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Abstract

This paper focuses on the generation of nat-
ural language questions based on SPARQL
queries, with an emphasis on conversational
use cases (follow-up question-answering). It
studies what can be achieved so far based
on current deep learning models (namely pre-
trained T5 and BART models). To do so, 4
knowledge-based QA corpora have been ho-
mogenized for the task and a new challenge
set is introduced. A first series of experiments
analyzes the impact of different training se-
tups, while a second series seeks to understand
what is still difficult for these models. The re-
sults from automatic metrics and human evalu-
ation show that simple questions and frequent
templates of SPARQL queries are usually well
processed whereas complex questions and con-
versational dimensions (coreferences and el-
lipses) are still difficult to handle. The experi-
mental material is publicly available1.

1 Introduction

Knowledge-based approaches have recently be-
come popular in the field of question answering
(QA) and dialogue, raising the task of semantic
parsing that seeks to map a user’s input questions
to a formal representation that can be queried in a
Knowledge Graph (KG). Alternatively, techniques
have been proposed to verbalize small KGs, for in-
stance to summarize information to a user. Still, the
task which consists in verbalizing formal queries
has been less studied. Yet, interesting applications
could be derived from SPARQL-to-text question
generation: for instance, the generation of tutoring
systems where users can exercise on a topic, or the
simulation of users for QA or dialogue systems.
This is why this paper studies SPARQL-to-text
question generation, with a particular considera-
tion attached to the generation of questions in a
conversational context.

1https://github.com/Orange-OpenSource/
sparql-to-text

The objective of the paper is to study what can
be achieved so far on SPARQL-to-text question
generation using datasets and pretrained models
available in the literature. In this regard, the contri-
butions are the following:

1. The release of 5 knowledge-based QA cor-
pora (including 2 conversational ones) that
have been homogenized and prepared for the
SPARQL-to-text task: 4 of them are derived
from existing corpora, and the last one is a new
challenge set with unseen query types and do-
mains.

2. The comparison of different fine-tuning ap-
proaches for BART and T5, using different in-
put features and training data. As a results, we
show that feeding the model with the expected
answer and conversational contexts helps. We
also show that these information can be effi-
ciently replaced by a paragraph when available.

3. An in-depth analysis of the models’ perfor-
mance with respect to varied query types.
This highlights the limits of the current
transformer-based approaches, especially to pro-
cess rare types of queries, and to generate coref-
erences and ellipses.

4. An evaluation of the intelligibility and rel-
evance of the generated questions through
quizzes where the participants have to answer
follow-up questions based on a short paragraph.
The results show that the models are still far
from human questions but they can be used for
some types of queries.

After a literature review in Section 2, Section 3
and 4 present the datasets and models, respectively.
Then, prototyping experiments using different train-
ing setups are described in Section 5, while a de-
tailed analysis of the models’ performance is given
in Section 6.

https://github.com/Orange-OpenSource/sparql-to-text
https://github.com/Orange-OpenSource/sparql-to-text
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2 Related Work

Question generation frequently refers to the task
of generating a natural language questions based
on a text (Zhang et al., 2021). The generation can
be conditioned on the manually spotted expected
answer in the text (Murakhovs’ka et al., 2022; La-
ban et al., 2022), whereas generating them in a free
way (Duan et al., 2017), even potentially generating
possible answers (Tafjord and Clark, 2021).

In the field of knowledge-based approaches, sev-
eral propositions have been made for the verbaliza-
tion of formal queries (in SQL, SPARQL, OWL,
etc.) through rules or templates (Ngonga Ngomo
et al., 2013, 2019; Kusuma et al., 2020), or in-
termediate representations (Guo et al., 2019; Gan
et al., 2021), leading to verbalizations with a vari-
able naturalness. Using neural approaches, several
contributions have been made to generate ques-
tions from RDF triples (Han et al., 2022) or small
KGs depicting multi-hop questions (Serban et al.,
2016; Kumar et al., 2019). In (Bi et al., 2020),
this principle is improved by enriching the entities
from the triples with information from a broader
KG. A limit of these approaches is that they cannot
cover several features offered by query language
like SPARQL (e.g., union of triples, filters, aggre-
gation functions, etc.). Hence, to the best of our
knowledge, our work is the first attempt to study
the verbalization of SPARQL seeking to generate a
large diversity of questions types.

Among other related work, Knowledge-Based
QA (KBQA) tasks are interesting to study since
they provide data with paired natural language
question and formal representation (usually triples
or SPARQL queries) (Bordes et al., 2015; Dubey
et al., 2019; Kacupaj et al., 2020; Biswas et al.,
2021; Kacupaj et al., 2021; Cui et al., 2022). It
is important to note that some of these corpora
overlap because they are extensions or refinements
of common ancestors. Less datasets exist when
considering the conversational KBQA: ConvQues-
tions (Christmann et al., 2019) and CSQA (Saha
et al., 2018). While the former does not provide
the formal representations associated to the nat-
ural language questions, the latter is relevant for
our task. Finally, in the field of dialogue, propo-
sitions have also raised to enable interoperability
with KGs through a formal language (Lam et al.,
2022). However, annotated datasets are usually pri-
vate or small. Hence, the conversational dimension
in our SPARQL-to-text task is original.

