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Abstract

Related works used indexes like CKA and
variants of CCA to measure the similarity of
cross-lingual representations in multilingual
language models. In this paper, we argue that
assumptions of CKA/CCA align poorly with
one of the motivating goals of cross-lingual
learning analysis, i.e., explaining zero-shot
cross-lingual transfer. We highlight what valu-
able aspects of cross-lingual similarity these
indexes fail to capture and provide a motivating
case study demonstrating the problem empir-
ically. Then, we introduce Average Neuron-
Wise Correlation (ANC) as a straightforward al-
ternative that is exempt from the difficulties of
CKA/CCA and is good specifically in a cross-
lingual context. Finally, we use ANC to con-
struct evidence that the previously introduced
“first align, then predict” pattern takes place not
only in masked language models (MLMs) but
also in multilingual models with causal lan-
guage modeling objectives (CLMs). Moreover,
we show that the pattern extends to the scaled
versions of the MLMs and CLMs (up to 85x
original mBERT).!

1 Introduction

Similarity indexes like Canonical Correlation Anal-
ysis (CCA, Hotelling, 1936) or Centered Kernel
Alignment (CKA, Kornblith et al., 2019) aim to
find a similarity between parallel sets of different
representations of the same data. The deep learn-
ing community adapted these indexes to measure
similarity between representations that come from
different models (Raghu et al., 2017; Morcos et al.,
2018; Kornblith et al., 2019). Another line of work
used the same methods to measure similarity be-
tween different languages which come from a sin-
gle multilingual model (Kudugunta et al., 2019;
Singh et al., 2019a; Conneau et al., 2020; Muller
et al., 2021).

'Our code is publicly available at https://github.
com/TartuNLP/xsim

In this paper, we argue that while CCA/CKA
methods are a good fit for the first case, they are a
suboptimal choice for the second scenario.

First, we employ a real-world motivating exam-
ple to demonstrate that CKA can fail to capture the
notion of similarity that we consider helpful in a
cross-lingual context. We also discuss the general
problems of CKA/CCA indexes and conclude that
they are not well aligned with some of the goals of
cross-lingual analysis (Section 4).

Next, we propose and verify an Averaged
Neuron-Wise Correlation (ANC) as a straightfor-
ward alternative. It exploits the fact that represen-
tations from the same model have apriori-aligned
neurons, which is the desired property in a cross-
lingual setup (Section 5).

Finally, Muller et al. (2021) demonstrated the
so-called “first align, then predict” representational
pattern in a multilingual model: the model first
aligns representations of different languages to-
gether, and then (starting from the middle layers)
makes them more language-specific again (to ac-
company the language-specific training objective).
The finding is insightful but only considers mBERT
(Wu and Dredze, 2019) which is a masked language
model (MLM) with 110M parameters. Thus, it is
unclear if the “first align, then predict” pattern is
specific to this model or more general. In this study,
we use ANC to show that the pattern generalizes to
the GPT-style (Brown et al., 2020) causal language
models (CLMs, Lin et al., 2021) and extends to
large-scale MLMs and CLMs (Section 6).

In this paper we are interested specifically in the
scenario of measuring the strength of cross-lingual
similarity of representations that come from a sin-
gle multilingual language model. This scenario is
very common in the field as it is often not feasable
to train a separate models for each language and
we present a method that allows for better represen-
tational similarity analysis then CKA/CCA.
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In summary, our contributions are three-fold:

e conceptual and empirical critique of
CKA/CCA for cross-lingual similarity
analysis (Section 4);

* Average Neuron-Wise Correlation as a simple
alternative method designed specifically for
cross-lingual similarity (Section 5);

e scaling laws of cross-lingual similarity in both
multilingual MLLMs and CLMs (Section 6).

2 Related work

Hotelling (1936) introduced CCA as a method for
measuring canonical correlations between two sets
of random variables. Raghu et al. (2017) proposed
a variant of the CCA called SVCCA and used it
to analyze representations between different neural
networks. Morcos et al. (2018) proposed PWCCA,
another improvement to CCA for the network anal-
ysis, and Kornblith et al. (2019) analyzed CCA,
SVCCA, PWCCA, and other methods concluding
that CKA is superior to them.

