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Introduction

Welcome to the proceedings of the system demonstrations session. This volume contains the papers
of the system demonstrations presented at the 2nd Conference of the Asia-Pacific Chapter of the
Association for Computational Linguistics and the 12th International Joint Conference on Natural
Language Processing (AACL-IJCNLP) on November 20 - 23, 2022.

The AACL-IJCNLP 2022 demonstrations track invited submissions ranging from early research
prototypes to mature production-ready systems. We received 17 submissions this year (an increase of
30% over the previous edition of the conference), of which 10 were selected for inclusion in the program
(acceptance rate of 58.8%) after review by at least two members of the programme committee.

We would like to express our gratitude to the members of the programme committee. The candidate
papers were selected by the demo chairs based on the feedback received by reviewers. Demonstration
papers will be presented at the conference during the two poster sessions.

Maria Liakata
Wray Buntine
AACL-IJCNLP 2022 Demo Chairs
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Demonstration Co-Chairs

Maria Liakata, Queen Mary University of London, UK
Wray Buntine, Vin University, Hanoi, Vietnam
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Abstract
In order to offer a customized script tool and
inspire professional scriptwriters, we present
VScript. It is a controllable pipeline that gener-
ates complete scripts, including dialogues and
scene descriptions, as well as presents visually
using video retrieval. With an interactive inter-
face, our system allows users to select genres
and input starting words that control the theme
and development of the generated script. We
adopt a hierarchical structure, which first gen-
erates the plot, then the script and its visual pre-
sentation. A novel approach is also introduced
to plot-guided dialogue generation by treating
it as an inverse dialogue summarization. The
experiment results show that our approach out-
performs the baselines on both automatic and
human evaluations, especially in genre control.

1 Introduction

Artificial intelligence (AI) introduces significant
changes in the creation of artworks, such as stylis-
tic painting (Kotovenko et al., 2019), poem writ-
ing (Hu and Sun, 2020), music composition (Dong
et al., 2018), and converting the perception of cre-
ativity. In particular, AI can assist in streamlining
the art-making process and give humans fresh in-
spirations (Anantrasirichai and Bull, 2021), and
one plausible application is scriptwriting. As a spe-
cific literary form, the script is indispensable in
cinematography and theater (Owens and Millerson,
2012; Walker et al., 2012). To enable the collabo-
ration between scriptwriter and AI, an automatic
script generation system must equip with three as-
pects. First, the system must generate a complete
script consisting of chronological scene descrip-
tions and dialogues. Second, the system should
provide controllability, e.g., customize script genre
or storyline (Cavazza and Young, 2017). Third, as
a creative work, the generated script is required to
have rich and diverse content.

While Zhu et al. (2020) propose a narrative-
guided script generation task, they only focus on

Figure 1: An example of the generated script (right)
with its visual presentation (top left) from VScript.
Given the inputs, i.e., genre and starting words, a plot
is generated, which guides the generation of a script
consisting of a scene description and a dialogue. The
words highlighted in pink show the belongingness to the
given genre (Sci-Fi). Additionally, the video vividly
presents the script.

retrieving dialogue utterances and omit scene de-
scription, an essential component of a script de-
scribing the environment and characters. Other
works (Chen et al., 2019; Bensaid et al., 2021) take
inspiration from storyboarding and utilize a series
of images to demonstrate stories. Nevertheless, no
prior work presents scripts by leveraging video, a
more informative and attractive medium. In addi-
tion, prior works lack the ability to control certain
elements, such as genre. Controllable generation
systems (Keskar et al., 2019; Dathathri et al., 2019;
Madotto et al., 2020) can help to allow the cus-
tomization of scripts based on user preferences.

In this paper, we present VScript, a controllable
script generation system that includes all essential
components of a script. We adopt a hierarchical
structure for our framework by implementing high-
level planning (Fan et al., 2018) and following the
guidelines of video-making processes (Owens and
Millerson, 2012). As shown in Figure 2, VScript is
composed by Script Generation and Visual Pre-
sentation modules. The examples of correspond-
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Figure 2: VScript consists of two modules, i.e., Script Generation and Visual Presentation. Given the genre and
starting words, the Script Generation module generates a genre-specific plot, dialogues, and scene descriptions. The
Visual Presentation module searches for a relevant visualization from a large video database.

ing components are in Figure 1. Script Genera-
tion module consists of three sub-modules: 1) plot
generation, 2) dialogue generation, and 3) scene
description generation. Firstly, the system gener-
ates a genre-specific plot as an outline of the script.
To avoid generating aimless scripts, the system al-
lows users to provide some brief initial information,
i.e., genre and the beginning of the plot, for a high
degree of control over the script on the genre and
story trend. Secondly, we conduct a zero-shot plot-
guided dialogue generation by framing the problem
as an inverse task of abstractive dialogue summa-
rization. Finally, we generate scene descriptions
based on the dialogues to produce complete scripts.
Visual Presentation module vividly demonstrates
the script by retrieving videos from an automati-
cally constructed video database. It can serve as a
rough visual draft to improve users’ engagement
and help scriptwriters rapidly iterate ideas.

To our best knowledge, we are the first to tackle
the controllable script generation task, which con-
trols a script’s genre and storyline. We also intro-
duce a practical approach for plot-guided dialogue
generation by treating the task as inverse dialogue
summarization, which improves the diversity of the
generated dialogue while maintaining relevancy to
the plot. In addition, we explore effective methods
to produce an eloquent real-time visual presenta-
tion from the generated script. According to the
evaluation results, our scripts are controllable and
preferred by humans. Thus, VScript can serve as a
tool for users to produce scripts with their prefer-
ences and for scriptwriters to optimize the writing
process. We think VScript has the potential to
promote AI-human collaboration in script genera-
tion. Limitations and Ethical Considerations are
discussed in Appendix A and B.

2 Related Work

Story Generation In recent years, methods for
story generation have focused on using neural net-
works and have shown promising results. Martin
et al. (2018) decompose a story as a sequence of
events and apply sequence modelling to generate
the story. Fan et al. (2018) employ a hierarchical
story generation by generating a premise and trans-
forming it into a passage. Plan-and-Write (Yao
et al., 2019) extracts a storyline composed of key-
words and generates a story based on the storyline.
Rashkin et al. (2019) generate a narrative using
a set of phrases that describe key characters and
events in a story. Lovenia et al. (2022) generate a
story using a genre and an image as its context.

Controllable Text Generation Model Con-
ditional deep generative models are effective
in improving the controllability of the models.
CTRL (Keskar et al., 2019) is a class-conditional
language model (CC-LM) pre-trained on 50 do-
mains with different control codes. Plug and Play
Language Models (PPLM) Dathathri et al. (2019)
combine pre-trained language models and attribute
classifiers to steer generation. GeDi (Krause et al.,
2020) incorporates CC-LM as a discriminator to
control generation towards the desired attribute.

3 Methodology

As shown in Figure 2, our framework can be de-
composed into two modules: script generation and
visual presentation. We will describe these two
modules in detail in the following sections.

3.1 Script Generation
A plot, or so-called outline, is a vital component
required for professional script writing, which spec-
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ifies a series of headings showing the main themes
that need to be discussed (Owens and Millerson,
2012). Following this concept, we first generate
a genre-specific plot to hierarchically guide the
dialogue and scene description generation. We
condition the dialogue on the plot and the scene
description on dialogue instead of the other way
around since dialogues between characters change
dynamically to reflect the progression of the plot,
while scene descriptions mainly provide detailed in-
formation about where and how the dialogue takes
place. In this work, we select four classic and pop-
ular genres for the plot generation, i.e., Crime,
Sci-Fi, War, and Romance.

3.1.1 Genre-Specific Plot Generation
Inspired by CTRL (Keskar et al., 2019), we first
train a class-conditional language model (CC-LM)
for plot generation by adopting control codes which
are a set of predefined genres. Then, by training
different types of text with different control codes
concatenated in the front, the model can learn the
correlation between the types and the control codes
so that the different control codes can guide the
generation process of the language model. We fine-
tune GPT2-large (Radford et al., 2019) on CMU
Movie Summary Corpus1, which contains 42,306
movie plots from Wikipedia and the corresponding
metadata, such as genre. In our work, the genres
of movies are treated as control codes. Each con-
trol code guides the generation of episodes of the
desired type. See Appendix C for more details.

Plot Rescoring To ensure the consistency of the
generated plots and the target genre, we further
train a multi-class genre classifier that can predict
the probabilities of a plot belonging to each genre.
Then, we generate N plots with the same genre
and starting words via Top-K sampling. Finally, we
select the plot with the highest probability among
all the generated N plots.

3.1.2 Plot-Guided Dialogue Generation
The dialogue in the script is required to be casual,
natural, and in line with the plot. However, to
our knowledge, there is no open-source dataset for
plot-to-dialogue generation, and building it would
require intensive human labour. Thus, we treat
this task as an inversed abstractive dialogue sum-
marization, where the model is trained to generate
the whole dialogue based on the dialogue sum-

1http://www.cs.cmu.edu/~ark/personas/

mary. The model learns to generate the entire di-
alogue in one fell swoop, which is different from
conventional dialogue models generating dialogues
turn-by-turn. Two dialogue summarization corpora,
SAMSum (Gliwa et al., 2019) and DialogSum Cor-
pus (Chen et al., 2021), are combined as the train-
ing set. A GPT2-large model is trained on the
inversed version of it. During the inference time,
we assume that each sentence in the plot can be
expanded into a single scene, which can be decom-
posed into the scene description and the dialogue.
We leverage our fine-tuned model to generate dia-
logues for each plot sentence.

3.1.3 Scene Description Generation
A scene description includes the scene header, i.e.,
location and time, and the scene context. In or-
der to infer such scene descriptions from each di-
alogue, we fine-tune the GPT2-large on a paired
scene-dialogue corpus. During preprocessing on
Film Corpus 2.02, we pair each scene description
with its corresponding dialogue to construct the
dataset for dialogue-to-scene generation. Finally,
we concatenate the scene description and the cor-
responding dialogues to form a scene. A script is
formed by concatenating multiple scenes.

3.2 Visual Presentation

In addition to the generated script, we provide a
visual presentation, which can serve as a rough vi-
sual draft for the users. We retrieve a video clip
whose caption describes similar actions or events
to the generated script. Note that we only utilize
the visual contents of the retrieved video and ig-
nore the auditory information. This disregard is
intended to enhance retrieval quality, as the conver-
sational content and visual appearance of a video
are often inconsistent. For example, a video shows
two women sitting face to face at a café, looking
bright and peaceful, while their conversation is
about fierce interstellar wars. In this section, we
explain our video database construction process
and the retrieval method.

Video Database Construction We construct a
video database including news broadcasts, docu-
mentaries, and movie recaps from social media and
only preserve the video if 1) it has captions; 2) there
is a voice-over to introduce and describe what is
happening; 3) most of the frames have rich content.
Post-processing and filtering are further conducted

2https://nlds.soe.ucsc.edu/fc2
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Figure 3: The VScript’s user interface. There are three main areas: script area (top left), video area (top right),
and interaction area (bottom centre). For example, a user chooses “Crime”, and input “Chicago detective
Frank Sheppard”. Then, the generated script and its visual presentation are displayed separately.

to ensure the quality of the videos. The characters
(including number and gender), time (day/night)
and locations in the videos are detected for video
retrieval. In addition, we classify the video cap-
tions by a zero-shot text classifier 3 to split this
database based on genres. For more details, see
Appendix D. Since our method is zero-shot and in-
dependent of the video contents, users can replace
the video database with any preferred videos.

Video Retrieval To match the video clips with
the generated scripts, we use plots as queries
for video retrieval since there may be trivial and
lengthy dialogues in scripts that affect the coher-
ence among the retrieved video clips. For each
plot sentence, we retrieve video clips from the
video database by calculating the cosine similar-
ity between the sentence embedding of the plot
and the corresponding caption with the pre-trained
DistilRoBERTa-based model 4. We also use the
videos’ pre-detected gender and location informa-
tion to filter out some improper candidates and
select the best matching video clip.

4 Interactive User Interface

An example of the interaction between users and
VScript is illustrated in Figure 3. The user in-

3https://huggingface.co/facebook/
bart-large-mnli

4https://github.com/UKPLab/
sentence-transformers

terface comprises three parts: the script area (top
left), the video area (top right), and the interaction
area (bottom centre). First, users select the script
genre among Crime, Sci-Fi, War, Romance,
and Genre-Free. Second, users type the starting
words into the input box and submit. Finally, the
generated script will be displayed in the script area
and its visual presentation in the video area. Users
can interrupt at any time and choose the genre or
input some words to steer the script’s development.

5 Experiments

5.1 Baselines
Plot Generation We fine-tune GPT2-large on
CMU Movie Summary Corpus and a CC-LM us-
ing GPT2-large backbone on the same corpus with-
out the genre-classifier.

Plot-Guided Dialogue Generation We fine-tune
DialoGPT-large (Zhang et al., 2020) on the in-
versed SAMSum and DialogSum Corpus, where
the model generates dialogue turn-by-turn itera-
tively. We fine-tune GPT2-large on the inversed
SAMSum and DialogSum Corpus, where the
model generates dialogue turn-by-turn (GPT2 T).