3 Datasets

In this paper, 4 KBQA corpora from the literature
are used: SimpleQuestions (Bordes et al., 2015),
LC-QuAD 2.0 (Dubey et al., 2019), ParaQA (Kacu-
paj et al., 2021), and CSQA (Saha et al., 2018).
They have different characteristics, and they do not
overlap. Additionnaly, a new corpus is introduced
to serve as a challenge set, i.e. no training data is
available for it. This corpus has been generated
based on the WebNLG v.3.0 corpus (Ferreira et al.,
2020), and is referred to as WebNLG-QA. This sec-
tion presents an overview of the 4 corpora from the
literature, the generation process and resulting con-
tent of WebNLG-QA, and how all these datasets
were homogenized. General statistics and exam-
ples for the 5 resulting SPARQL-to-text datasets
are given in Table 1 and 2.

3.1 Existing corpora
SimpleQuestions originally does not include
SPARQL queries but (subject, property, object)
triples. Each triple is paired with a question whose
expected answer is either the object or the subject
of the triple. Hence, all questions are asking for
an entity ("what is...", "which...", "who..."). The
triples’ elements were initially taken from Free-
Base, but were ported to WikiData2.

LC-QuAD 2.0 and ParaQA directly include
SPARQL queries for both DBPedia (WikiData as
well in LC-QuAD 2.0). Questions are more varied
than in SimpleQuestions. Expected answers can be
entities, numbers or booleans. Some question are
even unanswerable in LC-QuAD 2.03. Questions
in LC-QuaD 2.0 are sometimes of poor quality as
they were semi-automatically generated, whereas
ParaQA’s questions are more natural but the dataset
is much smaller.

CSQA is a very large corpus of conversational
question-answering based on Wikidata. Queries are
given in a custom formalism instead of SPARQL.
The questions include coreferences and ellipses,
potentially with clarification steps when they are
ambiguous. CSQA covers a wide range of ques-
tions types such as (single or multiple triples, en-
tity/numeric/boolean answers, comparative ques-
tions, etc.). Nonetheless, the linguistic diversity of
the questions is low and some are unnatural.

2https://github.com/askplatypus/
wikidata-simplequestions

3This means that no answer can be found in the KG, not
that the question does make sense. Hence, this should not
bother the SPARQL-to-text models.

https://github.com/askplatypus/wikidata-simplequestions
https://github.com/askplatypus/wikidata-simplequestions
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Table 1: Statistics for each SPARQL-to-text dataset. Standard deviations are given between brackets.

Table 2: Examples for each corpus. For conversational corpora (CSQA and WebNLG-QA), follow-up questions
are shown to illustrate the notion of coreference and ellipsis.

3.2 WebNLG-QA (challenge set)

To test the generalization of the models to
be trained, a new conversational QA dataset,
WebNLG-QA, is proposed for the sole evaluation
purpose. This corpus has been generated based
on WebNLG v.3.0 (Ferreira et al., 2020), a corpus
associating small KGs (1-7 triples) with several
possible verbalizations (short texts transcribing the
KG’s information). This corpus was built in two
steps. First, follow-up SPARQL queries were auto-
matically generated for each KG from WebNLG.

The query generation algorithm allows for a
wide range of query types and combinations (num-
ber of triples, logical connectors, filters, etc.). Espe-
cially, it includes mechanisms to favor coreferences
and ellipses by reusing entities and triples from the
last generated query. Some queries can be unan-
swerable based on the KG, or even be nonsensical
in order to test the genericity of the models. Since
the purpose is to probe the limits of the models, the
algorithm permanently tries to balance the distri-
bution over each type of queries by prioritizing the
rarest ones at each new generation step.

Algorithm 1 details how this is achieved. Consid-
ering the set of elementary types T (line 1), we im-
plemented a function φt for each query type t ∈ T .
This function reads a source knowledge graph and
tries to derive a query of the given type (line 7).
Depending on the type, the query can be built ei-
ther from scratch, or by modifying a baseline query
in order to fit the target type4. The dependency
possibilities are listed in a specific variable (lines. 4
and 10). Furthermore, the function φt relies on a set
of input constraints C, which are implemented as
logical predicates on the expected query. Typically,
this enables specifying the desired number of com-
mon elements (resources, properties, etc.) between
the generated query and the previous ones. For in-
stance, the types coreference or ellipsis expect cer-
tain common elements between queries, whereas
other types do not (in order to prevent consecutive
queries from going around in circles). The creation
of an unanswerable query can be constrained such
that no answer can be found in G but an answer

