et al., 2020; Zhang et al., 2020a). However, they
still rely on labeled data on different levels, such as
turn-level dialogue state annotation. In a different
line of research, Shi et al. (2019) aim to uncover
the dialogue structure. They apply VRNNS to es-
timate dialogue state transition probabilities. The
same goal of uncovering and understanding seman-
tic structure of the dialogue is explored by Qiu et al.
(2020), who propose a VRNN-based model with
structured attention to achieve this goal, or Sun
et al. (2021), who use an enhanced graph autoen-
coder. Our proposed model combines the latter two
approaches, but it is distinct from both. It models
system actions using latent variables, but it does
not rely on any turn-level labels for dialogue state
or language understanding. Moreover, our goal is
not only to uncover the dialogue structure but rather
to model system actions and generate responses.

3 Method

We assume that each dialogue turn ¢ consists of a
user utterance x!, and a system utterance x’. The

context ¢’ in turn ¢ is a sequence of user and sys-
tem utterances up to the previous turn ¢ — 1. We
expect that conditioning the generation of x% on
a latent variable z’ will allow the model to better
incorporate context.

3.1 Background: VRNN

The VRNN model (Chung et al., 2015) can be seen
intuitively as a recurrent network with a VAE in
every timestep. It extends the VAE model to a
sequence of observations generated from a series
of hidden latent variables z. Formally, we want
to estimate the joint probability distribution of a
sequence of observed and corresponding latent vari-
ables p(x,z) = p(x|z)p(z). The conditional dis-
tribution p(x|z) is parameterized with a neural net-
work. However, we still need to estimate the poste-
rior p(z|x) in order to connect the latent variables
with the observations. The VAE uses a variational
approximation ¢(z|x) that allows to maximize the
lower bound of log-likelihood of the data:

log p(x) > —KL(q(z|x)||p(z))

(D
+Eq(z\x) [IOg p(X‘Z)]

where KL is the Kullback-Leibler divergence. We
consider a prior network ;o and a posterior net-
work ¢p0s¢, which compute the parameters of p(z)
and ¢(z|x) respectively. In a VRNN, ¢,io, and
©Ppost additionally depend on the RNN hidden state
h! to allow for a context-aware prior distribution.
In each time step, we obtain the distribution param-
eters as follows:

9q = (Ppast(htﬂpenc(xt))

@
Op = @prior(h')

where @¢p, is the encoder and 6, 0, are parame-
ters of the respective distributions (see Section 3.4).
With distribution parameters available, we can sam-
ple the latent variable and predict the output:

z' ~ p(z;0p)
x' = Qaec(z’)

3)

where g4, represents the decoder network. The
update of the hidden state h is as follows:

h'*h = RNN([‘P@HC(Xt)v Pz (Zt)]a ht) 4)

where |[., ] is concatenation, ¢, (.) is a feature ex-
tractor and RNN() is a step transition function of
a recurrent neural network, in our case an LSTM
(Hochreiter and Schmidhuber, 1997).
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user: Is there a moderately priced

restaurant serving italian food anywhere in town?

Turn 1 system gf)ld: query italian moderate
action: QUERY ()
system hyp: query italian moderate
user/database: pizza express, Regent Street City Centre, 01223 324033, C.B 2, 1 D.B, centre
Turn 2 system gold: Pizza express serves italian food and is located in the town centre and is in the
moderate price range .
action: OFFER ()
system hyp: Pizza hut Cherry Hinton is a italian restaurant in the centre part of town
user: what is the address and phone number ?
Tarn 3 system gold: their address is Regent Street City Centre. their phone number is 01223 324033.
can i help with anything else ?
action: GIVE_DETAILS ()
system hyp: the phone number is 01223 324033. There anything else i can help you with ?

Table 1: An example dialogue drawn from the CamRest676 validation set, illustrating the use of database information.
We show the user input (or inserted database results), the gold-standard system response, system action annotation
based on manual rules (cf. Section 5.2), and a prediction of our system (Ours-attn configuration using the database,
cf. Table 3). In the first turn, a database query is constructed, the second turn illustrates how the result is retrieved
and fed as input. Values inferred correctly by our system are depicted in green, wrong inference is in red.