In a cross-lingual setting, we have a single net-
work, and we compare representations that come
from different languages. Following the introduc-
tion of SVCCA, Kudugunta et al. (2019) used it
to compare language representations (at different
layers) in a multilingual neural machine translation
system. The method we present in this work applies
to the seq2seq models, but in this work, we focus
on models trained with CLM and MLM objectives
while leaving seq2seq for future work. Singh et al.
(2019a) performed a similar study where they fo-
cused on the multilingual BERT model? and em-
ployed PWCCA as a similarity index. The conclu-
sion was that language representations diverge with
network depth.

On the other hand, Conneau et al. (2020) and
Muller et al. (2021) used CKA and behavior anal-
ysis to show that the opposite pattern takes place:
language representations align with the network
depth and only moderately decrease towards the
end. In other words, representations first converge
towards language neutrality and then recover some
language-specificity. The alignment makes zero-
shot cross-lingual transfer possible, and slight di-
vergence accompanies language-specific training
objectives (such as English downstream prediction

https://github.com/google-research/
bert/blob/master/multilingual .md

task or predicting words in the particular language
as in masked language modeling objective). Fol-
lowing Muller et al. 2021, we call this phenomenon
the “first align, then predict” pattern.

Eventually, Del and Fishel (2021) showed that
the similarity analysis was different because Singh
et al. (2019a) used CLS-pooling while Muller et al.
(2021) used mean-pooling to convert token embed-
dings into a sentence representation. They also
showed that mean-pooling is a better option.

Finally, Li et al. (2015) aligned most correlated
neurons between layers of two different networks
and then computed similarity from the recovered
correspondence. The method we propose in this
paper is similar in spirit to this one, except we
focus on the cross-lingual analysis of multilingual
models and thus have no need to find the alignment
between neurons.

In this work, we build on these studies in three
ways: we demonstrate that even CKA can fail to
provide relevant cross-lingual similarity, we pro-
pose another method to compare multilingual repre-
sentations, and we reveal that the “first align, then
predict” pattern generalizes across training objec-
tives and holds for models of large sizes.

3 Similarity Indexes Background

In this section, we provide some background on
CKA and CCA, SVCCA, and PWCCA similarity
indexes®. We focus on the parts of the methods
most relevant to the key points we make in this
work. For the full mathematical description refer
to Kornblith et al. (2019).

Neuron Following related works, we define a
neuron as a vector of values it takes over a dataset
(Lietal., 2015; Raghu et al., 2017; Morcos et al.,
2018; Kornblith et al., 2019). Formally, let D be a
dataset consisting of data examples d:

D:{j{’...@:}

Let ; be a function that returns a neuron activation
value for the training example at the i-th unit of
the I-th layer of the network. The neuron 7; is the
vector of network activations recorded by applying
; over the elements of D), i.e.

- — d—>

2' = [pi(dr), -, pi(dm)]

*In the paper, we refer to both SVCCA and PWCCA sim-
ply as CCA unless otherwise specified.
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In practice, we pass a set of data examples to the
network and record activations for each unit at ev-
ery layer. The vector of these activations is what
we consider a representation of a neuron .

Layer The frequent goal of representational sim-
ilarity analysis is to compare layers of neural net-
works. Under our definition, the layer L is the list
of vectors (matrix) that consists of the neurons at a
particular depth, i.e.

where n is the number of neurons at layer L. Alter-
natively, we can think of layer_) L as the subspace of
R™ spanned by its neurons (z°, - - - ,z—”)), where m
is the number of examples in the dataset.

CCA/CKA indexes rely on the idea of subspaces
spanned by the neurons, making them powerful
when comparing representations across different
networks. There can be more neurons in the first
layer than in the second; the neurons also do not
need to be aligned. CCA/CKA uses neurons only to
describe the vector subspaces and then compare the
subspaces as opposite to the neurons themselves.

That is why methods like CKA and CCA try
to find some second-order descriptions of repre-
sentational spaces (e.g., gram matrices/canonical
vectors) and compare these. The decisions on what
second-order information to consider and what
comparison technique to use define the differences
between the indexes.

Dominant Correlations The first step for all
methods is to center each neuron in the layer repre-
sentations:

X :=L; —mean(Ly)
Y := Ly — mean(Ls)

Let X and Y have p; and ps neurons (columns).
Consider gram matrix X X '. Because neurons in
X are centered, X X T is proportional to covariance
matrix of X. Therefore, the elements in X X7
correspond to all pairwise covariance similarities
data points in X (the same holds for YYT).