4For instance, the generation of boolean query is imple-
mented as changing to ASK the verb of a SELECT query.
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1: enum T ← {single_triple, two_triples, . . . , true, false,
coreference, ellipsis }

2: var Ω : KG ← union of all KGs
3: var frequency : Dict(T → N)
4: var dependencies : Dict(T → List(T ))
5: function κt(Q: list of existing queries for a given graph,

G: KG) : Set ( Function(Query) : B )
6: . Build a set of conditions (predicates) that a query

must satisfy for the type t given the context of the
generation Q on a the graph G to get fully validated

7: function φt(G : KG, q′ : base query, C: set of predicates)
: Query or undefined

8: . Try to create a query of type t based on G, op-
tionally from q′ for some types, and satisfying the
conditions C. Return undefined if no such query
can be created.

9: function GENERATE(t: Type, G: knowledge graph,
Q: list of generated queries for G) : Query or
undefined

10: dep_types : List(T )← dependencies[t]
11: q : Query← undefined
12: q′ : Query← undefined
13: . If type t requires to be build on top of another query,

try first to build this intermediate query
14: if dep_types 6= [ ] then
15: success : B← false
16: while dep_types 6= [ ] and ¬success do
17: t′ ← pop least frequent from dep_types
18: Ct′ ← κt′(Q,G)
19: q′ ← GENERATE(t′, G,Q)
20: if q′ 6= undefined then
21: . Now try to include type t in query q′

22: Ct ← κt(Q,G)
23: q ← φt(G, q

′, Ct)
24: success← true

25: else . If no intermediate query to build, directly try to
build for type t

26: Ct ← κt(Q,G)
27: q ← φt(G, q

′, Ct)
28: return q

Algorithm 1: Query generation for a given type t.

exists in a larger, more general, KG, denoted as Ω
(line 2). Likewise, nonsensical queries can be gen-
erated such that their elements are never observed
together in any triple from Ω. All these constraints
are given by auxiliary type-specific function κt
(line 5). The generation of one query is orches-
trated by the function GENERATE (lines 9-28) for
the given input type t, knowledge graph G, and
the previous queries Q generated on it. The bal-
ancing scheme over the type distribution is man-
aged thanks to global statistics of all queries gener-
ated so far on all KGs (global variable frequency,
line 3). For each KG in WebNLG, the overall pro-
cess (not described in Algorithm 1) iteratively gen-
erates queries until none can be generated anymore,
i.e., calls to GENERATE return undefined for all
types t ∈ T . Examples of generated queries are
given in Appendix A.1.

Then, given the whole set of resulting SPARQL

queries, questions were manually annotated for the
queries of a selection of 100 KGs. These KGs
were selected from the test set of WebNLG such
that the distribution of the query types is as uni-
form as possible. Two natural language questions
were manually annotated by one annotator for each
SPARQL query. Given a query, the annotator was
asked to generate questions with different surface
forms to reflect the diversity of the natural language.
This results in 100 “dialogues” for a total of 332
questions (from 2 to 7 per dialogue).

3.3 Homogenization

All datasets were processed to contain SPARQL
queries unified in a similar way as the following
query whose verbalizaton could be “how many cur-
rencies co-exist within the countries of Europe?”:

In particular, all entity IDs or URIs from Wiki-
Data or DBPedia were replaced by their label.
Entities, properties and types were prefixed by
"resource:", "property:", and "ontology:",
respectively. Triples were shuffled to prevent
the model to learn in a biased way on the static
ordering of some datasets. Variable names were
anonymized with a single random letter (still
prefixed by "?") and some constructions were
randomly replaced by equivalent forms5.

For SimpleQuestions and CSQA, special ef-
forts were required since they do not come with
SPARQL queries. Especially for CSQA, we
relied on the formalism from CARTON (Plepi
et al., 2021) as an pivot representation from which
SPARQL queries were generated by ourselves.

By default, the train/validation/test splits are the
same as for the original datasets. In the case of LC-
QuAD 2.0 and ParaQA, for which no validation set
is officially provided, validation data was randomly
extracted from the initial training set.

4 Models

This paper investigates the difficulty of the task for
pretrained transformer models. This section first
provides information about the fine-tuning process

5For instance, some UNION clauses were replaced using
VALUES clauses. Still, some constructions could not be intro-
duced, like GROUP BY, ORDER BY or LIMIT.
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of these models, and then introduces several naive
models used as baselines in the experiments.