3.2 Modeling task-oriented Dialogue

We use the VRNN model and extend it to fit the
task-oriented setup. Our model’s architecture is
depicted in Figure 1. We employ a turn-level RNN
that summarizes the context to its hidden state. In
each dialogue turn, we model user and system ut-
terances with separate autoencoders to account for
different user and system behavior. The user utter-
ance is modeled with a standard autoencoder; the
last encoder hidden state ¢¥, .(x!,) provides the en-
coded representation. For the system part, we use
a VAE with discrete latent variables zs conditioned
on the context RNN’s hidden state h'~! and the
user utterance encoding ¢¥ (x!). Our model can
thus be seen as a VRNN extended by an additional
encoder-decoder module. The context RNN hidden
state update looks as follows:

h"! = RNN([¢,,.(x1,), ¢=(20)], ") (5)

For word-level encoding and decoding modules
(Penes Pones Pecs Piec)» We use an RNN with
LSTM cells. We further experiment with attention
(Bahdanau et al., 2015) over user encoder hidden
states in the system decoder. We train the model
by minimizing a sum of the cross-entropy recon-
struction loss on user utterances and the variational
lower bound loss (Equation 1) on system responses.
When running in inference mode, only the prior
distribution p(zs) is considered, which does not re-
quire the system utterance on the input. Therefore,
the model is able to generate the system response
when provided with a user utterance on the input.

3.3 Database interaction

Task-oriented dialogue systems must provide ac-
curate and complete information based on user re-

quests, which requires external database interac-
tion. To support database access while avoiding
costly turn-level annotation, we follow Bordes et al.
(2017) and insert sparse database queries and re-
sults directly into the training data, forming special
dialogue turns. Specifically, we identify turns that
require database results, e.g. to inform about entity
attributes or a number of matching entities, and
insert a query-result pair in front of those turns (see
Table 1).We argue that this is the minimal level
of supervision required to successfully operate a
task-oriented system with database access; it is sig-
nificantly lower than the full dialogue-state supervi-
sion used by most systems. In addition, it is easily
available in the wild (e.g., call center transaction
logs). In practice, we observe that database queries
are only inserted for 24% turns” on average. Note
that this approach still covers the task of an explicit
state tracker since the necessary entity values are
provided when needed. To maintain consistency,
database query results can be stored and used in
follow-up questions.

Some experimental approaches, such as Raghu
et al. (2021), learn database queries without anno-
tation via reinforcement learning. Our framework
could use this to handle database interaction more
effectively. We leave this extension for future work.

3.4 Latent Variables

We use a set of n K-way (K = 20;n = 1,3,5)
categorical variables to achieve good interpretabil-
ity, following Zhao et al. (2018). This means that
each variable is represented as a one-hot vector of

This is the average over all datasets in our experiments
(see Section 4.1). Per-dataset query counts are 36%, 23% and
11% for CamRest676, MultiWwOZ and SMD respectively.
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Data Domains Slots Dialogues T/D
MultiwOZ 7 29 10,437 13.71
SMD 3 15 3031 5.25
CamRest676 1 7 676 8.12

Table 2: Details of the used datasets giving number of
domains, slots, dialogues and average number of turns
per dialogue.

length K, and we use n such vectors. We use the
Gumbel-Softmax distribution and the reparameteri-
zation trick (Jang et al., 2017). During inference,
we apply argmax directly to the predicted distribu-
tion, instead of sampling from it.

4 Experiments

In this section, we focus on the quality of responses
generated by our model as well as on model perfor-
mance with respect to dialogue task success. We
focus on theoretical modeling and feasibility at
this stage, which we believe is sufficiently demon-
strated by corpus-based evaluation complemented
by manual checks. Detailed interpretation of the
learned representations follows in Section 5.

4.1 Data

We evaluate the model performance on three
datasets: CamRest676 (Wen et al., 2017b), Multi-
WOZ 2.1 (Budzianowski et al., 2018; Eric et al.,
2020) and Stanford Multidomain Dialogues (SMD;
Eric et al., 2017)3 All the datasets are task-oriented,
i.e., they distinguish between user and system con-
versational roles. Furthermore, MultiWOZ and
SMD include multiple conversation domains. The
MultiWOZ dataset contains conversations between
tourists and a system that provides information
about the city they visit, e.g., restaurants, hotels
or attractions and transit connections. SMD con-
tains more concise dialogues between a driver and
an in-car virtual assistant. CamRest676 contains
only restaurant reservations. Detailed statistics are
given in Table 2.