Overall Script Generation In contrast to our
proposed pipeline, we fine-tune GPT2-large di-
rectly on the scripts from the Film Corpus 1.05

in an end-to-end manner without plot (GPT2_E).
5https://nlds.soe.ucsc.edu/fc
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Model PPL Genre-ACC(%)
GPT2 20.43 -
CC-LM 21.98 63.50
CC-LM+Classifier (Ours) 21.98 95.50

Table 1: Automatic Evaluation for Plot Generation.

Model BLEU Sent
Sim

Repeat
(%)

Dist-n
(n=1,2,3)

DialoGPT 13.35 54.18 20.25 1.7/13.6/42.69
GPT2 T 13.37 55.34 18.73 1.73/14.29/43.89
GPT2 (Ours) 16.4 58.97 9.68 3.19/22.4/53.32

Table 2: Automatic Evaluation for Plot-Guided Dia-
logue Generation.

Model Dist-n (n=1,2,3) Repeat (%)

GPT2_E 8.42/36.19/68.46 12.52
Ours 5.47/35.81/73.3 4.35

Table 3: Automatic Evaluation for Scripts.

Video Retrieval To verify our video retrieval, we
use VideoCLIP (Xu et al., 2021), a pre-trained
model for zero-shot video and text understanding.

5.2 Evaluation
5.2.1 Automatic Evaluation
Genre-Specific Plot Generation We score per-
plexity (PPL) of texts generated from our model
and baseline (GPT2-large) by another model for flu-
ency evaluation. We use the GPT-Neo-1.3B model
since it is large enough to represent the real sen-
tence distribution. We also calculate Genre-ACC,
the accuracy of genre control, with the NLI-based
zero-shot text classifier. As shown in Table 1, our
method can control genre more effectively with
only a slight reduction in fluency.

Plot-Guided Dialogue Generation We evaluate
models on the test set of SAMSum and Dialog-
Sum. We use BLEU to compare the generated
dialogue with the gold-standard human reference.
We also calculate Sentence Similarity, which is
defined as the cosine similarity between sentence
embeddings 6 of plot and dialogue. In addition,
we calculate Distinct-n to measure the diversity of
generated texts, and Repeat, the average percent-
age of the unigrams that occur in the previous 8
tokens (Welleck et al., 2019), to measure the level
of repetition. As shown in Table 2, generating the
entire dialogue directly rather than turn-by-turn
makes the plot-guided dialogues more similar to

6https://huggingface.
co/sentence-transformers/
paraphrase-distilroberta-base-v2

Ours vs GPT2-E Win(%) Loss(%) Tie(%)

Preference 54.00 27.33 18.67
Genre Control 95.33 4.00 0.67

Table 4: Human Evaluation for Scripts.

Ours vs VideoCLIP Win(%) Loss(%) Tie(%)

Relevance 27.33 13.33 59.33

Table 5: Human Evaluation for Video Retrieval.

the gold references and higher semantic similarity
with the plot. Both the generated dialogues and the
scripts from our model (in Table 3) show higher
diversity and lower repetition over the baselines.

5.2.2 Human Evaluation
We conduct human evaluations further to assess the
quality of VScript using Amazon Mechanical Turk.
We randomly select 50 samples per model, and
three annotators then evaluate each sample to rule
out potential bias. We conduct A/B testing against
the baseline GPT2_E to assess generated scripts on
Preference and Genre Control. For Preference,
we ask the annotators to choose which script is the
better one from three aspects 7: 1) format, whether
the text meets the standard of film scripts; 2) flu-
ency, whether the writing is smooth and grammati-
cally correct; and 3) consistency, whether the con-
tent is logically consistent. For Genre Control, we
ask the annotators to choose which script better be-
longs to a given genre. In both tests, the annotators
are given four choices: {neither, both, sample A, or
sample B}. As shown in Table 4 8, human judges
prefer the scripts generated by VScript, which is
inline with the automatic evaluation. For video re-
trieval, we conduct A/B testing against VideoCLIP
to evaluate the Relevance. The Relevance between
the script and video retrieved by VScript is slightly
higher than the baseline, as in Table 5 8.

6 Conclusion

We propose the first controllable script generation
framework VScript that can generate scripts of spe-
cific genres and follow the plots. Our framework
adopts a hierarchical structure, which generates
the plot, then the script and its visual presentation.
We adopt inversed abstractive summarization for
dialogue generation. Based on our experiments,
VScript outperforms the baselines, and its effec-
tiveness in genre control is proven.

7Please refer to Appendix G for the results of each aspect.
8The result is statistically significant with p < 0.05.
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A Limitations

The performance of video retrieval is limited to
some extent by the quality of the sentence embed-
ding, face detection, and place detection via off-
the-shelf tools. The effect of visual presentation
depends heavily on the quality and quantity of the
video database. More exploration in video retrieval
or video generation can also improve the matching
quality between a script and its visual presentation.
In addition, we would explore a more fine-grained
control, such as specific settings, character person-
alities, or event details for future work.

B Ethical Considerations

Copyright We collect publicly available
YouTube videos using the official YouTube API
and follow the typical processing procedures (Ignat
et al., 2021). We use the muted video footage and
are neutral to the opinions expressed therein. We
will not release the database and are accountable
for violating other parties’ rights or terms of
service.

Toxic Content VScript leverages large language
models, which raise awareness of carrying biases
and toxic content (Ousidhoum et al., 2021). There-
fore, we create lists of banned words that block
them from the generated script to filter the possible
curse words, racial slurs and sexually explicit con-
tents. Since our videos are retrieved from publicly
accessible media, which could include bloody and
erotic content, we also filter these video clips based
on the descriptions and captions.

C Genre-Specific Plot Generation

As shown in Figure 4, the genres of movies are
treated as control codes. Each control code guides
the generation of episodes of the desired type. The
generation probability distribution can be decom-
posed as follows:

p(x|cg) =
T∏

t=1

p(xt|x<t, c
g) (1)

C =
{
c1, ..., cg, ..., cG

}
denotes the control code,

where cg means the control code for g-th genre (G
genres in total).

The CC-LM is trained on a set of plots{
x11:T 1 , ..., x

n
1:Tn , ..., xN1:TN

}
, where each plot

xn1:Tn corresponds with the control code cx ∈ C.

The training loss is denoted as:

L = −
N∑

n=1

Tn∑

t=1

log pθ(x
n
t |xn<t, c

x) (2)

Figure 4: The process of plot generation. The CC-
LM generates several candidates, and then the Genre-
Classifier scores and ranks them to select the one that
most belongs to the expected genre.

Plot Rescoring To verify the genres of the gen-
erated plots, we train a multi-class genre classifier
ϕ to predict the probability of the generated plot
belonging to a specific genre g. By leveraging
Top-K sampling, we generate N(N = 10) plots
{X1, ..., Xn, ...XN} with the genre and the start-
ing words. Finally, we select the plot X∗

g with
the highest probability over all the generated plots,
which is defined as:

X∗
g = argmax

n∈N
pϕ(y = yg|Xn) (3)

where y = {y1, ..., yg, ...yG} denotes the genre
classes of the generated plot and yg is the class
corresponding to genre g.

D Video Database Construction

Firstly, we obtain videos and corresponding cap-
tions about news broadcasts and movie recaps from
YouTube via the official API. Since some captions
are generated automatically word by word, there is
no punctuation, and they are not spliced into sen-
tences. We use DeepSegment9 to sentence-tokenize
these captions. To ensure the richness of the video
image content and improve the quality of video
clips, the frames only consisting of hosts or speak-
ers are filtered automatically. We use RetinaFace-
R50 from InsightFace 10 to detect face. If there is
only one face in the centre of the picture whose size
is within an appropriate range, and it does not move

9https://github.com/notAI-tech/
deepsegment

10https://github.com/deepinsight/
insightface
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for several frames, we will judge it as a speaker
and delete these frames. We also use InsightFace
to detect the gender of characters in the videos per
second. We use DenseNet-161 from Places365
11 to recognize the location of scene in the video.
Furthermore, in order to match the time in scene
description, we train a Vision Transformer (ViT) 12-
based day/night image classifier on Aachen Day-
Night Dataset 13, AMOS Day-Night Dataset 14, and
15. Finally, we classify the video captions by NLI-
based Zero Shot Text Classifier (Yin et al., 2019) to
split this corpus based on genres. Since our method
is zero-shot and independent of the video contents,
users can update or replace the video database on
their wish.

E Background Music

In order to render the atmosphere, we also use
different styles and moods of music for different
genres of the script. For example, the music for
crime is rapid and intense, while that for romance
is relaxing and soothing.

F Experimental Settings

F.1 Plot Generation

For CC-LM, we fine-tune GPT2-large with
control codes (prefixes): “This is a
crime/romance/sci-fi/war plot.”.
We use the training hyperparameters: the learning
rate is 3e-5, AdamW optimizer, and WarmupDe-
cayLR scheduler and generate plots using top-k
(k=4) sampling. For Genre-Classifier, we fine-tune
BART-large with the same training hyperparame-
ters: the learning rate is 3e-5, AdamW optimizer,
and WarmupDecayLR scheduler. For the GPT2
baseline, we fine-tune the model with the same
hyperparameter setting as GPT2-large models in
our pipeline.

F.2 Plot-Guided Dialogue Generation

The model in this stage of our pipeline has the
same training and generation hyperparameters as
the GPT2-large model in Appendix F.1. For the

11https://github.com/CSAILVision/
places365

12https://huggingface.co/google/
vit-base-patch16-224-in21k

13https://www.visuallocalization.net/
14https://www.kaggle.com/datasets/

stevemark/daynight-dataset
15https://github.com/kushagra2jindal/

DayNightClassificationModel

Model Format (%) Fluency Consistency

GPT2-E 93(0.26) 2.92(0.45) 2.85(0.45)
VScript 95(0.22) 3.06(0.42) 3.00(0.50)

Table 6: Additional human evaluation for scripts.

DialogGPT baseline, we fine-tune the model with a
learning rate (5e-5), and the other hyperparameters
are the same as GPT2-large models in our pipeline.
For GPT2 Turn-by-Turn (GPT2 T) baseline, we use
the same hyperparameter setting as the GPT2-large
models in our pipeline.

F.3 Scene Description Generation
The model in this stage of our pipeline has the
same hyperparameters as GPT2-large model in Ap-
pendix F.1.

F.4 Overall Script Generation
For GPT2_E baseline, we use the same hyper-
parameter set with the GPT2-large model in Ap-
pendix F.1.

G Additional Human Evaluation

In addition, we also evaluate the quality of each
generated script for a more comprehensive study,
compared with GPT2-E model. As mentioned in
Section 5.2.2, we breakdown the Preference metric
into three aspects: Format, Fluency, and Consis-
tency. Format measures whether our generation
meets the standard of the script, which is defined
as a text that contains a scene header, and dialogue
(including monologue). For this metric, we con-
duct True/False binary evaluation. Fluency reflects
whether the writing is smooth and non-repetitive,
without grammatical and spelling mistakes. Con-
sistency emphasizes whether the content is logi-
cally consistent. For Fluency and Consistency, we
leverage a 4-point Likert Scale, where 1 indicates
non-fluent/inconsistent and 4 indicates a very flu-
ent/consistent text. For each model, we randomly
sample 50 generated scripts from each model. And
each script is evaluated by three annotators. An
individual t-test is conducted for significance vali-
dation of the human evaluation results. As shown in
Table 6 16, while achieving script formulation, our
system has slightly higher fluency than the baseline
model, indicating that fluency is not compromised.
Our framework is also more consistent and logical,
with considerably higher consistency than GPT2-E.

16The result is statistically significant with p < 0.05.
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Abstract

Collecting and annotating task-oriented dialog
data is difficult, especially for highly specific
domains that require expert knowledge. At
the same time, informal communication chan-
nels such as instant messengers are increas-
ingly being used at work. This has led to a
lot of work-relevant information that is dis-
seminated through those channels and needs
to be post-processed manually by the employ-
ees. To alleviate this problem, we present Tex-
Prax, a messaging system to collect and anno-
tate problems, causes, and solutions that occur
in work-related chats. TexPrax uses a chatbot
to directly engage the employees to provide
lightweight annotations on their conversation
and ease their documentation work. To comply
with data privacy and security regulations, we
use an end-to-end message encryption and give
our users full control over their data which has
various advantages over conventional annota-
tion tools. We evaluate TexPrax in a user-study
with German factory employees who ask their
colleagues for solutions on problems that arise
during their daily work. Overall, we collect
202 task-oriented German dialogues contain-
ing 1,027 sentences with sentence-level expert
annotations. Our data analysis also reveals that
real-world conversations frequently contain in-
stances with code-switching, varying abbrevi-
ations for the same entity, and dialects which
NLP systems should be able to handle.1

1 Introduction

The lack of annotated data—especially in lan-
guages other than English—is one of the key
open challenges in task-oriented dialogue process-
ing (Razumovskaia et al., 2022). This becomes
even more challenging for very task-specific ap-
plication domains with only a small number of
experts that are sufficiently qualified to generate

∗Equal contribution
1Code and data are published under an open source license:

https://github.com/UKPLab/TexPrax

Figure 1: Overview of TexPrax. All users as well as the
chatbot communicate via chatrooms that are hosted on
a Synapse server instance. All messages are end-to-end
encrypted using the Matrix communication protocol.

dialogue data or provide annotations (Sambasivan
et al., 2021). At the same time, using informal com-
munication channels such as instant messengers at
work has become increasingly popular (Rajendran
et al., 2019; Newman and Ford, 2021). Although
this can accelerate troubleshooting, most of the
knowledge that is communicated informally may
be lost without an additional error tracking process;
which in turn increases documenting work for em-
ployees (Müller et al., 2021a). Whereas this could
be alleviated by NLP-based assistance systems—
that for instance automatically identify problems,
their cause, and their solution—they cannot be built
without any annotated data. Our goal is to provide
an application (TexPrax) to bridge the gap between
the lack of annotated task-oriented dialogue data
and the increasing need for NLP-based document-
ing assistance.