Transformer models. The proposed models are
encoder-decoder (i.e., autoregressive) transformers,
namely BART (Lewis et al., 2020) and T5 (Kale
and Rastogi, 2020), fine-tuned on the SPARQL-to-
text task. For both architectures, the models are
the "base" version, as provided by HuggingFace6.
This appeared as a reasonable size since CSQA is a
very large corpus and many experimental settings
are considered. Hence, the impact of the size is not
considered here. Tokenizers are the default ones.
Input sequences longer than the length limit of 512
tokens were truncated from the beginning, and no
padding was used. The T5 prefix is "sparql to
nl: ". The fine-tuning is performed for 2 epochs
with a batch size of 4 samples, which appeared to
be the best setting on the development set. The
optimizer is AdamW with a static learning rate
of 5 × 10−5 and no weight decay. Finally, note
that WebNLG data was not part of BART’s or T5’s
training data for their pre-training.

Naive models. Several naive approaches are ex-
perimented to intuit the difficulty of the task and
provide reasonable baselines. The simplest ap-
proach is to concatenate all terms of all triples in
the query, except variables which are ignored. The
order of the triples is the same as in the query—i.e.,
randomized, no micro-planning (Reiter and Dale,
1997, Chap. 5), hence the name blind concatena-
tion. Alternatively, a rule-based micro-planning
was implemented to spot the main triple in the
query, that is the one on which the beginning of
the question will focus7. Then, the main triple is
placed first when concatenating. This approach is
denoted as smart concatenation. To complete the
approach, templates of questions were introduced
to instanciate the triples. The most naive solution
is to prefix all questions with "what" since this is
the most frequent prefix in the training datasets.
Another solution relies on a set of more sophisti-
cated patterns, each being adapted to specific query
configurations (query verb, target variable, shape
of the main triple, etc.). This technique is called
smart concatenation + pattern.

The next sections provide global results used
to prototype a unique model for all the datasets

6https://huggingface.co/models
7The rules analyze features like the presence or not of the

target variable in a triple, the number of variables in this triple,
the nature of the property, etc.

(Section 5), and in-depth experiments to understand
the current limits of the models (Section 6).

5 Prototyping Experiments

This section studies the design of a SPARQL-to-
text model and provides global results. First, it stud-
ies the impact of adding input information along
with the single SPARQL query. Then, the differ-
ent training datasets are merged in order to inves-
tigate the generalization capacity of the models
and to come up with a unique model for all the
datasets. All results are presented in terms of ME-
TEOR (Banerjee and Lavie, 2005) and BERTScore
(F1 score) (Zhang et al., 2020) on the test set of
each corpus8, using HuggingFace metrics.

5.1 Input features

The minimal input for the model is the SPARQL
query to convert. Additionally, the model can be
fed with the expected answer (if the question is
answerable). In the case of a conversation, the
context of the discussion can also be given, i.e. the
previous questions and answers in natural language.
This information is meant to be particularly helpful
to properly generate coreferences and ellipses.
Using all information, the model’s inputs are for-
matted as follows: "<context> conversational

context </context> <query> SPARQL query

</query> <answer> answer(s) <answer>".
The number of answers is limited to 10. Ideally,
the context should be restricted to the few last
turns sharing a link with the current query under
study. This assumption was tested by identifying
the restricted context in an oracle way using
meta-information from CSQA.

Table 3 reports the impact of including the an-
swer and the context when training the model on
each corpus. First, it appears that the models are
better than the naive approaches, while BART and
T5 seem relatively equivalent. Then, the impact of
including the answer greatly varies accross the cor-
pora and models. Even if the best results are most
frequently obtained when the answer is considered,
it does not seem as useful as expected, meaning
that most of the required information can probably
be derived from the sole SPARQL query. The im-
pact of the conversation context (CSQA) is more
visible, with a major benefit in favor of including
the context. Then, while restricting this context

8Results are not reported on the validation sets as they
were used to define several hyperparameters.

https://huggingface.co/models
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Table 3: Performances on the test set when training on each dataset separately with different input settings. Best
results for each dataset are in bold, and the darker the cell, the worse it is.

Table 4: Performances when merging the training data. Best results for each dataset are in bold, and the darker the
cell, the worse it is.

seems to outperform the full (unrestricted) con-
text on BERTScore, no conclusion can be drawn
regarding METEOR. This is a useful conclusion
since correctly truncating the context may not be
a simple task in real conditions. In the remain-
der, all models are trained with the answer and the
full context. Finally, for all approaches (naive and
transformers), SimpleQuestions and CSQA lead to
higher results, which tends to think that they are
less diverse than ParaQA and LC-QuAD 2.0.

All these conclusions have been supported by
back-end experiments on WebNLG-QA (detailed
in Appendix A.2) regarding the impact of the an-
swer and conversational context, as well as the poor
transfer of SimpleQuestions and CSQA.

5.2 Merged training

To take advantage of the different characteristics
of each corpus, fine-tuning was performed based
on the merged training samples of each dataset.
Since the disparity is great between the size of
each corpus, a balancing strategy was tested by
weighting the corpora in inverse proportion to their
respective size. The results are reported in Table 4.