Database queries To include database informa-
tion in the dialogues, we first identify all turns in
the original datasets where database information is
required, using handcrafted rules.* We then build

3We use standard splits for MultiWOZ 2.1 and SMD. We
split CamRest676 in the 8:1:1 ratio, following previous work.
“These rules are very simple and require minimal effort:
whenever database results are provided in the data (based on
simple pattern matches over system actions), we prepend a
database query based on ground-truth state. The assumption

database query turns based on the respective state
annotation (see example in Table 1). Note that
database query parameters are the only annotation
used to train our models apart from utterance texts;
no other dialogue state annotation from the original
datasets is used.

4.2 Experimental Setup

We evaluate two versions of our model: one that
uses the attention mechanism (attn) and one with-
out it (noattn).> Since our approach is the first to be
evaluated in a task-oriented setting with this mini-
mal level of supervision, comparing to prior works
is difficult. Setups with full dialog state supervi-
sion are not comparable and dialog-state metrics
are not applicable without the turn-level supervi-
sion. Therefore, we compare our models to stan-
dard architectures, such as vanilla LSTM or Trans-
former encoder-decoder, predicting in a sequence-
to-sequence fashion using the same amount of su-
pervision as our approach. We also compare to
the HRED/VHRED models, which are perhaps the
closest prior work to our approach. To put the re-
sults into perspective, we also include scores for
fully supervised state of the art on our datasets.
However, note that these scores are not directly
comparable. Model parameters are selected by grid
search (see Appendix A).°

4.3 Response quality

To evaluate the quality of individual responses, we
compute BLEU score (Papineni et al., 2002) and
perplexity on the test set (see Table 3).

Our architecture performs substantially better
than (V)HRED, which commonly fails to pick
up the necessary knowledge, especially on larger
datasets. The attention-based versions perform bet-
ter on BLEU, but lose slightly on perplexity. Com-
paring HRED and VHRED shows that using the
variational approach generally improves the overall
performance. While the GPT-2 PLM outperforms
our approach on perplexity, it is worse on BLEU
score, despite its huge capacity.

We compare to other relevant related works:
is that in a real-world scenario, these queries would naturally
be available — database queries induced by human operators
can be logged along with client-operator conversations.

5The number and size of the variables are set based on
a few cursory checks on the training data. Our models use
10 latent variables by default; we discuss the influence of the
number of latent variables in Appendix B.

®The training is sensitive to some parameters, such-as the

Gumbel-softmax temperature, but otherwise the model trains
easily using conventional optimization methods.

301



model CamRest676
db | BLEU Ppl MI EMR
LSTM X 3.90 5.34 - -
Transformer X 4.98 7.72 - -
GPT-2 X 15.40 1.18 - -
GPT-2 13.89 1.80 - -
HRED X 270  13.92 - 0.02
VHRED X 434 1176 0.21 0.02
VHRED 8.50 10.23 0.17 0.36
“Ours-noattn | X | 1298 464 029 001
Ours-noattn 15.10 445 0.34 0.24
Ours-attn X 17.37 5.07 0.16 0.09
Ours-attn 17.10 423 022 0.81
“supervised SotA* | /| 2550 - - -

SMD MultiwOZ 2.1
BLEU Ppl MI | BLEU Ppl MI EMR
1.62 7.84 - 0.92 8.23 - -
1.53 6.33 - 0.95 6.95 - -
9.26 2.46 - 940  2.77 - -
4.54 2.02 - 9.56 243 - -
1.25 12.50 - 298 29.61 - 0.01
375 1194  0.20 4.65 3274 0.15 0.01
394 11.86 0.19 382 16.61 0.07 0.04
735 618 053 7.8 9.16 042 0.02°
9.24 6.01 047 11.3 517 027  0.05
1230 636 004 | 1228 10.19 0.06 0.04
1240 6.11 0.11 11.86 6.03 005 0.08
1440 - - 1940 250 - =