Figure 1 provides a high-level overview of Tex-
Prax and all involved parties. Our system commu-
nicates as a chatbot that acts as the user interface
and recording service at the same time. For the
server that hosts the messaging application, the bot
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appears as an additional user and hence, inherits all
privileges and restrictions a user can have; includ-
ing (1) reading any messages written in a chatroom,
(2) being invited and removed by the chatroom
moderator, and (3) being able to send messages in
chatrooms it was invited to. We use privilege (3) to
provide label suggestions from a pre-trained model
and collect annotations via a reaction mechanism
(Figure 5b); attaining a lightweight annotation pro-
cess with minimal overhead. We also integrate
TexPrax via the REST web API into an internal
dashboard to automatically store recognized errors
as a first step of the error documentation process.

Directly involving employees in data annota-
tion and curation introduces four key advantages
over previous approaches that involve crowdsourc-
ing (Crowston, 2012) or use expert annotation tools
such as INCEpTION (Klie et al., 2018). First, they
are the very domain experts that hold qualified con-
versations which concern exactly the target-domain.
This allows us to directly collect the dialog data
instead of having to generate it semi-automatically
or asking crowdworkers who can only provide lim-
ited expertise (Raghu et al., 2021). Second, the
employees have an immediate benefit from annotat-
ing and improving the recommendation model as a
dashboard integration saves time they would other-
wise have to spend on documenting errors later on
(hence, an intrinsic motivation). Third, they have
full control over their own data which saves time
for NLP practitioners as it alleviates research data
management. Finally, the use of an end-to-end en-
cryption protocol ensures that only parties selected
by the employees will have access to the data even
if the server is breached.2 Our contributions are:

1. An application for collecting and annotating
dialogues in real-time to assist employees dur-
ing their work. To comply with data privacy
and safety regulations such as the GDPR (EU,
2016), TexPrax further has received full clear-
ance by the ethics committee and staff council
of TU Darmstadt.

2. A German dataset with 202 dialogues, consist-
ing of 591 turns, and 1,027 annotated sen-
tences collected from a highly specific do-
main, namely an assembly line in a factory.

2Upon creating a chat room, they will explicitly be asked
if our chatbot is allowed to join the chatroom (opt-in).

Figure 2: Information flow and privileges between users,
server, and chatbot. While staying in a chatroom, the
chatbot can decrypt all messages and stores them locally.
Messages passed via the server are always encrypted.
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Figure 3: Workstations and machines in the Center for
Industrial Productivity (CiP).

2 Use Case

In this work, we focus on assisting employees
on the shop floor (the production area in a fac-
tory). Our goal is to improve shop floor manage-
ment (Hertle et al., 2017); a systematic approach
for solving processing problems. To efficiently
solve such problems, shop floor management de-
fines performance indicators which are used to de-
tect deviations and identify problems which are
also used to quantify their successful rectification.

2.1 Production Environment

Our working environment is the learning factory
Center for Industrial Productivity (CiP) at the Tech-
nical University of Darmstadt (TUDa). The factory
consists of various assembly stations, machines,
and demonstrators (cf. Figure 3) and is run and
maintained by ∼15 research assistants and 40 stu-
dent assistants (Müller et al., 2021b). One sub-
stantial challenge is the on-site support in case of
problems that occur during their daily work, for in-
stance, if a machine suddenly stops working. Usu-
ally, workers then ask their co-workers, technical
support support, or the supervising research assis-
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tant (who may not be present) for assistance, often
via informal communication channels. While this
leads to a quick fix of the issue, the knowledge of
how to resolve such errors is not explicitly stored
and hence, can be forgotten or lost over time.

2.2 Preliminary Survey

To assess the need of an NLP-based assistance sys-
tem, we rely upon the analysis from a previous
survey that was conducted at the CiP (Müller et al.,
2021a). In this survey, they identify eight key is-
sues and challenges from an employee’s perspec-
tive. (1) The most frequently used communication
channel are emails. (2) Most questions are an-
swered fast, but in case of a slow return-rate it takes
very long to receive an answer which leads to a sub-
stantial delay of the assembly line. (3) There are no
platforms that pool already encountered problems
and solutions. Thus, there is a high demand for
such a system. (4) Most employees would use such
an application only for work communication. (5)
A majority of employees are convinced that such
an application could help in substantially reducing
the required time to find a solution. (6) Most em-
ployees are fine with using such an application on
their private phone. (7) All employees agreed to
have a chatbot in a group chat monitoring the chat-
room, but most stated that this would influence their
communication behavior. (8) The most important
benefit would be the improvement of knowledge
management.

For companies, they identify three important cri-
teria. (1) A high level of data security is essential to
avoid any leakage of information outside the com-
pany (i.e., the application should be self-hostable).
(2) No personal data may be processed to avoid le-
gal complications. (3) The most important benefit
would be the improvement of error-reporting and
-monitoring processes.

3 System Description

As shown in Figure 1, TexPrax involves three key
parties: the users (employees), the chatbot and the
server (e.g., hosted by a company). Users commu-
nicate via chatrooms; each chatroom including at
least two (for a private conversation) or more (for
a group conversation) users. Every message a user
sends into a room can be read by any other user
in the same room. The server is responsible for
handling new incoming messages and the distri-
bution of outgoing messages, as well as keeping

Figure 4: Information flow between the user, chatbot,
and the underlying model.

track of currently active conversations and users.
Finally, the chatbot is responsible for monitoring
conversations, suggesting labels, and storing the
relevant data (locally or in an external database).

3.1 Interaction and Privileges

A key focus of TexPrax lies within giving users full
control over their data and when their conversation
should be monitored. We thus provide them with
the option to remove the chatbot from a conversa-
tion at any time. Moreover, the matrix communi-
cation protocol allows users to modify and remove
their messages which are then propagated to other
participants in a chatroom including the chatbot.
This provides a safer communication space to users
as they have full control over what messages are
stored. To comply with GDPR regulations (EU,
2016), we further implement a feature to obtain the
informed consent of the users for each chatroom.

Upon being invited to a chatroom, the chatbot
automatically sends an introductory message and
explicitly asks if this room shall be recorded (Fig-
ure 5a). The user can then respond to the question
with one of the provided reactions. If no reaction is
selected but a message is sent, the chatbot will as-
sume that the invitation was not intended and leaves
the chatroom automatically without recording any
message. Only upon acceptance, the chatbot will
notify the user and start monitoring and reacting to
new messages (Figure 5b). Note, that the chatbot
can be removed by the user at any time and invited
back in later. Due to the end-to-end encryption, the
chatbot will not be able to read any messages that
have been sent while it was not present.

Annotations are then made by the user by accept-
ing the suggested label, or providing a correction.3

Only when a reaction is provided, the message and
its class are stored in the internal database.

3We also investigated labeling messages using free-text
replies; however, users asked for an easier way of interaction.
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(a) Introductory message after a new room has been created. If
at least one user is against recording, the bot will leave the room. (b) Label suggestion for a recognized cause.

Figure 5: Example messages of TexPrax.

3.2 Server
The server is based on the Synapse implementation
of the matrix protocol4; an open-source privacy-
centric messaging protocol that enables end-to-
end encrypted communication while allowing the
server to be hosted on custom hardware (Ermoshina
et al., 2016). This guarantees that all messages
that are passed between users (and the chatbot) re-
main encrypted on the server and thus, cannot be
read even if the server is breached. The usage of
Synapse further allows users to use different client
applications such as Element5 across different plat-
forms (i.e., mobile, desktop, and browser) to send
and receive messages. For the study and debugging
purposes, we further extended the existing imple-
mentation to automatically send an invitation to
the chatbot every time a new chatroom is created
(users will still be asked for their consent before
recording any messages). TexPrax is setup on a
virtual machine with 4 CPU cores, 8 GB RAM,
and 50 GB of storage.

3.3 Chatbot
The chatbot is based on the nio project6—a client
library for the matrix protocol—written in Python.
As soon as the user allows the chatbot to record
messages, it will store every new message includ-
ing the annotation into a local database. Processing
messages can freely be extended; for instance, it is
also possible to send the messages to an external
instance via HTTP instead storing them locally. To
provide the system with additional flexibility, the
chatbot can be hosted completely separate from the
server. It is thus possible to run different chatbots
for each chatroom on different hardware, which

4https://matrix.org/docs/projects/
server/synapse

5https://element.io/
6https://matrix.org/docs/projects/sdk/

matrix-nio

can be helpful to better comply with data privacy
regulations. As shown in Figure 4, we utilize a
pre-trained model to provide users with label sug-
gestions. The chatbot will then react to a message
with a label suggestion and ask the user to confirm
or correct the notification (they can also just ig-
nore the message). All user annotations are stored
separately from the model’s suggestion.

4 Data Collection

In contrast to our previous work that investigates
expert-annotated named entity recognition (Müller
et al., 2021b), our goal is to provide a first solution
for collecting annotated data and providing assis-
tance with a minimal effort for users. We thus focus
on sentence-level annotations that can be easily pro-
vided using message reactions and are suitable for
existing shop floor management processes.

4.1 Annotation Task
Following existing workflows for shop floor man-
agement that are currently done on paper, we iden-
tify three crucial classes for our use case:

1. Problem (P): The description of a deviation
from an expected target state, e.g., machine
breakdowns, material delays, incorrect pro-
duction processes etc. (often formulated as a
question).

2. Cause (C): The assumed cause of a problem.

3. Solution (S): The action to eliminate the root
cause of the problem or to help in finding the
possible causes and countermeasures.

4. Other (O): None of the above classes (e.g.,
unrelated messages).

To train an initial label suggestion model, we re-
annotated the existing dataset with sentence-level
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Part Dialogues (D) Turns (T) T/D Problem Solution Cause Other Total Sents/D

P1 81 246 3.04 127 74 50 302 553 6.83 ± 3.82
P2 97 309 3.19 117 56 114 145 432 4.45 ± 2.11
P3 24 36 1.50 23 12 1 6 42 1.75 ± 0.66

Total 202 591 2.60 267 142 165 453 1,027 5.08 ± 3.28

Table 1: The number of dialogues, turns, and their ratio (left) and the class distribution on a sentence-level (right).

annotations.7 This was done by three of the au-
thors that are responsible for managing the CiP.
Each of them annotated one third of the dataset and
cross-examined all other annotations for possible
errors or disagreement. Upon disagreeing on a la-
bel, all annotators discussed the respective instance
to agree upon the best suited one.

4.2 Participants

All participants were student assistants, technical
support staff, or researchers that worked in the CiP
and are employed at the university; receiving pay-
ment according to the official wages (above Ger-
man minimum wage). They were informed about
the purpose of the study in advance, and provided
their informed consent before participation. They
further received instructions about how to use the
application including the features allowing them to
modify and remove already sent messages. Partic-
ipation was strictly voluntary and anonymous; to
further obfuscate the identity of our participants,
we created a pool of user accounts from which an
account was randomly assigned to each user. For
data publication we obfuscate the user accounts by
hashing the ID of each user. Overall, our study had
a total number of 10 participants over the whole
duration (October 2021 to July 2022).

4.3 Data Analysis

Table 1 shows the statistics of the collected data.
We split the data into three parts; first, the re-
annotated dataset that was used to train the label
suggestion model (cf. Section 5), second, data col-
lected between October 2021 and June 2022, and
third, the data collected in July 2022 to evaluate the
our final system which we also use as the test data
for our experiments. The second and third batch of
data was each collected in a separate chatroom. An
overview of the dialogue properties can be found
in Table 1. Overall, the dataset consists of 202 dia-
logues with 591 turns and 1,027 sentences. A close

7Deploying TexPrax without any suggestion model does
not affect the number of reactions provided by users.

inspection of the data reveals interesting properties
(e.g., grammatically incorrect language, abbrevi-
ations, etc.). Despite that, we want to emphasize
that there was no single case where our participants
could not understand a message.

Distributional shifts. Table 1 shows varying
class distributions across all three splits. One rea-
son for this may be the amount of expertise in cha-
trooms across different periods of data collection.
For instance, between the first and second part of
the data collection which were ∼10 months apart,
there had been a partial change of staff in work
force. With new people joining the CiP, we find
a higher number of responses looking for poten-
tial causes of a problem, but with less success (i.e.,
less solutions). We further find that the more ac-
quainted workers in the first data collection tend to
provide longer explanations and engage themselves
more in chitchat which is reflected in the substan-
tially higher number of Other class sentences and
a higher sentence-per-dialog ratio (Sents/D).

Slang. We find various occurrences of text mim-
icking spoken language involving grammatically in-
correct expressions. For instance, our participants
frequently used ne instead of eine (Eng.: a/an) or
as the short form of nein (Eng.: no).

Abbreviations. We find that our participants tend
to communicate in short messages that involve ab-
breviations. While some are easily understandable
for native German speakers—e.g., vllt. for vielle-
icht (Eng.: maybe)—others such as V8 for Variante
8 (a product type) or wimi for wissenschaftliche
Mitarbeitende (Eng.: researcher) are highly depen-
dent on the domain.