On the one hand, it appears that merging the
training data without any balancing scheme neither
improves nor degrades the overall performance on
the test set of these corpora since no global trend
can deduced9. On the contrarty, balancing the data
surprisingly degrades the results. This is proba-
bly because of weights with too high values since
size differences are very strong, for instance be-
tween ParaQA and CSQA (the scaling factor is
more than 400). In the remainder, the models are
trained on mixed corpora with no balancing.

On the other hand, the last column of Table 4 for
each metric reports the performance on WebNLG-
QA. First, while the score of the naive approach is
comparable to the other datasets, a significant drop
is reported for the transformers models, leading
to similar or even worse results than the naive ap-
proach. In our opinion, this is because the models
are biased towards the most frequent query struc-
tures in the training sets, while these frequency
disparities are globally smoothed out in WebNLG-
QA. On the contrary, the naive approach is agnostic

9Except for ParaQA, which is the smallest corpus. Mixing
with other data probably alleviate a sparsity issue.
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Figure 1: Topologies of the conjunctive queries.

to these considerations. Finally, it seems that T5
is more robust than BART. For this reason, BART
is discarded in the next section where deeper in-
vestigations are conducted to understand what the
model learns and what is still difficult for it.

6 Detailed Analysis

This section first analyses how the T5 model be-
haves on different query types. Then, a human eval-
uation on a real application is presented to evaluate
the intelligibility and effectiveness of the generated
questions. The focus is given on the challenge set
WebNLG-QA but complementary results for the
other datasets are reported in different appendices.

6.1 Robustness over the query types
Queries are categorized according to10:

The triples. They can mainly vary w.r.t. the num-
ber of triples (with the assumption that the more
triples a question contains, the more complex it
is), and the logical connectors between them (by
default, logical ANDs but potentially disjunctions
with logical ORs, or exclusion like triple1 AND
NOT triple2). In the conjunctive case (i.e., AND
connectors) , the variables can interconnect the
triples following different topologies w.r.t. the po-
sition of the target variable, as depicted in Figure 1.
Additionnaly, type information can be given for the
variables. Although this information is also written
as a triple, "typing triples" (with a special property
"rdf:type") are not considered as regular triples
when counting the number of triples in the query
in our statistics. Finally, constraints on the possible
values for the variables can enable expressing com-
parisons to static values (FILTER clauses on string,
numbers or dates).

The expected answer(s). Queries vary also ac-
cording to the type of the expected answer(s) (enti-
ties, numbers or booleans), the number of answers

10If needed, more details can be found in Appendix A.3.

(1, more or even 0 if the question cannot be an-
swered), and the number of target variables (1, 2
or even 0 when simply checking a fact).

The conversational context. In a conversation,
consecutive turns may re-use information from the
previous turns, potentially leading to coreferences
(replacing an entity by an equivalent pronoun or
noun phrase to avoid repetition) and ellipses (skip-
ping a syntagm that can be deduced from the previ-
ous sentences). While generating these can bring a
more natural flow of questions, it can also bring am-
biguity. If no coreference and no ellipsis is present,
the question is denoted as self-sufficient.

The meaningfulness. Whereas queries are ex-
pected to make sense, it is worth observing how the
model behaves when facing non-sensical questions.

Table 5.a presents the METEOR and BERTScore
results for all categories and subsequent query
types in WebNLG-QA using the T5 model fine-
tuned on all merged corpora, and with the expected
answers and the conversational context. This is
compared to the best naive approach. Color shades
depict the difference with the average performance
for each dataset separately (red means lower than
the average, green means greater). In complement,
Table 5.b reports the standard deviation within each
category of query types in order to evaluate the ro-
bustness against each variability factor. For the
sake of completeness, results on all the datasets are
in Appendix A.4. From Table 5.a, it appears that
difficult types are those for which concurrent types
can co-exist. For instance, queries with 2 triples
can represent multiple configurations like sibling
or chain topologies, conjunctive or disjunctive con-
nectors, etc. On the contrary, queries with 1 or 3+
triples do not allow this diversity and they are bet-
ter predicted. This is the same when the expected
answer is an open entity (i.e., which is not part
of closed list of choices in the query). Then, the
model seems to also struggle when several target
variables are considered. Finally, both tables show
that handling the dialogue context is difficult for
the model. Counter-intuitively, especially w.r.t. the
results of Sec. 5.1, the results of the naive approach
may even encourage one not to consider it.

6.2 Evaluation in a real application

To verify that the generated questions are under-
standable and lead to the expected answers, they
were integrated in quizzes. As a reminder, each
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(a) Average for each query type of each category (red/green
means "worse/better than average for the given model")

(b) Standard deviation for each category (black/white cells
mean "higher/lower than the global std. dev. of the model")

Table 5: Average (a) and standard deviations (b) of ME-
TEOR and BERTScore for all query type categories.

sample in WebNLG-QA includes a small KG and
the corresponding paragraphs provided by the orig-
inal WebNLG corpus. For each sample, follow-up
tuples (query, question, answer) can be used to
quiz a user that would have read the paragraph. Be-
fore assessing the effectiveness of the generated

Table 6: Impact of changing the input features at infer-
ence time on WebNLG-QA using T5 fine-tuned on all
merged corpora with full context and answers.

questions in these quizzes, prior experiments are
conducted.