Now consider doing eigendecomposition of
XTX. Eigenvectors u'|i € {1,...,m}, 0% €
R™ will represent directions of the most dominant
correlations of data points in X. Also, we can think
about vectors U as of eigenneurons, the ones that
explain the most variance in the representational
space of other neurons. A’ is then the i eigen-
value of X XT (the strengths of the eigenneurons).

CCA The directions % x and %y are orthogonal
by the definition of the eigendecomposition. The
pair of vectors with the maximum dot product (% x,
Uy ) is called the first pair of canonical directions.
The value of their dot product is the first CCA coef-
ficient. Then the second pair produces the second
canonical coefficient, and so on.

The formula for the CCA similarity index is then
as follows (from Kornblith et al., 2019):

p1 P2 - —
CCAXXTYYT) =) ) (uk,u})?/pr.
i=1 j=1

ey

CKA We might also consider weighting the CCA
correlations by their eigenvalues. This results in
Linear CKA (from Kornblith et al., 2019):

CKA(XXT YYT) =

B SR NN
VI 02 [T (4,2
In this work, we focus on Linear CKA because
related works such as Muller et al. (2021) and Con-
neau et al. (2020) use it.

SVCCA If we also decide to apply SVD as the
preprocessing step after centering, we get SVCCA.
CCA then computes correlation coefficients only
for top K components from SVD transformed data
(right singular values) and thus can be better aver-
aged (see Equation 1).

PWCCA Finally, instead of taking a simple av-
erage of CCA coefficients or weighting them by
singular values (as in CKA), we might weight them
weights (loosely speaking) related to the CCA di-
rections that encapsulate the most data when pro-
jected.

In summary, all these methods are related and
based on the idea that we can deduce some dom-
inant correlation directions in X and Y and then
compare these. Another way to look at it is that
if CCA/CKA can represent neurons in Y as linear
combinations of neurons in X, these correlation
methods will generally respond with high scores.

The differences between methods make them
invariant to the data scaling, centering, and orthog-
onal transformations. At the same time, CCA and
SVCCA will not change their scores under any in-
vertible linear transformations of either X or YV
(see Kornblith et al., 2019 for more details).
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4 Problems With CKA/CCA

By performing an illustrative experiment, let us
introduce problems with CKA and CCA indexes.
Specifically, we want to check if different nor-
malization choices of the Transformer (Vaswani
et al., 2017) layers impact the zero-shot cross-
lingual transfer capabilities of the model and the
similarity of cross-lingual representations it learns.
This section presents a two-fold case against
CKA/CCA for cross-lingual similarity analysis:

» empirical: CKA fails to uncover relation-
ships between similarity after the architectural
change that does not hurt the performance of
the model;

* conceptual: lack of interpretability and unsat-
isfying underlying assumptions in CCA/CKA.

4.1 Experiments Setup

Models We train the following three XLM-
Roberta (Conneau and Lample, 2019) language
models (base size versions) from scratch (each
with a different normalization schema):

* Post-LN (scale_post): normalization
block is placed after the residual connections
in the transformer block (part of the original
Transfomer);

* Pre-LN (scale_pre): normalization block
is placed before the residuals (this was shown
to improve training by Xiong et al., 2020);

e Normformer (scale_normformer): nor-
malization block is placed before the resid-
uals and FeedForward, Residual, and Self-
Attention layers are also normalized (Shleifer
et al., 2021).

Pre-Training We pre-train a model based on
XLM-R Base using 5S0M sentences uniformly sam-
pled from four languages: English, French, Esto-
nian, and Bulgarian. We chose the languages to be
reasonably diverse: French is the most similar to
English in both grammar and alphabet, Bulgarian
is from a different language group (Slavic), and
Estonian is from a completely different language
family (Finno-Ugric). We train the model for 1M
batches of 512 sentences from the CCI00 dataset
using two Nvidia A100 GPUs. The only architec-
tural difference from the original XLLM-Roberta is
that we change normalization types to Pre-LN and
Normformer; other setup details are painstakingly
identical.

Experiment 1: XNLI Fine-Tuning After hav-
ing three models pretrained, we fine-tune each of
them on XNLI sentence classification task (Con-
neau et al., 2018). We use only English data for
training but evaluate on English and other language
evaluation sets (we only skip Estonian since it is
not a part of XNLI). This setup, where we tune on
one language but use another at test time, is called
zero-shot cross-lingual transfer.