Filler words. Similar to in-person conversations,
we also find an abundance of filler words such as
ah, hmm, and oh.

Code switching. We find that participants some-
times tend to code switch from German to En-
glish (Scotton and Ury, 1977); especially for short,
one word responses (e.g., Nice!, Sorry!).

13



5 Experiments

We conduct experiments to gain first insights on
how well recent models can perform for providing
label suggestions for our use case in future studies.

5.1 Experimental Setup
We evaluate two models that are capable of pro-
cessing German texts as our baselines. First, the
XLMR-base model (Conneau et al., 2020) provided
by Huggingface (Wolf et al., 2020) that has been
shown to have a solid performance across various
languages (Malmasi et al., 2022). Second, a Ger-
man version of BERT (GBERT, Chan et al. 2020).
This has been shown to work well for German
tweets that have a similar format (i.e., short, Ger-
man sentences containing informal language) as
our messages (Beck et al., 2021). For sentence
classification, we use the [CLS] token to predict if
a given sentence states a problem (P), a cause (C),
a solution (S), or other (O). Across all experiments,
we train our models for 10 epochs with a learning
rate of 2e−5 and weight decay of 0.01, and a batch
size of 16. We use the parts 1 and 2 as presented
in Table 1 for training and use part 3 as the most
recently collected dataset for testing.

P1 P2 P1 + P2

Model Acc F1 Acc F1 Acc F1

XLMR 0.357 0.216 0.524 0.315 0.476 0.269
GBERT 0.405 0.267 0.310 0.237 0.429 0.361

Table 2: Accuracy and macro-averaged F1 scores of
both models trained on different temporal datasplits.

5.2 Results
Table 2 shows the results of both models on the
P3 data (cf. Table 1). Both models are not able
to achieve a marco-averaged F1 score higher than
0.4, showing that even recent language-specific
models struggle for sentence classification when
applied to a very specific domain and little training
data (432–553 sentences). Interestingly, GBERT
outperforms XLMR when trained on P1 data as
well and when trained on P1 + P2 data in terms
of F1 score. Although we initially conjectured
that XLMR may be capable of better handling the
code switched data, this does not seem to be the
case. We further find that the suggested labels from
the GBERT model (trained on P1 data) during the
collection of P2 achieved an accuracy of 0.683.
While this is a moderately high performance, this

also implies that 31.7% of the labels needed to be
corrected by our participants.

5.3 Usability

To ensure that this did not substantially impact the
usability of TexPrax, we asked our voluntary partic-
ipants to answer the system usability scale (SUS)
questionnaire (Brooke, 1996) upon finishing the
final round of data collections (P3). SUS quantifies
the relative usability with respect to existing bench-
marks and ranges from A+ (84.1–100 SUS) to F
(0–51.6 SUS) (Lewis and Sauro, 2018). Overall,
seven users participated in the usability study. On
average, TexPrax receives a system usability scale
score of 81.76 with a standard deviation of 5.46,
which indicates an A level (80.8–84.0 SUS) usabil-
ity. We thus conclude that TexPrax achieves a high
usability despite the label corrections.

6 Conclusion

We presented TexPrax, a system for collecting an-
notations and assisting employees by directly en-
gaging them as domain-experts during their daily
work. TexPrax allows users to exchange, modify,
and delete end-to-end encrypted messages at any
time, and an opt-in chatbot to ensure a high level of
data privacy and security. We evaluate TexPrax in
an assembly line at a learning factory (CiP) where
we find that daily work communication is noisy,
but efficient and very problem-oriented. While ex-
isting models still have difficulties to provide the
correct label suggestion, TexPrax still maintains a
high usability. We conjecture that TexPrax could
be especially beneficial to collect data and build
assistance systems in domains with a high share of
remote work, such as in software development. For
future work, we plan to extend TexPrax to identify
and suggest solutions for recognized problems and
adapt it to new domains, such as our institute’s read-
ing group chat where researchers discuss papers
relevant for their research.
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Ethics Statement

The collection of data from group- and private-
chats requires careful consideration about what
kind of data is to be expected and how users can
control it. To ensure an ethical data collection and
usage, we worked closely together with the respec-
tive bodies of our university (TUDa) for developing
our final workflow. We want to emphasize that such
data should never be collected without the explicit
and informed consent of the users. Our participants
voluntarily participated in this study and further-
more, had an active interest in the system as they
could directly benefit from it.

Pre-study clearance from respective bodies.
After defining our data collection workflow and
annotation task, we hence asked the ethics commit-
tee of our university for ethical clearance.8 To fur-
ther ensure the (mental) safety of our participants
who were employees of TU Darmstadt, we further
asked our university’s staff council for their clear-
ance.9 Both bodies provided their full clearance to
conduct this study after minor modifications of the
initial workflow involving the account distribution
to participants (cf. Section 4.2). Both clearance
letters for the final study setup can be shared upon
request (in German).

Informed consent. All our participants were
fully informed about the data collection processes,
for what purpose the data was collected, and how
it will be used and released (including the surveys).
They all provided their informed consent before re-
questing an anonymous user account for participa-
tion in the study (this was a mandatory requirement
from the ethics committee and staff council).

Limitations

Interactive assistance. In this work, we focused
on data collection and annotation from workers in
a factory environment. Although the integration of
TexPrax into their existing dashboard10 alleviates
their daily work, additional assistance could be
provided by automatically suggesting solutions for
identified problems.

Other use cases. While TexPrax received clear-
ance by our university’s ethics committee and staff

8https://www.intern.tu-darmstadt.de/
gremien/ethikkommisson/index.en.jsp

9https://www.personalrat.tu-darmstadt.
de/personalrat_1/index.de.jsp

10https://www.sfmsystems.de/

council, it must be noted that this does not auto-
matically transfer to new use cases or even similar
ones at different universities/factories. It is crucial
to get at least clearance of the respective staff coun-
cil before deploying TexPrax to avoid any legal
issues that may otherwise arise. Moreover, for the
collected data to be of use for the NLP community,
the company (or a respective organization) must be
willing to share their data publicly. This however
implies that deploying TexPrax in organizations
that handle sensitive data (e.g., security-related or
personal user data) can alleviate the work of em-
ployees, but will not result in datasets that can be
publicly shared.

Different annotation tasks. The current version
of TexPrax is designed as a tool for collecting data
and annotations on a sentence-level. Explicitly ask-
ing for free-text responses could be one solution to
tackle different kinds of annotations such as iden-
tifying named entities—for instance, a user could
reply to a message containing a named entity by
repeating it—however, this may hurt usability and
lead to a less frequent usage of the application. To
extend TexPrax to different annotation tasks one
thus first needs to find a good way to interact with
the user.

Propagating dataset changes in trained models.
Finally, a last limitation is updating the training
data that is implicitly stored in the trained model.
The lack of efficient methods to update only spe-
cific information in trained models can lead to a
substantial overhead when implementing changes
in the data made by a user as the whole model
needs to be retrained.

References
Tilman Beck, Ji-Ung Lee, Christina Viehmann, Marcus

Maurer, Oliver Quiring, and Iryna Gurevych. 2021.
Investigating label suggestions for opinion mining
in German covid-19 social media. In Proceedings
of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing
(Volume 1: Long Papers), pages 1–13, Online. Asso-
ciation for Computational Linguistics.

John Brooke. 1996. Sus-a quick and dirty usability scale.
Usability evaluation in industry, 189(194):4–7.

Branden Chan, Stefan Schweter, and Timo Möller. 2020.
German’s next language model. In Proceedings of
the 28th International Conference on Computational

15



Linguistics, pages 6788–6796, Barcelona, Spain (On-
line). International Committee on Computational Lin-
guistics.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal,
Vishrav Chaudhary, Guillaume Wenzek, Francisco
Guzmán, Edouard Grave, Myle Ott, Luke Zettle-
moyer, and Veselin Stoyanov. 2020. Unsupervised
cross-lingual representation learning at scale. In Pro-
ceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 8440–
8451, Online. Association for Computational Lin-
guistics.

Kevin Crowston. 2012. Amazon mechanical turk: A
research tool for organizations and information sys-
tems scholars. In Shaping the future of ict research.
methods and approaches, pages 210–221. Springer.

Ksenia Ermoshina, Francesca Musiani, and Harry
Halpin. 2016. End-to-end encrypted messaging pro-
tocols: An overview. In International Conference on
Internet Science, pages 244–254. Springer.

EU. 2016. Consolidated text: Regulation (EU)
2016/679 of the European Parliament and of the
Council of 27 April 2016 on the protection of natu-
ral persons with regard to the processing of personal
data and on the free movement of such data, and re-
pealing Directive 95/46/EC (General Data Protection
Regulation) (Text with EEA relevance).

Christian Hertle, Michael Tisch, Joachim Metter-
nich, and Eberhard Abele. 2017. Das darm-
städter shopfloor management-modell. Zeitschrift
für wirtschaftlichen Fabrikbetrieb, 112(3):118–121.

Jan-Christoph Klie, Michael Bugert, Beto Boullosa,
Richard Eckart de Castilho, and Iryna Gurevych.
2018. The inception platform: Machine-assisted and
knowledge-oriented interactive annotation. In Pro-
ceedings of the 27th International Conference on
Computational Linguistics: System Demonstrations,
pages 5–9.

James R. Lewis and Jeff Sauro. 2018. Item benchmarks
for the system usability scale. Journal of Usability
Studies, 13(3):158–167.

Shervin Malmasi, Anjie Fang, Besnik Fetahu, Sudipta
Kar, and Oleg Rokhlenko. 2022. SemEval-2022 task
11: Multilingual complex named entity recognition
(MultiCoNER). In Proceedings of the 16th Interna-
tional Workshop on Semantic Evaluation (SemEval-
2022), pages 1412–1437, Seattle, United States. As-
sociation for Computational Linguistics.

Marvin Müller, Nicholas Frick, and Joachim Metternich.
2021a. Wissen aus betrieblichen chats nachhaltig
nutzen. wt Werkstattstechnik online, 111(1-2):93–96.

Marvin Müller, Ji-Ung Lee, Nicholas Frick, Lorenz
Stangier, Iryna Gurevych, and Joachim Metternich.
2021b. Extracting problem related entities from pro-
duction chats to enhance the data base for assistance
functions on the shop floor. Procedia CIRP, 103:231–
236.

Sean A. Newman and Robert C. Ford. 2021. Five steps
to leading your team in the virtual covid-19 work-
place. Organizational Dynamics, 50(1):1–11. Vir-
tual Teams.

Dinesh Raghu, Shantanu Agarwal, Sachindra Joshi, and
Mausam. 2021. End-to-end learning of flowchart
grounded task-oriented dialogs. In Proceedings of
the 2021 Conference on Empirical Methods in Natu-
ral Language Processing, pages 4348–4366, Online
and Punta Cana, Dominican Republic. Association
for Computational Linguistics.

Jason Ariel Rajendran, Hanif Baharin, and Fazillah
Mohmad Kamal. 2019. Understanding instant mes-
saging in the workplace. In International Visual In-
formatics Conference, pages 640–652. Springer.

Evgeniia Razumovskaia, Goran Glavaš, Olga Majew-
ska, Edoardo Ponti, and Ivan Vulić. 2022. Natural
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Abstract

Children with language disabilities face com-
munication difficulties in daily life. They are
often deprived of the opportunity to participate
in social activities due to their difficulty in un-
derstanding or using natural language. In this
regard, Augmentative and Alternative Commu-
nication (AAC) can be a practical means of
communication for children with language dis-
abilities. In this study, we propose PICTALKY,
which is an AI-based AAC system that helps
children with language developmental disabili-
ties to improve their communication skills and
language comprehension abilities. PICTALKY
can process both text and pictograms more ac-
curately by connecting a series of neural-based
NLP modules. Additionally, we perform quan-
titative and qualitative analyses on the modules
of PICTALKY. By using this service, it is ex-
pected that those suffering from language prob-
lems will be able to express their intentions or
desires more easily and improve their quality of
life. We have made the models freely available
alongside a demonstration of the web interface
1. Furthermore, we implemented robotics AAC
for the first time by applying PICTALKY to the
NAO robot.

1 Introduction

The majority of people with language disabilities
suffer in their daily lives as they cannot understand
or speak the language. As it is a means of commu-
nication, they may be deprived of the opportunity
to participate in social activities. Also, they may
experience financial difficulties. In general, people
with speech disorders have lower employment rates
than people with other types of disabilities. What is
worse is that the proportion of people with autism
disorder has been increasing every year (Zablotsky
et al., 2019). Accordingly, a solution is required to
ensure their economic freedom.

†All authors contributed equally.
∗Corresponding author.

1http://nlplab.iptime.org:9062/

Meanwhile, augmentative and alternative com-
munication (AAC) has been suggested and applied
to solve communication problems for people with
language disabilities (Beukelman et al., 1998). This
approach enables nonverbal communication by re-
placing language. Although several AAC software
resources are available, existing software packages
are expensive, difficult to use, and only provide
simple functions. To address these problems, we
present a novel AAC system for children with lan-
guage developmental disabilities. We refer to our
AAC software as PICTALKY. Neural-based gram-
mar error correction (GEC) and a symbol-based
text-to-pictogram (TP) module are utilized in our
model. Thus, PICTALKY offers neural- and symbol-
based AAC for the improvement of communica-
tion and language learning, which have not been
adopted in existing software.