Table 3: Model performance in terms of Entity Match Rate, BLEU for generated responses, Perplexity (Ppl), and
Mutual Information (MI) between the generated response and the latent variables z;. We measure MI only for the
models that use latent variables explicitly. The db column indicates systems which use database information. *Note
that the supervised state-of-the-art scores are not directly comparable, as the systems use full turn-level supervision.
Systems listed: CamRest676 (Peng et al., 2021); SMD (Qin et al., 2020); MultiWOZ (Lin et al., 2020a).

config CamRest676 MultiwOZ 2.1.
gold domain  action
random 0.167 0.143  0.093
majority 0.417 0.327 0.316
"HRED | 0.645 | 0.445 0437
VHRED 0.521 0.357  0.323
GPT-2 0.650 0.601 0.552
Ours-attn 0.616 0.683  0.664
Ours-noattn 0.753 0.704  0.691
“Ours-manual | 0587 | - -

Table 4: Accuracy of the domain and action decision-
tree classifiers based on latent variables. For details
about the manual annotation process, see Section 5.3.

1. Shi et al. (2019) do not use their model for
response generation, but they report a negative
log likelihood of approximately 5.5-10* when
reconstructing the CamRest676 test set. Our
Ours-noattn model obtained 0.87 - 10*, which
suggests a better fit of the data.’

2. Wen et al. (2017a) measure response genera-
tion BLEU score on fully delexicalized Cam-
Rest676 data. Their best reported result is
24.60, while our model gets 27.23 (30.10 with
attention).

Based on manual checks, our models are able
to generate relevant responses in most cases. As
expected, only the models including database turns
are able to predict correct entities (cf. Section 4.4).
A relatively common error is informing about
wrong slots, e.g. the model provides a phone num-

"This comparison is only approximate since the exact data

split is not described by Shi et al. (2019) — we are only able to
use a test set of the same size, not the exact same instances.

model success  query acc.
CamRest676
VHRED 0.21 0.91
Ours-noattn 0.28 0.84
“supervised SotA (Peng et al., 2021) 0.73 N/A
MultiwOZ
Oursmoattn 010 0.98
supervised SotA (Peng et al., 2021)  0.85 N/A

Table 5: Dialogue success and query accuracy compari-
son for VHRED, Ours-noattn using the database and a
state-of-the-art supervised system.

ber instead of an address or, even more frequently,
provides wrong slot values (cf. Table 1).

4.4 Task-related performance

Without dialogue-state supervision, we cannot mea-
sure task-oriented metrics such as inform rate or
goal accuracy. Therefore, we decided to measure
dialogue success and entity match rate, which we
adjust to the minimally supervised case (details
follow). We also measure database query accuracy.

Dialogue success The dialogue success or suc-
cess rate reflects the ratio of dialogues in which
the system captures all the mentioned slots cor-
rectly and provides all the requested information.
We follow previous works (Nekvinda and Dusek,
2021) and report corpus-based success score, as
opposed to using a user simulator. However, mea-
suring success rate without turn-level labels is not
straightforward. We approximate tracking slot val-
ues turn-by-turn by checking for correct slot values
upon database queries only, and we use this in-
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formation to measure dialogue success. Note that
this is not equivalent to having state tracking labels
available at all turns, but we consider it a reason-
able approximation given our limited supervision —
database queries are crucial for presenting the cor-
rect entities to the user, which in turn decides the
dialogue success. The generated query attributes
directly show the captured slots.

Success rate results are shown in Table 5. Our
system is not competitive with a fully supervised
model, but outperforms the baselines (VHRED,
GPT). Upon inspection, we see that the system is
often able to recognize correct slots, however, it has
difficulties capturing the correct values. However,
the scores are promising considering the minimal
supervision of our training.

Matching database entities To evaluate the ac-
curacy of the offered entities, we measure the Entity
Match Rate (EMR), i.e. the ratio of generated re-
sponses with correct entities over all responses that
mention some entity. Table 3 shows the results. We
observe that the model performance without the
database information is poor. However, including
the database information improves the performance
substantially, especially in the case of CamRest676
data. The MultiWOZ data is much more complex —
it contains more slots and multiple domains that can
also be combined in an individual dialogue. Never-
theless, we can still observe an improvement when
we include the database queries. We also note that
using attention improves EMR substantially — the
latent variables alone cannot hold all information
about particular values (cf. Section 5.2).