Input features at inference time. While includ-
ing the answer and the conversational context has
been decided at training time based on results of
Section 5.1 (and Appendix A.2), previous conclu-
sions from Section 6.1 have led us to study the
impact of different inputs at inference time. Hence,
Table 6 reports the scores obtained by the T5 model
trained with the answers and contexts when feeding
these two elements or not at inference time. This
experiment also test the inclusion of the paragraph
in input to provide contextualized knowledge to
the model, even though the latter was not trained
using such information. For a better analysis, re-
sults for BART are reported as well. Regarding
the conversational context, these numbers show
different trends as those reported during the pro-
totyping experiments since including the context
brings worse results for both models. Then, the T5
no longer benefits from the answer either (whereas
BART clearly does). Finally, using the paragraph
improves the results for T5 in terms of METEOR
but not BERTScore, while this degrades the results
for BART. These surprising conclusions call for
more investigation. Currently, one may think that
(i) T5 used the conversational context and answers
during training to learn how to parse the SPARQL
and then does not need the information later on, and
(ii) that the multi-task pretraining of T5 included
text comprehension task (summary, text-based QA,
etc.) helps the model understanding the paragraph
even after fine-tuning on the SPARQL-to-text task.

Human evaluation on quizzes Questions for
the quizzes were either the reference or generated
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(a) Global results of the human evaluation (standard deviation
between brackets). Difference between values marked with
∗ is not statistically significant (Student paired t-test with
p = 0.05). All others are.

(b) Standard deviations for each category of query type, the
darker, the higher (across all models).

Table 7: Results of the human evaluation (quizzes).

using the naive approach, or T5. For T5, two types
of input were provided at inference time: with the
answer and context (as in the training setup), or
only with the paragraph. 2 examples of quizzes are
provided in Appendix A.5. There are 100 quizzes
for each setup, based on the same 100 paragraphs.
20 users took part in the evaluation. All quizzes and
their answers were seen exactly once. Users had to
select their answers in a closed list of possibilities
("Yes", "No", 0, 1, 2, . . . , or entities from the para-
graph). They could also report that the question
cannot be answered because the paragraph did not
contain the answer or the question was not under-
standable. By comparing with the expected and
collected answer(s), accuracies were computed for
each setup. After answering a quiz, users also had
to rate the linguistic correctness of each question
and the overall naturalness of the quiz (flow of
questions). Both scores range between 1 (very bad)
and 5 (excellent).

Table 7 reports the average results for each setup
(7.a) and the variability of the answer accuracy and
linguistic correctness within each category of query
types (7.b). Exhaustive values for all query types
are provided in Appendix A.6. As expected, it
appears that the reference questions rank first for
all the metrics. While the linguistic correctness
is excellent, it is worth noting that the answer ac-

curacy is not perfect. A manual analysis shows
that this comes from confusions of the users, for
instance between entity question (what, who. . . )
and some boolean questions (is there. . . ), or cas-
caded errors. Likewise, the naturalness of the flow
of questions is not perfect because some questions
are unanswerable. Then, the ranking is the same
as with METEOR and BERTScore. Nonetheless,
the difference between the naive approach and the
T5 models is much clearer, which highlights the
limits of automatic metrics for the task. By the
way, this confirms that feeding the T5 model with
the paragraph is significantly helpful. Compared
to T5 with answer and context, the questions are
more robust against almost all variability factors
(Table 7.b).

7 Conclusion and Future Work

In this paper, we have studied in depth the problem
of generating questions from SPARQL queries, in
particular in order to be able to integrate these ques-
tions in a conversational knowledge-based appli-
cation such as a QA system or a task-oriented dia-
logue. Contributions stand in the proposed corpora,
including a new challenge set (WebNLG-QA), and
in the multiple experiments conducted to highlight
the limits of the popular pretrained models BART
and T5 for the SPARQL-to-text task. These exper-
iments show that, although the linguistic quality
of the generated questions is good, the task only
really works well for unambiguous and frequent
situations, generally conforming to what has been
seen in training.

In the future, it would be interesting to evaluate
the questions generated with a QA system. Al-
though the varying performance of these systems
may bring uncertainty in the interpretation of the
results, this would complement the human evalu-
ation results and provide another basis for other
researchers to compare their own question gener-
ation models. Then, several limitations remain to
be overcome. First of all, a better generation of
coreferences and ellipses should be investigated, as
well as a better transfer capacity from one corpus to
another. Then, apart from the use of other KBQA
corpora than those used in this paper, it is likely
that the use of unsupervised approaches, i.e. not
requiring aligned questions and queries, is a chal-
lenging avenue to explore. In particular, this could
favor help mixing knowledge-based and text-based
approaches, as called by our last results.
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A Appendices

A.1 Examples of generated SPARQL queries
This sections presents sequences of SPARQL
queries generated as exposed in Section 3.2 and
Algorithm 1 based on 2 sample KGs, depicted in
Figures and 3.