From the perspective of NLP, the speech errors
from people with language disabilities can be inter-
preted as grammatical errors at the morphological
and syntactic levels. To handle these errors, neu-
ral GEC is applied in PICTALKY. Moreover, we
consider both text and image processing for AAC
education and communication. After a sentence
is entered as an input through the speech-to-text
(STT) module, it is passed through the neural GEC
and natural language understanding (NLU) mod-
ules. Finally, the corresponding pictograms are dis-
played.

PICTALKY is aimed at children aged 0 to 14
years who have language developmental disabil-
ities caused by intellectual or autism disabilities.
The first reason that we focus on children is that
early treatment during childhood is critical. Ac-
cording to Lenneberg (1967), language must be
acquired during a critical period that ends at approx-
imately the age of puberty with the establishment
of the cerebral lateralization of function. Unless
language is learned during this period, it is difficult
for language to be used freely. This may result in
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social deterioration, contraction, aggression, and
other problematic behaviors, which eventually af-
fect the overall quality of life and satisfaction of
the person (Schwarz et al., 2001).

The second reason is that there is currently insuf-
ficient social support for language therapy. Not all
children with developmental disabilities can benefit
from public systems owing to the limited support.
Moreover, in addition to the children, their family
and caregivers them experience difficulties.

Therefore, we propose PICTALKY, which com-
plements the limitation of existing products and
increases the accessibility of children with lan-
guage disabilities to appropriate education and
treatment. We expect that not only the people with
language disabilities but also their caregivers can
have more easier education and communication by
using this service. Furthermore, in addition to the
implementation of the web application, we apply
PICTALKY to the NAO robot, thereby providing
the first robotics AAC. We expect that robotics
AAC can draw interest of children, so that they can
use AAC more friendly and easily.

Our contributions are as follows:

• We propose PICTALKY for people with lan-
guage diabilities, which is the first AAC soft-
ware with GEC and a synonym-replacement
system for accurate language processing.

• We analyze each detailed function of
PICTALKY quantitatively and qualitatively.
Also, we measure the satisfaction score during
the actual services.

• We present a novel metric known as text-to-
pictogram accuracy (TPA) to measure the per-
formance of converting texts into pictograms.

• We open PICTALKY in the form of a platform,
so that it can help people with language dis-
abilities and contribute to the research in this
area.

• We implement robotics AAC for the first time
by applying PICTALKY to the NAO robot.

2 Background

2.1 AAC Software for Language
Developmental Disabilities

Several AAC software platforms have been de-
veloped for language education. TouchChat2 is a

2https://touchchatapp.com/

symbol- and text-based AAC tool with a text-to-
speech (TTS) service. AVAZ3 is a language edu-
cation service that uses pictograms. TalkingBoo-
gie (Shin et al., 2020) is software that supports the
caregivers of children.

Systems that use AAC have also been developed
for communication in daily life. Proloquo2Go4 and
QuickTalkAAC5 enable people to communicate by
using symbols or text with a TTS service. iCom-
municate6 is a visual and text AAC application that
allows for the creation of pictures and storyboards.
Although several AAC software platforms have
been developed, certain problems remain, such as
difficulty of use and high costs. Moreover, exist-
ing pictogram-based AAC software is difficult for
users to use because they need to select an image
from the communication board by themselves.

PICTALKY is the first symbol-based AAC sys-
tem with neural GEC to provide more accurate
and sophisticated language education and commu-
nication. PICTALKY automatically outputs the se-
quence of the pictograms according to the spoken
sentences. It can be used for communication be-
tween people with disabilities as well as between
people with disabilities and non-disabled people.
Moreover, it offers the potential to be extended
to multilingual versions by using neural machine
translation.

2.2 Symbolic AAC

AAC enables nonverbal communication instead of
a language, and it can provide practical help for
people with cognitive and linguistic disorders.

In the majority of studies on AAC, researchers
have employed graphic symbols (i.e., pictograms
and picture communication symbols) (Kang et al.,
2019) as alternative means of language items to
improve the communication skills of children with
language developmental disabilities. In this manner,
children can be taught how to express their needs
and interact with others using symbols (Huang and
Lin, 2019).

Most authors have claimed that graphic symbols
can enhance the literacy skills and communication
of children or support children with disabilities in
functional competence (e.g., writing, improving

3https://www.avazapp.com/
4https://www.assistiveware.com/

products/proloquo2go/
5https://digitalscribbler.com/

quick-talk-aac/
6http://www.grembe.com/
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Figure 1: Overall architecture of PICTALKY.

their communication partner knowledge, and learn-
ing) (Karal et al., 2016; Nam et al., 2018; Light
et al., 2019). Finally, AAC software is a form of
symbolic knowledge representation (Beukelman
and Mirenda, 2013). That is, symbols are verbal
or visual representations of ideas and concepts.
Therefore, we adopt both text and image process-
ing mechanisms (i.e., TP) to consider symbolic
knowledge with NLP in AAC. Furthermore, we
use a deep learning architecture approach for our
GEC module. To the best of our knowledge, no
such method for a neural and symbol mechanism
in AAC has yet been presented.

3 PICTALKY

3.1 Communication Module

Our proposed service uses deep learning-based
speech-to-text (STT), which takes the voice of the
user as input and converts it into text. We adopt
Naver CLOVA Speech (Chung, 2019) for the STT
system. The text input can be entered with the key-
board as well as in the form of voice. Users and
caregivers can enter the text input easily with the
keyboards of their personal computer, tablet, or
mobile phone.

3.2 Neural GEC Module

People with language disabilities tend to make
grammar and pronunciation errors when speaking.
The grammar error correction (GEC) system re-
vises various linguistic errors of users, so it is use-
ful for children to practice correct sentences.

PicTalky is equipped with a neural GEC mod-
ule that accurately corrects the STT outputs. We
denote the sequence-to-sequence model that is ap-
plied to the GEC task as neural GEC. From the
perspective of machine translation, the neural GEC
task is a system whereby a sentence with noise and
a correct sentence are entered as the source and
target sentences, respectively. Subsequently, trans-
lation from the input to the output is trained with
the sequence-to-sequence model. In this method,
training is conducted without specifying a particu-
lar error type; thus, various errors can be detected
and processed simultaneously.

PICTALKY enhances the software quality with
the latest GEC technique which utilizes noising
encoder and denoising decoder proposed by Park
et al. (2020b) with copy mechanism (Gu et al.,
2016). As a result, the speech errors of people with
developmental disorders can be corrected on the
text level.

3.3 TP Module

Pictograms are complementary and alternative
means of communication that can help people with
language difficulties. Unlike languages, which re-
quire an understanding of rules and symbolic sys-
tems, pictograms deliver the meaning more intu-
itively and rapidly. Thus, pictograms are utilized
in the language rehabilitation field. For example,
by using pictograms on communication boards,
children can learn how to communicate with oth-
ers (Calculator and Luchko, 1983). Pictograms pro-
vide children who have not learned the language
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system with practical help in language comprehen-
sion and speaking.

This study presents a system that causes the out-
put of the pictogram images to correspond to the
input text by using text and image processing. The
text-to-pictogram (TP) module is an N-gram base
mapping system, and it returns the output images
that are morphologically similar to the input text
in the pictogram dataset. The pictogram dataset in-
cludes texts such as words, phrases or sentences
that explain the corresponding images. For more
accurate mapping, our TP module makes use of a
method that scans the entire sentence by N-gram to
1-gram and provides the most similar image.

3.4 NLU module

The output of the TP module is processed by the
natural language understanding (NLU) module to
handle the out-of-vocabulary (OOV) text that is
not in the pictogram dataset. For this reason, we
propose a method that causes the input vocabulary
to correspond to a semantically similar image.

In the NLU module, unknown words are
replaced with substitute words by measuring
the semantic similarities, and a co-reference
resolution system is applied to the substitute
words. The semantic similarities are measured
by Word2Vec (Mikolov et al., 2013) and Word-
Net (Miller, 1995). Within the input text, substitute
words can be resolved through the co-reference
resolution function of the spaCy7 library. The re-
maining grammatical elements, such as unknown
vocabularies, conjunctions, and articles that are not
processed by measuring the semantic similarity and
replacing unknown words with substitute words are
designed not to be printed in the output image.

3.5 Overall Architecture of PICTALKY

When voice input is entered, it is converted into text
by the communication module. Subsequently, the
text is corrected by the neural GEC system and the
corrected texts are changed into pictograms using
the TP module. If OOV text exists in the input,
the NLU module addresses this problem. Finally, a
corresponding pictogram sequence is output.

The overall structure of our proposed service
is depicted in Figure 1. If an erroneous sentence
"I lovedd BTS" is entered as input, the neu-
ral GEC corrects the input to "I love BTS."
Eventually, the text from the pictogram is gener-

7https://spacy.io/

ated and this module is provided to a form of web
service or robotics.

PICTALKY aims to help children with develop-
mental disabilities to communicate and improve
their language understanding. The simultaneous
encoding and transmission of speech text, both au-
dibly and visually, allows users to understand the
speaker’s intentions intuitively, in spite of their dif-
ficulties in using language. Furthermore, as the text
and images are delivered together, implicit learning
is possible without directly teaching each element
of the language. PICTALKY is intended for chil-
dren with developmental disabilities, but it can also
be applied to rehabilitation for educationally disad-
vantaged groups.

4 Experiment and Results

4.1 Datasets

To substantiate the performance of PICTALKY qual-
itatively, we adopted a test set that was provided
by a GEC service company8. The test set was con-
structed while performing the actual GEC service,
inspired by cases in which people with language
developmental disabilities utter grammatically in-
correct sentences. Thus, it can be stated that it pro-
vides high objectivity and reliability. We refer to
this test set as the in-house test set. The test set
consists of 100 sentences.

We used parallel corpora as the training data for
training our neural GEC model, which were pro-
vided by Lang8 (Cho, 2013). We utilized an open-
source pictogram dataset that was released by the
Aragonese Centre for Augmentative & Alternative
Communication9.

4.2 Verification of Neural GEC Module

Model Although the majority of recent NLP stud-
ies have been conducted based on the pretrain-
finetuning approach (PFA), it is difficult to service
a PFA-based NLP application owing to its slow
speed and high computational cost, among other
factors (Park et al., 2021). Although state-of-the-art
neural models such as mBART (Liu et al., 2020)
have been developed, the parameters and model
sizes are too large to service in the industry. To
overcome this problem, we built a model based on
the vanilla transformer, which is easy to service.
The hyperparameters were set to the same values

8https://www.llsollu.com/
9http://arasaac.org
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as the settings in Vaswani et al. (2017). The vocabu-
lary size was 32,000 and sentencepiece (Kudo and
Richardson, 2018) was adopted for the subword
tokenization.

Performance of Neural GEC We used
GLEU (Napoles et al., 2015) and BiLingual Evalu-
ation Understudy (BLEU) (Papineni et al., 2002)
as evaluation metrics to verify the performance
of the neural GEC module. GLEU is similar to
BLEU, but it is a more specialized metric for the
error correction system, as it considers the source
sentences. The overall comparison results are
presented in Table 1.

Test set BLEU GLEU
In-house (Park et al. (2020c)) 63.77 53.99

Table 1: Performance of neural GEC module.

Case Deletion setting Score
POS Stopwords

TPA

(1) ✓ ✓ 94.16
(2) - ✓ 63.96
(3) ✓ - 52.77
(4) - - 43.59

TPA W/ PENALTY

(1) ✓ ✓ 91.62
(2) - ✓ 62.24
(3) ✓ - 51.35
(4) - - 42.42

Table 2: Experimental results of PICTALKY. POS rep-
resents the removal of determiners, prepositions, and
conjunctions using POS tagging information.

Algorithm 1 TPA
1: Initialize Spos = {determiner, preposition, conjunction}
2: /* The set of exceptional POS tags */

3: Initialize Sstop as stopwords predefined by NLTK
4: procedure TPA(sentence)
5: Initialize score and N as zeros
6: W ← PosTagger(sentence)
7: /* Split words with POS tags */

8: for each word w ∈W do
9: if w.pos /∈ Spos and w /∈ Sstop then

10: score← score+ δŷ,y where ŷ = Mθ(w)
11: /* Kronecker delta of TP prediction */

12: score ← score − (1 − δẑ,z) where ẑ =
Nϕ(w)

13: /* Penalty for a misclassified named entity */

14: N ← N + 1
15: return score/(N + ϵ)

In the experimental results, BLEU and GLEU
scored 63.77 and 53.99, respectively. These results
are sufficiently competitive with the results of other
neural GEC studies (Im et al., 2017; Choe et al.,

2019; Park et al., 2020b,c). This implies that our
neural GEC module have an ability to correct the
errors from the STT module, as well as the speech
errors of users.

4.3 Verification of TP Module
The results of the performance evaluation of the
TP module, which is a core function of PICTALKY,
are presented in this section.