Experiment 2: CKA Similarirty After having
the XNLI zero-shot cross-lingual transfer scores,
we extract sentence representations from all layers
of each model and compare layers using the CKA
similarity index.

The parallel corpus is composed of Singh et al.
(2019b)’s extension of the XINLI dataset (10k ex-
amples for each pair)*.

We embed the source and target sentences with
the models and perform mean-pooling over tokens
at each layer for each language pair (as suggested
by Del and Fishel, 2021). Next, we compare two
parallel sets of sentence representations using the
CKA similarity index to get a similarity score for
each layer.

Experiment 3: Per-Layer Matching Accuracy
Lastly, to get insight into some cross-lingual behav-
ioral capabilities of representations at each layer,
we analyze them with a sentence-matching probing
task.

We use the same data and pooling strategy as
in the CKA analysis. For each English sentence,
we find the closest target sentence in the opposite
language (out of all 10k targets) by cosine similar-
ity. If this sentence is the actual parallel counter-
part (translation) of the English sentence, we say
the model got this English example correct. Then
we compute the accuracy of this sentence match-
ing as the ratio between correctly labeled English
examples and the total number (10k) of English
examples.

Throughout this work, we conduct experiments
across languages sampled from the four language
families: Germanic, Romance, Slavic, Baltic, and
Finno-Ugric. While the results hold across the
complete set of languages from our work, we show-
case different subsets of languages from language
families in different experiments to introduce more
diversity while keeping the plots concise.

*+Using XNLI for both fine-tuning and CKA analysis al-
lows us to avoid domain mismatch scenarios entirely
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4.2 Experiments Results

Experiment 1: XNLI Fine-Tuning See Table 1
for our models’ zero-shot cross-lingual transfer per-
formance on the XNLI validation set.

Normalization en fr bg
scale_post 079 0.72 0.70
scale_pre 0.81 0.72 0.72

scale_normformer 079 0.72 0.71

Table 1: Accuracy of XLLM-Roberta Base Transformers
pre-trained with different normalization schemes and
fine-tuned on the English portion of the XNLI sentence
classification task. The models show similar zero-shot
cross-lingual transfer performance.

The Table shows that all three models achieve
solid zero-shot transfer performance with a
cross-lingual transfer gap of 7-9%. We see
no significant gains from the scale_pre or
scale_normformer, but crucially we see no
significant losses either.

Experiment 2: CKA Similarirty We present
per-layer CKA similarity results for the pre-trained
(untuned) models in Figure 1.

Figure 1 reveals that while for scale_post
and scale_pre CKA show fairly high cross-
lingual performance at all layers, the Normformer
results are drastically different. While the similarity
for the first half of the layers increases (layers 0-5),
the CKA score drops dramatically at the middle
layer of the network and continues to hang around
zero for all remaining layers (layers 6-12).

This result is especially surprising because CKA
confidently gives similarity scores that are almost
zero, while Table 1 shows no substantial differ-
ence in the zero-shot cross-lingual transfer results
between English and other languages. For tuned
models the CKA also fails to reveal similarity for
layers 6-11 (Figure 8 in Appendix A).

In this example, CKA is not capturing the no-
tion of similarity that would coincide with zero-
shot cross-lingual transfer performance for XLM-
Normformer. Zero-shot transfer (say) from English
requires language representations that converge to
English values so the other languages can re-use
the linear prediction head (calibrated for English).

To double-check the result we also retrain the
scale_normformer the second time with a dif-
ferent random restart and get the same CKA results
(see Figure 7 in Appendix A).
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Figure 1: Motivating example 1: counter-intuitive CKA
(dis)similarity of XLM-Normformer layers. CKA index
shows drastic dissimilarity for layers 6-12 despite re-
markable zero-shot cross-lingual transfer performance
of the model.
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Figure 2: Per-layer sentence matching accuracy for the
XLM-Normformer. The result again shows relatively
high matching scores for the deeper layers in contrast
to the CKA result from Figure 1. There is some decline,
but nothing like zero similarity of CKA.

Experiment 3: Per-Layer Matching Accuracy
However, let us also see the results of our sentence
matching task to verify whether these deep rep-
resentations in Normformer are useful. Figure 2
shows the resulting per-layer accuracy.