Database query accuracy Further, we evaluate
the accuracy of the database querying. This metric
simply measures if the system queries the database
at appropriate turns. The content of the query is
not taken into account in this case, as it is already
considered in the success rate. On MultiwWOZ, we
get a near-perfect accuracy, while our approach
loses to VHRED on CamRest676 (see Table 5).
We hypothesize that this discrepancy can be caused
by different dialogue structures among theses two
datasets. The dialogues in CamRest676 usually
contain just zero or one query during a dialogue,
so our model might generate more queries than
necessary.

S Latent Variable Interpretation

We believe that being able to explain and interpret
the model behavior is crucial, especially in a setting
without full supervision. Therefore, we design a
set of experiments to evaluate the model behavior
and investigate whether the model captures salient
dialogue features in the latent variables obtained
during training on CamRest676 and MultiWOZ.
While it seems that the latent variables are mainly
useful for interpretability or structure induction,
they are likely also contributing to the performance
as smaller latent spaces yield lower performance
as we saw in preliminary experiments and show in
Appendix B.

5.1 Clustering the actions

First, we want to assess whether similar variables
represent similar actions. We follow Zhao et al.
(2018) and define utterance clusters according to
the latent variables that have been assigned to them
by the model. We then use the homogeneity met-
ric (Rosenberg and Hirschberg, 2007) to evaluate
the clustering quality with respect to the reference
classes determined by manually annotated system
actions (which are used for evaluation only). Ho-
mogeneity reflects the amount of information pro-
vided by the clustering (and by extension, the latent
vectors used) and is normalized to the interval [0,
1]. The reason of choosing this metric is that it
is independent on the number of labels and their
permutations. We provide the results in Table 6.
The clusters formed on the CamRest676 data are
more homogeneous than on MultiWwOZ, likely be-
cause of the greater dataset complexity in the lat-
ter case. In all cases, our clusters are much more
homogeneous than clustering formed by random
assignment. We also compare favorably to stronger
baseline that is based on clustering of the sentence
representations. Specifically, in this approach we
compute sentence representations using a BERT
model tuned for sentence representations (Reimers
and Gurevych, 2019) and then cluster the obtained
sentence embeddings using K-means clustering.

5.2 Predictive power of the variables

To evaluate the predictive power of the obtained
latent representations, we train a simple classifier
that predicts the system action and current domain,
using solely the obtained latent representations as
input features. CamRest676 data does not include
system action annotation, hence we manually de-
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‘ Offer place
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Figure 2: A visualization of a decision tree trained on the CamRest676 data to predict a system action from the
contents of the latent variables. Each node represents a decision based on one latent variable value and the leaf node
colors represent different system actions. When the condition in a given node is fulfilled, the algorithm proceeds into
the right subtree, left otherwise. For clarity, we limit the maximum tree depth to 4. The limit lowers the accuracy
slightly — the pictured tree achieves an accuracy of 73% on the CamRest676 data.

signed a set of rules to determine system actions.
An example of this rule-based action annotation is
shown in Table 1. For MultiWOZ, we predict both
system action and the domain of the utterance.

To put our results into perspective, we include
several baselines: trivial random and majority class
baselines, and classifiers using representations ob-
tained with other methods (HRED, VHRED, GPT).
We use a decision tree (DT) classifier trained with
the CART algorithm® and the gini split criterion,
due to the its good interpretability. The results are
shown in Table 4. Our classifier beats the random
and majority baselines in all cases. More impor-
tantly, it also outperforms classification based on
(V)HRED and GPT representations. This demon-
strates that our approach produces high-quality in-
terpretable representations. We also observe that
using attention harms the performance of the action
classifier as it makes it possible for the models to
bypass the latent variables.

The information about domains and system ac-
tions is stored in categorical variables and can be
extracted by a simple classification model such as
the decision tree which allows us to interpret and
explain the behavior of our model. For illustration,
in Figure 2 we plot a DT with limited depth that
achieves 73% accuracy when predicting the system
action on the CamRest676 data.’

8https://scikit-learn.org/stable/
modules/tree.html

The aim is that latent variables hold high-level informa-
tion, such as intents, actions or domains. This helps inter-
pretability, but is not sufficient for generating appropriate and

Target Ours-noattn  sent-repr ~ random
CamRest676 action 0.65 0.45 0.20
MultiWOZ action 0.34 0.33 0.02
MultiWwOZ domain 0.39 0.30 0.01

Table 6: Homogeneity for Ours-noattn configuration
using the database vs. a clustering of sentence represen-
tations and random baseline.