TPA We propose text-to-pictogram accuracy
(TPA), which is a novel metric for measuring the
performance of the TP module. TPA is an objective
indicator of how effectively the text in PICTALKY

input is converted into pictograms. The measure-
ments are performed as follows. First, the input
sentences are separated into words and POS tagged.
Thereafter, the words that are POS tagged as de-
terminers, prepositions, conjunctions (POS), and
stopwords are removed, as we believe that these
words are meaningless to be converted into pic-
tograms. Thus, the words that do not contain im-
portant contents are removed during this process.
The remaining words are used for the measure-
ments and the ratio of the words that are effectively
converted into pictograms is used as the TPA value.
A named entity recognition (NER) penalty is also
implemented when calculating the TPA value. The
NER penalty is assigned when the named entities
are misclassified by the NER process for the input
sentences. As the named entities are important in-
formation that should be converted without errors,
the NER penalty is assigned in those cases. The
pseudo-code for the TPA is described in Algorithm
1.

Case Study We perform comparative experi-
ments on the TPA with various cases of deletion,
as indicated in Table 2. There were four cases in
total for the deletion cases: (1) both POS (words
tagged as determiners, prepositions and conjunc-
tions) and stopwords are deleted, (2) only stop-
words are deleted, (3) only POS are deleted, and
(4) neither POS nor stopwords are deleted. We also
measured how the penalty affected the overall per-
formance. We used NLTK (Bird, 2006) to remove
the determiners, prepositions, conjunctions, and
stopwords and used the BERT-based (Devlin et al.,
2018) NER model provided by Huggingface (Wolf
et al., 2019) for the penalty.

The experimental results demonstrated that case
(1) of the TPA, which was our proposed method,
achieved the highest score of 94.16. In case (2)
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of the TPA, the score decreased by 30.20 points.
When words that were POS tagged as determin-
ers, prepositions, and conjunctions were deleted
in case (3), lower performance was exhibited than
in case (2). Finally, case (4) achieved the lowest
performance. These results demonstrate that ex-
cluding both the POS and Stopwords from the sub-
jects of the measurements is the most reasonable
evaluation for TP conversion. Moreover, when the
NER penalty was applied, the performances de-
creased in all cases, which means that the NER
penalty contributes to more valid measurement.
We also conducted a qualitative analysis on the
results of PICTALKY (see Appendix B). Finally,
we verify the the practicality of PICTALKY with
a questionnaire-based satisfaction survey (see Ap-
pendix C.

5 PICTALKY with Robotics

We have distributed PICTALKY as a web applica-
tion (see Appendix D). However, in the case of
the web application, there is a possibility that it
is difficult or boring for children to handle. There-
fore, in addition to the web service, we have ap-
plied robotics technology to PICTALKY for arous-
ing interest in children. The NAO robot (Sham-
suddin et al., 2011; Jokinen and Wilcock, 2014)
is mounted in the communication module of
PICTALKY.

NAO is the humanoid robot developed by Soft-
Bank Robotics10. Nao has eight full-color RGB
LEDs, an inertial sensor, two cameras, and many
other sensors. It also has a sonar sensor to check
the distance of objects in its vicinity to compre-
hend its environment with precision and stability.
It enables NAO to react its body to move when
exposed by interaction. NAO is also available in
social robotics (Fong et al., 2003), which focuses
on communicating robots capable of interacting
and cooperating with humans. All of these charac-
teristics in NAO suit our research pursuit in terms
of interacting with a human.

We have created a human-robot interaction sys-
tem whereby the NAO robot has a conversation
with the end users and the pictograms are printed
onto the connected screen. As children show sub-
stantial interest in robots, this will aid in more fa-
miliar education as opposed to web or other ap-
plications (Sennott et al., 2019). The video of our

10https://www.softbankrobotics.com/
emea/en/

demo is also attached with our paper11.
To the best of our knowledge, this study is the

first to apply PICTALKY to the NAO robot and to
develop robotics AAC for the first time.

6 Conclusion and Future Work

We have proposed PICTALKY, which is the first
AI-based AAC service. With the series of deep
learning-based modules, it is able to take a speech
or text input from the user, correct error, and con-
verts it into a pictogram automatically for more
convenient communication and education of the
people with language disabilities. The aim of our
proposed system is to provide an opportunity of
communication and connection among all people,
without anyone being excluded. In the future, we
will expand the PICTALKY data to multilingual
data for use in various languages and to make it
publicly available. In addition, we plan to conduct
various AI for accessibility studies to improve the
quality of life for the people with disabilities. Start-
ing with our research, we look forward to advances
in many other studies so that all members of soci-
ety can get benefits from AI technology without a
financial burden.
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A Language Developmental Disabilities

Language disorder is a slow-speech phenomenon due to late development of the speech center in the
brain (Tomblin et al., 2003). Language disorders can be categorized into four main categories: expressive
language disorder, mixed receptive-expressive language disorder, phonological disorder, and stuttering.

People with expressive language disorder have relatively normal receptive language ability to under-
stand other people’s words, but difficulty in language expression. They tend to replace simple words or
sentences with gestures. People with mixed receptive-expressive language disorder shows a disability in
understanding other people’s words and in expressing their thoughts in language. In phonological disorder,
there is a common occurrence of incorrect pronunciation in consonants, especially mispronouncing
consonants or omitting the coda (auslaut) of syllables. Most frequently mispronounced consonants are [s],
[z], [S], [Z], etc, also, there are mispronunciations in vowels too. The speech of people with stuttering is cut
off abnormally often or the speed of which is irregular. The repetition of sounds or syllables, extension of
speech sounds, and blockage of speech can be observed. Also, their speech typically begins by repeating
the first consonant of a phrase. Children generally do not recognize stuttering, as getting older, they
become aware of their speaking problems, and emotional reactions occur to avoid being not fluent.

These disorders can be interpreted as grammatical errors at morphological and syntax levels from the
perspective of natural language processing. Thus, deep learning-based grammar error corrector has been
developed and loaded into PICTALKY’s software .

B Qualitative Analysis

We also perform a qualitative analysis on the results of PICTALKY based on the developmental stages of
the First Language Acquisition (FLA) (Lightbown and Spada, 2021).

In Table 3, the input sentences contain grammatical problems, including fronting, infinitive, article,
spelling, plural -s, and irregular past form errors. The PICTALKY web application shows users the most
appropriate pictograms and the output sentences with the errors corrected.

Examples such as "I love play the baseball", "I love danceing with a
friends", and "He taked my toy!" occur in telegraphic speech (Chomsky, 1964) in the
immature language development stage between the ages of two and three. Grammatical errors for
morphemes are not merely an imperfect imitation of adults’ speech, and consistency of correction with
frequent interactions is required to expand cognitive development.
"Is the dog is tired?" and "Do I can eat a pizza?" are one of the errors encoun-

tered in acquiring basic structures of the first language between the age of 4 and the school years, and
this stage requires correction of low frequency and complex systems. Therefore, we reproduce humans’
universal language acquisition process, including frequent errors in the early and later development stages.

Note that if the Neural GEC module cannot correct grammatical errors, the NLU module can compensate
for it. However, these aspects need to be supplemented through future research.

Input sentence Output sentence Pictogram

* Is the dog is tired? Is the dog tired?

* Do I can eat a pizza? Can I eat a pizza?

* I love play the baseball I love to play baseball

* I love danceing with a friends I love dancing with friends

* He taked my toy! He took my toy!

Table 3: Example sentences and pictograms for qualitative analysis created by PICTALKY web demo.
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C PICTALKY Satisfaction Survey

We conducted a satisfaction survey to investigate the user satisfaction. It is difficult to employ the nonverbal
child, so we identified the extreme difficulty in performing a large-scale survey. Therefore, we conducted a
system satisfaction survey to 53 people with 43 experts in language disabilities and ten nonverbal children.
The experts consist of thirty teachers of nonverbal children and the thirteen professionals who majored in
language disabilities from Korea University Anam Hospital. PICTALKY Satisfaction Questionnaires are
shown in Table 4.

We established a total of five questions and specified the answers using a Likert scale (Likert, 1932) of
“Satisfied,” “Neither agree nor disagree,” and “Dissatisfied.”. The survey results are depicted in Figure 2.

Question
Q1. Are you satisfied with the overall performance of PICTALKY?
Q2. Do you think this system will be helpful to people with language developmental disabilities?
Q3. Are you satisfied with the usability and UI of PICTALKY?
Q4. Are you satisfied with the performance of the grammar error correction system?
Q5. Are you satisfied with the results of the text-to-pictogram function?

Table 4: Questions of PICTALKY satisfaction survey.

Figure 2: Response results of satisfaction survey regarding PICTALKY.

The survey results revealed that most people were satisfied with the performance of PICTALKY. For
each question, 80% to 90% of the responses were satisfied and approximately 90% of the responses
stated that it will be helpful to people with developmental disabilities. However, the UI of PICTALKY

still requires improvement and the performance of the GEC system should be enhanced. In particular,
according to the results of the Spearman correlation (de Winter et al., 2016) of the sentences, as illustrated
in Figure 3, the correlation between Q1 and Q2 was high, which indicates that the purpose of this study

Figure 3: Results of statistical significance test using Spearman correlation between questionnaires. The weight
indicates the correlation value and the value in parentheses is the p-value (p-value<0.05 indicates statistical
significance).
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was well reflected. Although the correlation between Q1 and Q5, and that between Q2 and Q5 were lower
than the others, their p-values were lower than 0.05 which means the results were statistically significant.

D PICTALKY with Web Application

We released the PICTALKY as the form of a web application as shown in Figure 4. Thus, any devices
enable our system by responsive user interface. The neural GEC module was connected by Rest API and
distributed as both CPU and GPU services. Our system is operated by Flask under a cloud server.

Also, we provide the user input into two modes of both speech and text considering the environment
where speech is not possible. For reviewing other situations that people with language disabilities face,
these settings are available to people who have deaf-mutism, aphasia. Our system is built on the compact
user interface and freely available to advance accessibility.

Overall procedures of the system are illustrated in Section 3.5. The voice recording starts when the user
clicks the record button, and our system begins to print out the result.

Figure 4: PICTALKY web application.
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Abstract
Question Answering (QA) systems are increas-
ingly deployed in applications where they sup-
port real-world decisions. However, state-of-
the-art models rely on deep neural networks,
which are difficult to interpret by humans. In-
herently interpretable models or post hoc ex-
plainability methods can help users to com-
prehend how a model arrives at its prediction
and, if successful, increase their trust in the
system. Furthermore, researchers can lever-
age these insights to develop new methods
that are more accurate and less biased. In
this paper, we introduce SQUARE v2, the
new version of SQUARE, to provide an ex-
plainability infrastructure for comparing mod-
els based on methods such as saliency maps
and graph-based explanations. While saliency
maps are useful to inspect the importance of
each input token for the model’s prediction,
graph-based explanations from external Knowl-
edge Graphs enable the users to verify the rea-
soning behind the model prediction. In addi-
tion, we provide multiple adversarial attacks to
compare the robustness of QA models. With
these explainability methods and adversarial
attacks, we aim to ease the research on trust-
worthy QA models. SQUARE is available at
https://square.ukp-lab.de.1

1 Introduction

The recent explosion of Question Answering
datasets and models is pushing the boundaries
of QA systems and making them widely used by
the general public in virtual assistants or chatbots
(Rogers et al., 2021). This ubiquitous adoption
is making regulators start preparing policies for
artificial intelligence with special emphasis on ex-
plainability and robustness to adversarial attacks.2

∗Equal Contribution.
1The code is available at https://github.com/

UKP-SQuARE/square-core
2https://digital-strategy.

ec.europa.eu/en/policies/
european-approach-artificial-intelligence

Figure 1: Visualization of two saliency maps computed
using integrated gradients. The darker the highlighting
color, the higher its importance to get the prediction.
Hovering on a word shows its importance value.

There are multiple methods to explain the pre-
dictions of AI models (Danilevsky et al., 2020) and
analyze their robustness (Zhang et al., 2020). Some
explainability methods focus on specific input at-
tributions such as attention- and gradient-based
saliency maps (Simonyan et al., 2014). Others de-
sign interpretable models instead of using post hoc
methods (Yasunaga et al., 2021). Lastly, most ap-
proaches that analyze the robustness of AI systems
are based on adversarial attacks, i.e., the use of
inputs such as questions with minor modifications
that change the system’s output.

However, exploring and comparing these meth-
ods is not straightforward for most models. Re-
searchers usually need to manipulate libraries and
create interfaces to compare them in a satisfactory
manner, which is a slow and complicated process
that hinders the research in trustworthy QA.

The SQUARE platform (Baumgärtner et al.,
2022) simplifies the process of comparing QA mod-
els by empowering NLP researchers with an on-
line platform to deploy, run, and compare the most
common QA pipelines while removing technical
barriers such as model and infrastructure configu-
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rations. It includes dozens of models of multiple
types, namely open-domain, extractive, multiple
choice, and abstractive QA. However, the only ex-
plainability method currently implemented is be-
havioral test (Appendix 3), limiting the comparison
between QA models based solely on the models’
final predictions.

In this work, we propose SQUARE v2, a new
online platform for trustworthy QA research im-
plementing various explainability, interpretability,
and robustness methods and interfaces to facilitate
research in trustworthy QA models. Specifically,
we make the following contributions: 1) SQUARE
v2 supports the comparison of models based on dif-
ferent post hoc explainability methods. We create
interactive saliency maps that illustrate the impor-
tance of each input token for the model’s prediction
(Simonyan et al., 2014). 2) We extend the Data-
stores to include support for knowledge graphs
(KG), deploy QA-GNN (Yasunaga et al., 2021),
an interpretable graph-based model, and create an
interactive visualization graph. 3) SQUARE v2
further provides various adversarial attacks, which
change the prediction by modifying the input but
keeping its semantics in order to evaluate the ro-
bustness of QA models (Ebrahimi et al., 2018).