The pattern shows that layers 6-12 show some
significant cross-lingual matching scores (>50%
for French) with only a slightly decreasing trend.
This experiment confirms that there are aspects of
cross-lingual similarity in these multilingual repre-
sentations that CKA failed to reveal.

4.3 Downsides of CCA

This section shows that the family of CCA-like
similarity indexes suffers from similar issues as
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CKA. The first downside is that CCA is hard to
interpret. CCA is a second-order similarity index
(similarly to CKA), which makes it hard to trace
the reasons for high/low CCA scores to specific
neurons or give any other fine-grained explanation.
The second downside is that it is also not robust and
has led to the misleading conclusion in the related
literature (as demonstrated in Del and Fishel 2021).
We discuss these downsides in more detail below.

Interpretability Another interesting aspect of
our Normformer case is that PWCCA and SVCCA
similarity indexes show correlations of about 0.5-
0.8 for the layers 6-12 (see Figure 9 in Appendix
A for verification). It indicates something special
about CKA eigenvalue weighting, normalization
(the denominator in Equation 2), or both. One pos-
sibility is that dominant eigenneurons (the ones that
also have high eigenvalues) in monolingual repre-
sentational spaces are unproportionally similar to
each other (and this causes a high denominator and
thus the low CKA scores).

In any case, even if we recover what eigen-
values/normalization components cause these ex-
tremely low values, it would be even harder to track
down which individual neurons cause the problem
and to what extent (CCA/CKA methods essentially
find linear combinations of the neurons and so mix
them up). It highlights the interpretability issue
with CKA/CCA indexes that arises when these in-
dexes disagree with our sanity check and with oth-
ers.

Conflicting Literature The disagreement be-
tween CCA/CKA also caused a problem of conflict-
ing evidence in the literature. Namely, Singh et al.
(2019a) used PWCCA to conclude that mBERT
representations diverge starting from the early lay-
ers. However, this contradicts the evidence from
the multiple behavior studies of mBERT that argue
that the opposite is true (Wu and Dredze, 2019;
Pires et al., 2019; Liu et al., 2020; Libovicky et al.,
2020; Conneau et al., 2020; Muller et al., 2021).
Del and Fishel (2021) find that merely changing the
index from PWCCA to SVCCA or CKA in (Singh
et al., 2019a) produces results consistent with re-
lated works. It highlights the reliability issue with
CKA/CCA.

In summary, similarity indexes value different
aspects of representations and correspond to differ-
ent concepts of similarity. It is, therefore, necessary
to consult the specific analysis goal to define what

we want the similarity to capture. It brings us to
Section 5 where we propose a simple alternative
method that aligns well with the goals of cross-
lingual similarity analysis.

5 Method: Average Neuron-Wise
Correlation (ANC)

In Section 4 we demonstrated multiple drawbacks
that CCA/CKA similarity indexes have in the cross-
lingual context.

5.1 Definition

Assumption In this section, we propose a
straightforward alternative method that builds on
the assumption that neurons in representations for
different languages are aligned one-to-one a priori.
We find this assumption reasonable to make for
several reasons.

First, it aligns well with the goal that moti-
vated most cross-lingual similarity analysis works:
zero-shot cross-lingual transfer learning. Zero-
shot transfer is possible because a linear prediction
head fine-tuned (usually) for English can exploit di-
rect linear relationships between English and (say)
French representations. Indeed, the linear predic-
tion head calibrates each weight to work with the
specific English neuron. Having that specific neu-
ron similar to the French neuron allows the linear
head to work on French.

Second, it allows us to decompose the similar-
ity index into correlations of individual neurons,
thus facilitating interpretability. We can explicitly
see which neurons contribute to the similarity the
most/the least, and these neurons have an interpreta-
tion of being the most language-specific/language-
natural.

Third, it captures the most natural objectives
that many cross-lingual alignment literature con-
sider (Wu and Dredze, 2020): representations of
the same sentences should have the exact represen-
tations (in case the network is aligned). Residual
connections strengthen this assumption for hidden
layers.

Description The solution is straightforward: we
compute individual correlations between pairs of
English and (say French) neurons and calculate
an average score. We also take absolute values of
the correlations because the network can swap a
negative correlation into a positive with a simple
negative weight at the next layer.
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Thus, we define Average Neuron-Wise Correla-
tion (ANC) as follows.