Using the graph of Figure A.1, the resulting se-
quence of SPARQL queries is the following:

1. SELECT DISTINCT ?d WHERE
{ ?d property:birth_date
?k . FILTER ( CONTAINS (
YEAR ( ?k ) , ’1942’ ) )
. ?d property:known_for
resource:No_hair_theorem }

2. SELECT DISTINCT ( COUNT
( ?m ) AS ?g ) WHERE {
resource:Brandon_Carter
property:known_for ?m }

3. SELECT DISTINCT ?m WHERE
{ resource:Brandon_Carter
property:known_for
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?m . FILTER ( ?m !=
resource:No_hair_theorem )
}

4. SELECT DISTINCT ?b WHERE
{ resource:Brandon_Carter
property:birth_place ?b .
FILTER ( STRSTARTS ( LCASE
( ?b ) , ’e’ ) ) }

5. SELECT DISTINCT ?t ?g WHERE
{ resource:Brandon_Carter
property:alma_mater ?g .
resource:Brandon_Carter
property:doctoral_advisor ?t }

6. SELECT DISTINCT ?x WHERE
{ resource:Brandon_Carter
property:sports_offered ?x
}

Using the graph of Figure 3, the generated
queries are:

1. SELECT DISTINCT ?k WHERE { { {
?k property:stylistic_origin
resource:Ska } UNION { ?k
property:stylistic_origin
resource:Rock_music } } }

2. SELECT DISTINCT ?k WHERE {
?k property:stylistic_origin
resource:Rock_music }

3. ASK WHERE {
resource:Mermaid_(Train_song)
property:genre
resource:Pop_rock }

A.2 Performance of each separate dataset on
WebNLG-QA

This appendix details how the models trained on
each dataset separately transfer to the WebNLG-
QA challenge set. Results reported in Table 8 show
the same trends as observed on the test sets, respec-
tively: the impact of including the answer is not
obvious, while including the context help for the
model trained on CSQA. The results also show that
SimpleQuestions and CSQA cannot beat the naive
approaches with expert micro-planning (smart con-
catenation). For SimpleQuestions, this seems ob-
vious since most query types in WebNLG-QA are
absent in SimpleQuestions. Regarding CSQA, this
is probably due to the lack of linguistic diversity in

the way to verbalize questions in this dataset (again,
CSQA was generated semi-automatically). Results
from Section 5.2 show that mixing the datasets
solves this problem.

A.3 Details on the types of queries
As a reminder, a SPARQL query is as follows:

It mainly relies on triple patterns of the form
(subject, property, object), where each element can
refer to an entity (resource, literal, type, property)
from the KG or represent a variable to be solved
(prefixed by "?"). The query also specifies the
nature of the answer(s) to be derived from these
triple patterns using a verb (SELECT or ASK),
target variables and possibly aggregation functions
on the values taken by these variables. This section
details variability factors on these various elements,
as well as the possible values as reported in the
paper’s tables.

A.3.1 Structure of the triple patterns
Mainly, the pattern consists of cloze triples where
potential values for the blanks are designated
through variables prefixed with a ? sign. Below is
a list of variability factors on the organisation of
these triples.

Number of triples: Queries can include 1, 2 and
more triplets. This reflects the complexity of the
question. As far as what we observed, it is rare
that more than 2 triplets are implied in real life
questions as this becomes difficult to formulate
within one sentence.

Logical connectors: The default connector be-
tween triples is the conjunction (triple1 ∧ triple2),
but it can also be a disjunction (triple1 ∨ triple2) or
an exclusion (triple1 ∧ ¬triple2). Since the default
connector in SPARQL is the conjunction, disjunc-
tive and exclusive queries are more verbose.

Topology of the pattern: When triples are con-
nected with a conjunction, they represent a con-
nected graph where nodes are resources or vari-
ables and edges are properties. Assuming that only
one variable is the target variable (which is the
most frequent case), regularities can be observed in
the topology of this graph w.r.t. the target variable,
illustrated in Figure 4 and defined as follows:
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Table 8: METEOR and BERTScore (F1) on WebNLG-QA when training on SimpleQuestions, LC-QuAD 2.0,
ParaQA, and CSQA independently. The darker, the worse.

Figure 4: Topologies of the conjunctive query graphs.

1. A direct topology refers to a graph with only
2 nodes (i.e. 1 triplet).

2. chain denotes the situation where the graph is
linear with more than 2 nodes and the target
variable is at one of its extremities.