2 Related Work

AllenNLP demo3 is the closest system to SQUARE
v2. They provide a web interface to interact with
their library, where users can explore explainability
functionalities (Gardner et al., 2018; Wallace et al.,
2019). However, only two non-Transformer mod-
els include saliency maps and attack methods. In
addition, users cannot deploy their models on this
web demo, and instead, they would need to install
their library and create their own interface.

Among the explainability libraries, Captum
(Kokhlikyan et al., 2020) is of special relevance.
It is a model interpretability library for PyTorch
that includes multiple saliency maps and provides
built-in visualizations. However, it does not pro-
vide a user interface to run all their methods and
compare them at a glance. On the other hand, it
provides an adversarial attack method, Fast Gra-
dient Sign Method (Goodfellow et al., 2015), and
some variants; however, these are not designed for
NLP.

Lastly, there are some efforts to ease the study
of adversarial attacks on NLP models. Textattack

3https://demo.allennlp.org

(Morris et al., 2020) is a library that supports sev-
eral attacks and is model agnostic. However, they
do not provide a web interface, so users must there-
fore create their own visualizations in order to be
able to easily compare attacks on multiple models.

In summary, SQUARE is a single entry-point for
NLP practitioners to analyze, compare, and teach
QA through models’ outputs, explainability, and
robustness with a user-friendly interface.

3 UKP-SQuARE

SQUARE (Baumgärtner et al., 2022) is an open-
source, online platform for NLP researchers to
share, run, compare, and analyze their QA models.
The platform implements a flexible and scaleable
microservice architecture containing four high-
level services:

1. Datastores: Provides efficient access to
large-scale background knowledge such as
Wikipedia.

2. Models: Allows the dynamic deployment and
inference of a wide variety of models imple-
mented in the Hugging Face transformers li-
brary (Wolf et al., 2020) or adapters (Pfeiffer
et al., 2020).

3. Skills: Implements a configurable QA
pipeline (e.g. multiple-choice, open-domain,
or extractive QA) leveraging the Datastores
and Models service. They can be added dy-
namically by the users to the system.

4. Explainability: provides a set of unit tests
(questions and answers in our case) (Ribeiro
et al., 2020) to compare the predictions with
the expected answers and, in this way, analyze
the biases and weaknesses of the Skills.

SQUARE is designed to ease the comparison and
analysis of models. Users can deploy their models
using a simple interface without the need of any
code and then, they can compare outputs of differ-
ent models side-by-side. This paper describes a
new major update of SQuARE.

4 Trustworthy Methods for QA

Modern neural networks have significantly im-
proved in performance in recent years; however,
their explainability have not followed the same
improvement (Rogers et al., 2020). Additionally,
despite their impressive performance, the models
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Figure 2: The "Explain this output" and "Attack Meth-
ods" are shown under the predictions of the Skill.

are vulnerable to adversarial attacks. The goal of
SQUARE v2 is to provide the research commu-
nity with a set of tools to facilitate the research on
trustworthy QA. SQUARE simplifies and provides
visualizations for saliency maps, graph-based in-
terpretable models, and adversarial attacks. The
following sections briefly describe the methods pro-
vided in SQUARE.

4.1 Saliency Maps

Saliency Maps assign an attribution weight to the
input tokens to assess their importance in the model
prediction, as illustrated in Fig. 1. To obtain this
visualization, a user needs to click on the button
"Explain this output" located after the predictions
of any Skill, as shown in Fig. 2.

In SQUARE, we use two families of attribution
methods to construct saliency maps: i) Gradient-
based methods and ii) Attention-based methods.

4.1.1 Gradient-based Methods
A common approach to obtaining an importance
score for the input tokens is to compute the gradi-
ents on the embedding layer against the model pre-
diction. The magnitude of the gradient corresponds
to the change of the prediction when updating the
embedding. Therefore, a large gradient has a large
effect on the prediction, indicating the importance
of the input.

Vanilla Gradient (Simonyan et al., 2014) uti-
lizes the plain gradients of the embedding layer of
the model as importance weights of the inputs.

Integrated Gradient (Sundararajan et al., 2017)
integrates the straight line path from the vector of
zeros to the input token embedding. The value of

this integral is the weight of this token to make
the prediction since it represents the amount of
information given with respect to the zero vector
(i.e., no information).

SmoothGrad (Smilkov et al., 2017) adds gaus-
sian noise to the input to create multiple versions
and then average their saliency scores. In this way,
this method can smooth the saliency scores and
alleviate noise from local variations in the partial
derivatives.

4.1.2 Attention Methods
Neural NLP models have broadly incorporated at-
tention mechanisms, which are frequently recog-
nized for enhancing transparency and increasing
performance (Vaswani et al., 2017). These meth-
ods compute a distribution over the input tokens
that can be considered to reflect what the model
believes to be important. Following (Jain et al.,
2020), we build a saliency map using the average
attention weights of the heads from the CLS token
to the other tokens of the input. However, Serrano
and Smith (2019) argue that attention weights are
inconsistent and may not always correlate with the
human notion of importance. Thus, they propose
an alternative, Scaled Attention, which we also
integrate in SQUARE, that multiplies the attention
weights by their corresponding gradients to make
it more stable.

4.2 Interpretable Graph-based Models

Knowledge graphs store knowledge in the form
of relations (edges) between entities (nodes). In
addition to the explicit facts they represent, they
enable explainable predictions by providing rea-
soning paths (Yasunaga et al., 2021). In SQUARE
v2, we deploy QA-GNN (Yasunaga et al., 2021), a
graph-based QA model, as a Skill (more details on
Appendix B) and ConceptNet (Speer et al., 2017)
as a graph Datastore. Since QA-GNN uses a KG
(i.e., ConceptNet) for QA reasoning, it is possible
to analyze its working graph to identify the most
important entities and relations for the answer pre-
diction. As shown in Fig. 3 and later discussed
in §6.2, we provide an interface that enables the
visualization of the graph-based reasoning process
executed by the model.

User Interface. In order to plot the graphs,
SQUARE provides users with a "Show graph" but-
ton after the predictions of the QA-GNN Skill at
the bottom of the page. Clicking on this button
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Figure 3: Visualization of the graph used by QA-GNN
Skill to answer the question. Question nodes in purple,
answer nodes in green.

displays a modal window with multiple options to
render the graph, as shown in Fig. 3. Controls in-
clude a switch to show or hide edge labels, a slider
to show the top k nodes, another slider to select the
spacing factor between nodes, and a group of radio
buttons to select the layout (Dagre4, Breath First,
and Grid). In addition, we offer two types of visu-
alizations: i) a graph where the nodes are sorted by
the relevance scores generated by the model and
ii) a graph with the nodes sorted by the sum of the
attention scores of their incoming edges.

4.3 Adversarial Attacks

Adversarial attacks make use of inputs that expose
vulnerabilities of machine learning models to un-
derstand their robustness and identify how to im-
prove them (Ebrahimi et al., 2018). To simplify the
exploration of adversarial attacks on a wide range
of Skills, we implement the following four methods
in SQUARE for span-extraction Skills and leave
the other Skills for future updates.

Figure 4: HotFlip Attack. Changing one word changes
the prediction.

4https://github.com/cytoscape/cytoscape.
js-dagre

HotFlip (Ebrahimi et al., 2018) uses a saliency
method (§4.1) to score input words and subse-
quently replaces the top words with semantically
similar words to alter the prediction of the model.
An example of the interface is shown in Fig. 4.
The words highlighted in green are replacements,
and when hovering over them, the original word is
shown in a tooltip.

Input Reduction (Feng et al., 2018) iteratively
removes unimportant words from the question
based on their saliency scores (§4.1), without
changing the model’s prediction. An example is
shown in Fig. 5 (Appendix C).

Sub-Span Jain et al. (2020) computes the
saliency scores of the input words to select a
contiguous span that maximizes the accumulative
saliency score and uses this span as an explainabil-
ity method. Instead, we leverage this method to
create an adversarial attack. We identify a sub-span
of the context that explains the output and use it
as the whole context. In this way, the model has
the key information, such as a phrase containing
the answer, but not the whole context. Therefore,
it is possible to identify a sub-span that lacks the
nuance to answer the question properly, but since
the answer occurs in the sub-span, the model may
retrieve it due to spurious correlations. Fig. 6 (Ap-
pendix C) and § 6.3 show an use case of this attack.

Top K. Similarly as in the previous case, Jain
et al. (2020) compute the saliency scores of the in-
put words to identify the top k words from the con-
text that explains the output answer. We leverage
this method to create an adversarial attack. While
the top k words are key to obtaining the answer,
they are usually not contiguous. Therefore, creat-
ing a new context by concatenating these words
yields a grammatically and semantically incorrect
text. If the model still identifies the correct answer
using this new context, it would be due to spurious
correlations. An example of this attack is shown in
Fig. 7 (Appendix C).

User Interface After the user queries any Skill,
the button "Attack Method" is shown under the
predictions, as shown in Fig. 2. After clicking on
it, a modal page is shown where users can conduct
adversarial attacks.

5 Datastores for Knowledge Graphs

To best re-use the existing Datastore while being
efficient and robust, we rely on an Elasticsearch
instance to store KGs. In particular, we represent
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nodes and edges as documents and include infor-
mation to recreate the graph structure, such as their
connectivity. We show the schema of these docu-
ments in Appendix A.

In addition, we implement two main functionali-
ties: Firstly, users can dynamically add and update
new KGs as long as the structure of the KG can
be converted to the schema shown in Appendix A.
This allows supporting any KG that is requested
by the community. For demonstration purposes,
we provide ConceptNet (Speer et al., 2017) as a
built-in KG. More information is available on the
Datastores documentation5. Secondly, we imple-
ment a subgraph extraction method. Given a list
of root nodes (e.g., the entities in a question), it
extracts all the nodes and edges in the vicinity of
k hops to the roots. Since ConceptNet is densely
connected, we limit the maximum number of hops
to 3. However, this is a parameter that can be ad-
justed for any KG. Lastly, after the extraction, we
prune the disconnected nodes.

6 Case Study

6.1 Saliency Maps

Our new saliency map interface allows users to
compare the explanation of the outputs of up to
three Skills. As shown in Fig. 1, thanks to this visu-
alization, we can easily observe that the first Skill,
NewsQA BERT Adapter, gives the correct answer
for the right reasons since it identifies "races" as a
keyword. Even though the second Skill, MiniLM
SQuAD 2, also returns the correct answer, the Skill
does not seem to understand the context properly.
In particular, the most important words for the pre-
dictions are not related to the answer. We argue
that this interface can provide insights into whether
the model understands the task and thus make the
Skills more trustworthy.

6.2 Interpretable Models

ConceptNet provides background knowledge that
can boost the commonsense abilities of NLP mod-
els. As shown in Fig. 3, the QA-GNN Skill makes
use of the KG to connect the entities crab with
sea and with saltwater, the answer. This explicit
path helps to identify why the model returns its an-
swers. However, it still requires some human effort
to interpret the graph. For example, ConceptNet

5https://square.ukp-lab.de/docs/api/
datastores/

does not include the triple (sea, is a, environment),
which could be seen as counter-intuitive.

On the other hand, other non-graph-based Skills
need post hoc explainability methods such as
saliency maps (§4.1) to explain their output. How-
ever, post hoc methods have raised concerns about
the possibility of not being faithful to the actual
computations performed by the model or giving
incomplete explanations as in saliency maps (Liu
et al., 2021). In particular, saliency maps identify
what parts of the input are relevant for the predic-
tion, but they do not explain how or why the model
obtains the output.

6.3 Adversarial Attacks

Using the Sub-span attack method shown in Fig. 6
(Appendix C), we can observe that the Skill gives
the correct answer even though it does not have
information about Super Bowl 50, which is needed.
A robust Skill should instead return "not enough
information." This example suggests that the Skill
is conducting a superficial question-context overlap
matching without understanding the nuances of the
question, a phenomenon previously identified by
Lim et al. (2020). Similarly, the input reduction at-
tack shown in Fig. 5 (Appendix C) shows the same
phenomenon. After removing most words from the
question, the resulting question is not semantically
complete, yet the Skill gives the correct answer.

7 Conclusion and Future Work

We present SQUARE v2, a web platform that uni-
fies three families of methods for analyzing QA
models: saliency maps, adversarial attacks, and
interpretable models. Firstly, we offer an interac-
tive interface that allows users to compare multiple
saliency map methods for all the Skills deployed
in SQUARE. Secondly, we provide an interface to
conduct adversarial attacks. This interface allows
the community to study the robustness of QA mod-
els. Lastly, we deploy an interpretable graph-based
model and provide an interface to visualize the
reasoning paths that the model may conduct. To de-
ploy this Skill, we extend the Datastores module to
support both text documents and KGs. These con-
tributions give SQUARE a set of tools to compare,
analyze, and explain the behavior of QA models.
Since SQUARE allows the deployment of almost
any Transformer-based model effortlessly, our new
explainability interface empowers the community
with tools for trustworthy QA research. SQUARE
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is actively under development. Future updates will
include new KGs such as WikiData (Vrandečić and
Krötzsch, 2014), automated Skill selection (Geigle
et al., 2021), and Skill collaboration (Puerto et al.,
2021).