Let the centered (by neurons) layer representa-
tions be

X =Ly —mean(Ly)
Y := Ly — mean(Ls)

The (Pearson) correlation corr between two neu-
rons 2, and z, form X and Y is defined as:

(72, 2y)

1Zz 1111z

3)

corr(zy, z_y>) =

We thus define The ANC similarity between two
layers Ly and Lo as:

- —
o, abs(corr(2L, )

ANC(X,Y) =
n

“4)

It is only possible for us to construct such an
index because the neurons come from a single net-
work where we already know what alignment be-
tween neurons is (and ought to be). The method
will not work if neurons come from layers of two
different networks, for example. In these cases,
CCA-like indexes are likely the best fit.

5.2 Sanity Checks

In this subsection, we verify that our method gives
plausible predictions in the cases where we already
know what the result should be.

Based on the Insight From the Literature We
based this sanity check on the known insight from
the literature. The multilingual BERT model
(bert-base-multilingual-cased) is
widely studied in the literature (Wu and Dredze,
2019; Pires et al., 2019; Liu et al., 2020; Conneau
etal.,2020). Muller et al. (2021) provided direct be-
havioral evidence that representations in mBERT
(bert-base-multilingual-cased)
should follow the “first align, then predict” pattern:
they first converge towards each other and diverge
slightly only at deep layers.

Libovicky et al. (2020) and Del and Fishel (2021)
demonstrated that the said pattern generalizes
to the XLM-Roberta (x1lm-roberta-base)
model (Conneau and Lample, 2019), which is simi-
lar in size and training objective to mBERT with the
main differences being the removal of the next sen-
tence prediction loss and training on the segments
of texts (irrespectively to sentence boundaries)

191

—— en-et -~ en-fr
en-It -+~ en-pl
en-lv

bert-base-multilingual-cased

0.75 P
B e w o
Q Rl SIE S ke Sl 3
= 0.50 -+’*‘;/t;‘imimlmimi”;\?
< PR ’4'_,;‘«‘- ~g
0.25 .g;::;;_rﬂ‘l
xlm-roberta-base
0.75
PO 3 i Yo <
$o0.50 T *‘,;gggw s SR N
< 025 EEEFT !
0 2 4 6 8 10 12
layer

Figure 3: ANC result for the mBERT and XLM-R mod-
els. Our method captures the “first align, then translate”
pattern presented in Muller et al. (2021) and Del and
Fishel (2021).

So our method should reveal the “first align, then
predict” pattern in these two cases. Otherwise,
we conclude that it fails to capture the relevant
properties of similarity we desire.

Figure 3 shows the resulting ANC scores for
mBERT and XLM-R base models.

The result demonstrates that our method passes
the proposed sanity check by being able to reveal
the “first align, then predict” pattern. Also, the cor-
relation at the most language natural layers is about
0.7, which indicates that the ANC’s strong assump-
tion of one-to-one aligned neurons is informative.
Lastly, we can see that the ANC distance between
English and other languages is more considerable
for mBERT than for XLM-R, which corresponds
to how these models perform in a cross-lingual
transfer (Conneau and Lample, 2019).

Based on the Experiment in Section 4 We base
this sanity check on the same XLLM-Roberta Norm-
former experiment that we used to present the CKA
failure case in Section 4. Our method should be
able to reveal that representations at deeper lay-
ers in scale_normformer are somehow cross-
lingually similar. Moreover, it should also keep
the results for the analogous scale_post and
scale_pre models models in agreement.

We present ANC results for the Section 4 exper-
iment in Figure 4.

The figure shows that unlike CKA (Figure 1), the
ANC is able to reveal the “first align, then predict”
pattern for the scale_normformer and better
explains the evidence we provided in Table 1 and
Figure 2.
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Figure 4: ANC result for the three models we pre-
sented in Section 4. Our method, unlike CKA (Fig-
ure 1), does capture the cross-lingual similarity exist-
ing in the deeper layers of XLLM-Roberta Normformer
(scale_normformer).

In summary, this section demonstrated that our
method passes the sanity checks of both related
literature and the Section 4 experiment (that made
CKA fail). In addition, considering how simple it
is to interpret ANC scores (the score is a simple
average of neuron-wise correlations), the method
is a beneficial tool for comparing representation
between languages in a single multilingual model.