5.3 Manual interpretation

To explore the interpretability of our representa-
tions even further, we manually annotate the latent
variables to obtain a simple handcrafted classifier.
Specifically, we draw a set of pairs of utterances
and corresponding latent representations from the
validation set. Then we present the representation
(discrete) vectors to an expert annotator with a task
of assigning an action that each vector represents,
based on the sampled utterances. This way we ob-
tain a mapping from the space of latent vectors to
actions. We then apply this mapping to predict ac-
tions on the test set (the -manual entry in Table 4).
Note that in this approach, we only allow assign-
ing an action to a whole vector, unlike in the case
of decision tree classifier that can take individual
components into account. As the results show, this
approach works well, despite the above limitation.

factually correct responses — here we need to incorporate cor-
rect slot values. This detailed information is captured and
carried over via the attention mechanism in Ours-attn. Po-
tential alternatives are copy mechanisms (Lei et al., 2018) or
delexicalization on the generated outputs (Henderson et al.,
2014; Peng et al., 2021).
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5.4 Mutual Information

Finally, we compute mutual information (MI) be-
tween the generated text and latent variables as well
as among the latent variables themselves (see Ta-
ble 3).!% We see that using attention has a dramatic
effect on the amount of MI between the latent vari-
ables and the generated text. It appears that since
attention bypasses the latent vectors, the decoder
does not need to use them to store information.

6 Conclusion and Future Work

We introduce a model for task-oriented dialogue
with discrete latent variables that uses only mini-
mal supervision and improves upon previous ap-
proaches (Chung et al., 2015; Serban et al., 2017).
We also propose methods for task-based evaluation
in this minimally supervised setting. Our system
is not yet ready for interactive evaluation on full
dialogues, considering the clear performance gap
with respect to with fully supervised approaches.
However, we demonstrate that it learns meaningful
representations from minimal supervision (in a re-
alistic setup corresponding to pre-existing call cen-
ter call logs) and compares favorably to previous
weakly supervised approaches. A detailed analysis
reveals that the learned representations capture rel-
evant dialogue features and can be used to identify
system actions. Furthermore, the reason for choos-
ing an action can be described in an explainable
way. The results suggest that dialogue models with
discrete latent variables can be successfully applied
also in the task-oriented setting.

The main limitations of our current model are
its problems with providing the correct slot values
in responses. We plan address this issue in future
work by incorporating explicit copy mechanisms
(Lei et al., 2018), i.e. the model will learn to copy
slot values from the context and from database
results. We also plan to experiment with incor-
porating Transformer models into the variational
autoencoder setup, following recent models such
as the VAE-transformer (Lin et al., 2020b).
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A Training Parameters

The model is trained with gradient descent, using
ADAM optimizer. We set the hyperparameters ac-
cording to the BLEU and perplexity results of a
grid search on the development set. Utterance en-
coder and decoder hidden sizes are 250, the context-
LSTM hidden size is 100. The latent variables are
20-dimensional vectors, their number differs across
experiments and is given in the main text. For the
RNN components, we use a dropout probability
of 0.3. The total model size is 7,047,529 parame-
ters. The training time is 3-8 hours using one GPU,
depending on dataset.

B Performance with Various Numbers of
Latent Variables

BLEU Ppl MI

Ours-noattn-1z 25.2 425 0.46
Ours-noattn-3z 26.8 424 0.26
Ours-noattn-5z 2723 420 0.38
Ours-noattn-12z | 29.83  4.12 0.35

Table 7: Evaluation of the model performance with
respect to automatic measures of BLEU, Perplexity (Ppl)
and Mutual Information (MI) on the CamRest676 data.

C Limitations and risks

We consider our work to be mostly fundamental re-
search rather than a practical application. However,
it has certain limitations. Firstly, the proposed way
of including the database results is inflexible and it
is hard to incorporate possible API changes. Also,
although we show that the latent actions are possi-
ble to interpret and explain, with growing number
of actions we likely worsen this possibility to inter-
pret the variables. Another limitation of our current
model is its inability to provide correct entities and
slot values.

Another limitation and possible risk is that this
system is very hard to control and deploying it in
current form could produce undesired behavior.
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