3. sibling refers to a graph the target variable is
directly linked to 2 or more resources (what-
ever the orientation of the edges), i.e. the
graph is a star of depth 1.

4. mixed is a mixture of the sibling and chain
structures, that is a star topology centered on
the target variable and with at least one branch
of the star whose depth is more than 1.

Variable typing: Associating types to concepts
(target of internal variables) in a question is some-
times critical to help understand a question. In the
remainder, we consider typing as a specific case
of property. Thus, triplets about typing are not
counted as regular triplets.

Comparisons: Filtering clauses can be append
to the triplets to restrict the range of their variables.
Based on the corpora used in this paper, this com-
parisons can be numbers, strings or dates.

Superlatives: A specific case of comparison is
when a minimal or maximal value is asked, or
(most frequently) the entity associated with this
extremum. While MIN and MAX are predefined ag-
gregation functions in SPARQL, retrieving the is
less trivial since it requires nested queries.

A.3.2 Answers
Queries vary also according to the expected answer.

Data type: Most usually, answers are entities but
they can also be numbers (typically a count over
entities) or booleans when facts are asked to be
checked.

Number of intentions: Queries can include a
variable number of target variables. This is referred
to the number of intentions. While one intention
is the most frequent situation, corpora also include
questions with two intentions, as well as no inten-
tion (i.e. no target variable, when a fact is to be
checked).

Number of answers: For each target variable,
the number of answer can also vary depending on
the information in the KG and the cardinality of
the query properties. This may be zero if entity
matches the query in the KG. Then, for a given per-
son in subject, the property birth_date should
lead to a single answer, while parent_of may
return several objects.
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A.3.3 Conversational context
Finally, in the context of conversations, the dis-
cussion may re-use information from the previous
turns, potentially leading to coreferences and el-
lipses. Coreferences are the act of replacing an
entity already mentioned in the discussion by a
pronoun or another equivalent noun phrase in sub-
sequent occurrences. Second, an ellipsis is the
omission of a sentence segment deemed useless by
the speaker because it can be deducted from previ-
ous turns, typically because the omitted segment
(and no longer just an entity) would be a raw repeti-
tion. These linguistic phenomena are guided by the
will to be brief by not repeating information, and
constrained by the need to remain unambiguous.
These linguistic phenomena are complex because
they are not systematic. Hence, a coreference may
link a pronoun with an entity mentioned several
turns ago if there is not difficult to infer this link.
At the opposite, a repetition in two consecutive
turns may be required to avoid ambiguity. The
same applies to ellipses with an even higher degree
of complexity since ellipses require to rely on the
syntact structure of a previous turn. Hence, gen-
erating coreferences and ellipses can be improve
naturalness, it can also bring ambiguity.

A.4 Details on query types for all the datasets

Table 9 presents the METEOR and BERTScore
results for all query types on each corpus using the
T5 model fine-tuned on all merged corpora, and
with the expected answers and the conversational
context. For each test set, color shades depict the
distance to the average performance on this dataset
(red means lower than the average, green means
greater). For WebNLG-QA, values are reported
for the naive approach as well, since the average
results are close (see Section 5.2).

Table 10 examines the impact of each category
of query types from Table 9 in order to evaluate the
robustness of the model.

A.5 Examples of quizzes

Tables 11 and 12 present two examples of quizzes.
The first example is related to the queries of Fig-
ure A.1 from Appendix A.1.

• It can clearly be observed that the references
regularly use coreferences or ellipses (in bold)
to make the questions shorter and more fluent,
and that the T5 models rarely generate such

linguistic phenomena (in Q2 of Example 1,
T5 generates "that person").

• Other limits of the transformers can be no-
ticed. For instance, the underlying query of
Q3 contains an exclusion ("Except the No-
hair Theorem, what is Brandon Carter known
for?"), which T5 does not generate at all.

• In Q1 of the second example, the underlying
query is an ASK query with a variable, which
has never been observed in any of the training
corpora. While T5 with answer and context
tries to combine elements from the sole query,
T5 with the paragraph uses the text to produce
a meaningful query (even if this is not the
correct question).

A.6 Detailed results of the human evaluation
for each type of query

Table 13 reports the details of the answer accu-
racy and linguistic correctness with respect to each
query type. These results show that, except for a
few situations, using the paragraph as an input to
the model is always better than using the answer
and the context.
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Table 9: METEOR and BERTScore (F1) on the test set for the T5 model according to the type of query for each
dataset. Independently for each dataset, white means a median result, red means "worse" and green means "better".

Table 10: Standard deviation of the METEOR and BERTScore values for each category of query for all corpora.
The darker, the worse.
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Table 11: An example of a quiz.

Table 12: Another example of a quiz.
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Table 13: Results of the human evaluation for each type of query. The darker, the worse. Bold refers to the best
non human result.
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