6 Scaling Laws of Cross-lingual
Representational Similarity in
Multilingual Models

In previous sections, we justified our claim that
ANC is better suited for cross-lingual analysis than
CCA/CKA methods. In this section, we present an
application of ANC to the analysis of representa-
tional similarity scaling in cross-lingual language
models.

Most related works that analyzed representa-
tional patterns in multilingual language models fo-
cused on a single model, such as base version
of mBERT or XLM-R. In Section 5.2 we cov-
ered these models showing that ANC accompanies
our representational similarity index demands from
these models. However, as the model scaling brings
significant improvements in downstream tasks per-
formance, we must focus our analysis efforts on
the large models and scaling laws (Bowman, 2022).

Name type  #params 1 n #lgs
xIm-roberta-base ~ MLM 270M 12 758 100
xlm-roberta-large MLM 550M 24 1024 100
xIm-roberta-x1 MLM 3.5B 36 2560 100
xIm-roberta-xx1 MLM 10.7B 48 4096 100
xglm-564M CLM 564M 24 1024 30
xglm-1.7B CLM 1.7B 24 2048 30
xglm-2.9B CLM 29B 48 2048 30
xglm-4.5B CLM 4.5B 48 4096 134
xglm-7.5B CLM 7.5B 32 409 30

Table 2: Model details for XLM-R and XGLM models
we study. fype: training objective of the model, #params:
number of parameters, [: number of layers, n: number
of hidden units (neurons at each layer), #/gs: number of
languages used in pertaining.

In this section, we use ANC to explore if the “first
align, then predict” pattern generalizes to CLMs
and if it preserves in the large-scale versions of
multilingual MLMs and CLMs.

Model Details We describe the models we study
in Table 2. The Table shows that there are two
groups of models: MLMs (encoder only) and
CLMs (decoder only). Models in each group no-
tably vary in a number of parameters and neurons
at each layer.

Results Figures 5 and 6 reveal that the cross-
lingual similarity of multilingual representations in
all the networks we study follows the same “first
align, then translate” pattern. It happens despite
differences in training objectives, number of lan-
guages, and sizes. Therefore, this result provides
evidence that multilingual models rely on the exact
mechanism described in (Muller et al., 2021), in-
dependently of the size or the MLM/CLM training
objective.

xlm-roberta-base xIlm-roberta-large
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Figure 5: ANC cross-lingual representational similarity
for the XLM-R MLM-style models of different sizes.
All models follow a similar “first align, then predict”
pattern. We aggregate among en-fr, en-de, en-ru, and
en-et pairs and show similarity average and spread.
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Figure 6: ANC cross-lingual representational similarity
for the XGLM CLM-style models of different sizes.
All models follow a similar “first align, then predict”
pattern. We aggregate among en-fr, en-de, en-ru, and
en-et pairs and show similarity average and spread.

7 Conclusion

In this study, we introduced an example where CKA
drastically fails to reveal the cross-lingual similar-
ity between language representations across the
deeper layers of the multilingual model. We also
highlighted that CCA methods suffer from related
problems as well (despite passing that concrete
sanity check that CKA failed).

Then, we proposed a new approach: Average
Neuron-Wise Correlation (ANC), which builds
on the assumption of neuron alignment in cross-
lingual representations. We verified that our
method passes the sanity check at which CKA fails
and produces results harmonious with the evidence
from related work.

Finally, we used ANC to show that the “first
align, then translate” pattern of cross-lingual rep-
resentations generalizes to CLMs and the larger
scales of MLMs and CLMs.
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recommend using our method together with the
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A Appendix

This appendix contains supplementary figures that
support some auxiliary claims throughout the pa-
per.
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Figure 7: The CKA score for another Normformer
(scale normformer) model that we pre-trained from the
different initialization. The cross-lingual similarity of
deeper layers is about zero according to CKA despite
evidence of the opposite from Section 4.2
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Figure 8: CKA and ANC results for the XLM-
Normformer tuned on XNLI. The last layer is a CLS-
pooled embedding (the one we tune for XNLI), while
others are mean-poolings. CKA captures the similarity
between CLS representations at the last layer but fails
to capture it at layers 6-11. ANC captures the similarity
across all layers.
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Figure 9: PWCCA and SVCCA results for the XLM-
Normformer. These results are more intuitive to our
notion of similarity for this particular case but struggle
in other scenarios.
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