Limitations

Although saliency maps attempt to explain the out-
put of the models, they should be analyzed with
skepticism. As discussed in §4.1.2, attention-based
saliency maps may not correlate with the human
interpretation of importance, and in general, they
do not explain how and why the model creates the
outputs. Instead, saliency maps only aim to identify
regions of the input that upon removal, changes the
output.

Currently, we only deploy one graph-based
model (QA-GNN) and one knowledge graph (Con-
ceptNet). However, our Datastores §5 and graph
visualization interface §4.2 are flexible enough to
accommodate any other model, and thus, we invite
the community to create pull requests and deploy
their graph-based models on SQUARE.

Ethics and Broader Impact Statement

Intended Use. The intended use of SQUARE is
to facilitate the comparison of QA models through
multiple angles such as performance, explainabil-
ity, interpretability, and robustness. Our platform
allows NLP practitioners to share their models with
the community removing technical barriers such
as configuration and infrastructure so that any per-
son can reuse these models. This has a straight-
forward benefit for the research community (i.e.,
reproducible research and analysis of prior works)
but also to the general public because SQUARE
allows them to run state-of-the-art models without
requiring any special hardware and hiding complex
settings such as virtual environments and package
management.

Potential Misuse. Our platform makes use of
models uploaded by the community. However, this
current version does not incorporate any mecha-
nism to ensure that these models are fair and with-
out bias. We hope that the new tools we provide in
this work can help the community understand the
outputs of QA models and identify potential biases
or unfair behaviors. Thus, we currently delegate
the fairness checks to the authors of the models.
We are not held responsible for errors, false or of-

fensive content generated by the models. Users
should use them at their discretion.

Environmental Impact. Since SQUARE em-
powers the community to run publicly available
Skills on the cloud, it has the potential to reduce
CO2 emissions from retraining previous models
to make the comparisons needed when developing
new models.
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A Knowledge Graph Document Schema

The nodes of a knowledge graph are stored in the
Datastore as a json document using the following
schema:

{
"node_id": {

"_id": "keyword",
"name": "keyword",
"description": "text",
"type": "keyword"

}
}

The edges of a knowledge graph are stored in the
Datastore as a json document using the following
schema:

{
"edge_id": {

"_id": "keyword",
"name": "keyword",
"description": "text",
"type": "keyword",
"in_id": "keyword",
"out_id": "keyword",
"weight": "double"

}
}

B QA-GNN Implementation

We implement the QA-GNN inference pipeline on
SQUARE based on the official implementation of
QA-GNN model.6 We disregard the training code
since training QA models is not in the scope of
SQUARE and connect the model with the Datas-
tores service holding the KG. This makes it more
flexible for future updates of ConceptNet. Lastly,
the retrieved nodes with corresponding attention
weights and relevance scores are accessible along
with the answer prediction. With this information,
we plot the graph using the JavaScript library Cy-
toscape.js (Franz et al., 2016).

6https://github.com/michiyasunaga/qagnn
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C Adversarial Attack Figures

Figure 5: Input Reduction. After removing tokens from the question, the new question is not specific enough to be
answerable. Yet, the model still gives the same answer evidencing a spurious correlation.

Figure 6: Sub-Span Attack. Removing part of the context leaves a new context without the nuances needed to
properly respond to the question (i.e., at Super Bowl 50).
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Figure 7: Top K Attack. Using as context the highlighted words, the Skill still gives the same answer even though
the context is semantically and grammatically incomplete and does not include Super Bowl 50.
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Abstract

Taxonomies are widely used in a various num-
ber of downstream NLP tasks and, therefore,
should be kept up-to-date. In this paper, we
present TaxFree, an open source system for tax-
onomy visualisation and automatic Taxonomy
Enrichment without pre-defined candidates on
the example of WordNet-3.0. As opposed to
the traditional task formulation (where the list
of new words is provided beforehand), we pro-
vide an approach for automatic extension of a
taxonomy using a large pre-trained language
model. As an advantage to the existing visu-
alisation tools of WordNet, TaxFree also inte-
grates graphic representations of synsets from
ImageNet. Such visualisation tool can be used
for both updating taxonomies and inspecting
them for the required modifications.

1 Introduction

In this paper, we focus on visualisation of taxo-
nomic structures which are quite relevant for many
Natural Language Processing (NLP) tasks, e.g. lex-
ical entailment (Herrera et al., 2005) and entity link-
ing (Moro and Navigli, 2015; Sevgili et al., 2022).
Taxonomies are tree-like structures where words
are considered as nodes (synsets) and the edges are
the relations between them. Such kind of relation-
ship is called a hypo-hypernym relationship. For
instance, let us consider two words: “apple” and
“fruit”. The former word is hyponym (“child”) to
the latter and the latter is hypernym (“parent”) to
the former.

However, taxonomies are hard to maintain, while
the manual taxonomy annotation process is very
expensive and time-consuming. Moreover, it re-
quires expertise in the field. The process of selec-
tion new words is even more challenging for the
large existing taxonomies like WordNet (Miller,
1995), as most existing words already present there.
We expect that the large pre-trained language mod-
els such as BERT (Devlin et al., 2019) and GPT

(Brown et al., 2020) could be useful in the task,
as they are pre-trained on large-scale corpora. It
has been proven that language models possess syn-
tactic, semantic and word knowledge which could
be applied for further language inference (Radford
et al., 2019).

In this demo we demonstrate how the existing
taxonomy can be enriched automatically without
predefined candidates on WordNet-3.0. Figure 1
demonstrates the candidate-free task setting where
the node “milk.n.01” (“n” stands for “noun”, “01”
denotes the ordinal number of word sense, the
standard notation for the synset in WordNet) is
extended with multiple synsets of different types
of milk: “’low-fat milk”, “chocolate milk”, “dry
milk”, etc.
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product.n.01
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Figure 1: Candidate-free Taxonomy Enrichment task
solved by TaxFree. The node “milk.n.01” is enriched
with hyponyms (different types of milk).

TaxFree (see example of the visualisation page
in Figure 2) is an open source, web-based visual-
isation and enrichment tool for taxonomies. We
demonstrate the capacities of TaxFree on WordNet-
3.0 with support for visual representation of Word-
Net synsets using ImageNet (Deng et al., 2009).
The tool demonstrates an approach of automatic
taxonomy graph extension by predicting new nodes
(synsets) using BERT (Devlin et al., 2019) as a pre-
trained language model. It allows the user to search
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in WordNet by words (lemma) or nodes (synset),
to visualise the context of the query word (with
hop = 2), to generate new leaf nodes or nodes
between the two existing ones. To generate new
nodes we apply the Cross-modal Contextualized
Hidden State Projection Method (Nikishina et al.,
2022b). The approach includes several stages: (i)
learning embeddings of the WordNet taxonomy
and new synsets at the required places that we want
to predict (ii) projecting all graph embeddings into
the hidden states space of BERT, and (iii) decoding
them back to text candidates.

Thus, the contribution of this demonstration sys-
tem is three-fold:

• Firstly, it allows users to search and visual-
ize the query node within its context (on the
example of the English WordNet-3.0);

• Secondly, it allows users to automatically ex-
tend the existing taxonomy without prede-
fined (or manually defined) nodes using Cross-
modal Contextualized Hidden State Projection
Method (Nikishina et al., 2022b);

• Thirdly, it integrates ImageNet representa-
tions to the WordNet synset description card.

The link to the demo is as follows:
https://taxgen.ltdemos.informatik.
uni-hamburg.de.

The code link: https://github.com/
skoltech-nlp/taxgen-demo. Link to the
screencast video demonstrating the system:
https://youtu.be/GF2AVlnWGag.

2 Related Work

In this section we review the existing approaches
for Taxonomy Enrichment as well as the existing
tools for taxonomy visualization.

2.1 Taxonomy Enrichment
To the best of our knowledge, there are no existing
approaches for Candidate-free Taxonomy Enrich-
ment. All methods require the list of pre-defined
words to be added to the taxonomy. There exist sev-
eral recent papers on Taxonomy Enrichment that
make use of word vector representations and/or
large pre-trained language models. For instance,
(Nikishina et al., 2022a) present an approach ap-
plying numerous of text and graph embeddings as
well as their combinations; (Takeoka et al., 2021)
solves the same problem, but for the low-resource

scenario using BERT-based classifier and Hearst
Patterns (Roller et al., 2018); (Cho et al., 2020) re-
gard the taxonomy enrichment task as a sequence-
to-sequence problem and train an LSTM model on
the WordNet data. A detailed overview of other
taxonomy-related tasks is presented in (Jurgens and
Pilehvar, 2016; Nikishina et al., 2022a).

2.2 Taxonomy Visualisation

Plenty of tools are available for generic visualisa-
tion of networks like Gephi (Bastian et al., 2009),
GraphX (Gonzalez et al., 2014), D31, GraphViz
(Ellson et al., 2001). At the same time, there might
be found some tools specific for the visualisation of
wordnets, which are not available from the original
interface of WordNet. For example, (Collins, 2006)
is one of the earliest papers that present a design
paradigm. Visualisation from (Kamps and Marx,
2002) demonstrates not only the relations between
synsets, but also denotes lemmas as graph nodes.
WordNet Atlas (Abrate and Bacciu, 2012) is de-
signed for “users like computer scientists that are
not familiar with computational linguistics and/or
WordNet.

Another paper (Giabelli et al., 2020) presents
NEO: a tool for Taxonomy Enrichment that allows
to enhance the standard occupation and skill taxon-
omy. The authors collect the terms from the Online
Job Vacancies corpus and add them to the taxon-
omy automatically. Another visualisation of lexical
graphs based on WordNet2 is very similar to the
one we present in our paper, however, it is lemma-
based and does not allow dynamic extension of the
graph using taxonomy enrichment technology.

3 Candidate-free Taxonomy Enrichment

This section presents Candidate-free Taxonomy En-
richment — the problem of new word prediction in
order to enhance the existing taxonomy. We briefly
describe the Cross-modal Contextualized Hidden
State Projection Method (CHSP) used in the demo
and the results obtained on the dataset based on
WordNet-3.0.

3.1 Task Formulation

Formally, the task of candidate-free taxonomy en-
richment may be formulated as follows: given tax-
onomy T and the position of the synset si ∈ S

1https://github.com/d3/d3
2https://github.com/aliiae/lexical-graph
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Figure 2: Visualisation example for the node “dog.n.01”

Figure 3: Default search page with the root “entity.n.01”

in this taxonomy, the task aims at predicting hy-
ponyms Hs ⊆ {hs1, ..., hsn} such that Hs /∈ E,
where E are edges in the taxonomy. Such formu-
lation allows us to avoid the need of pre-supplied
candidates making the task more challenging yet
realistic. It might be expected that the information
about new words could be already present in the
large pre-trained networks.

3.2 Method Description

The Contextualized Hidden State Projection
Method (CHSP) is a graph-based BERT architec-
ture introduced by Nikishina et al. (2022b) that
makes use of both node and text embeddings. Fig-
ure 4 demonstrates the overall architecture of the
approach that we use in our demonstration system.

First, we train a graph representation model to
compute GraphBERT (Zhang et al., 2020) embed-
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Table 1: CHSP prediction scores for single-token hyponyms generation for different source graph embeddings,
replacement strategies and substitution layer (x100).

Method Context Replaced Layer MRR@5 MRR@10 MRR@20 P@1 P@5 P@10

Pattern comparison (Hanna and Mareček, 2021)
“[MASK] is a {parent}” Yes No - 2.461 2.704 3.091 1.546 1.289 1.057
“My favourite {parent} is a [MASK]” Yes No - 0.554 0.863 1.001 0.000 0.464 0.490
“A {parent} such as a [MASK]” Yes No - 0.168 0.193 0.235 0.000 0.155 0.103

BERT (parent embedding on inference) No No - 1.003 1.083 1.203 0.940 0.251 0.188
fastText (nearest neighbours) No No - 2.400 3.500 4.000 0.130 1.839 2.100

CHSP (Graph-BERT) Yes

Yes 1st 4.502 4.995 5.371 3.093 1.598 1.340
Mix 1st 1.448 1.813 2.033 0.773 0.876 0.979
Yes 6th 5.503 6.216 6.453 3.093 2.371 2.010
Mix 6th 2.981 3.500 3.836 1.546 1.649 1.495
Yes 12th 5.215 5.674 6.027 3.093 2.113 1.598
Mix 12th 7.229 8.037 8.624 3.608 3.247 2.474

BERT

Graph-BERT

food.n.01

foodstuff.n.01

X

substance.n.07

liquid.n.01

fluid.n.01

milk.n.01

chocolate_milk.n.01

diary_prodcut.n.01

alcohol.n.02

frozen_food.n.01
ethyl_alcohol.n.01

Graph-BERT
embeddings

Input subraph

BERT
embeddings

Target node
candidates

Space transformation

Figure 4: Cross-modal Contextualized Hidden State Projection Method (CHSP): graph-based BERT architecture
that makes use of both node and text embeddings. Graph-BERT illustration source: (Zhang et al., 2020), BERT
illustration source (Devlin et al., 2019). The computed GraphBERT embeddings from a taxonomy are projected
from graph space to BERT space. Then BERT was used to predict candidates from the projected embeddings.

dings. Then we learn a feed-forward neural net-
work as a projection layer to transform target graph
embeddings to the BERT vector space. We use the
SemCor dataset (Langone et al., 2004) that maps
WordNet entities with the corresponding words in
the context and learn the projection from Graph-
BERT space to BERT. The next step is to apply
the projected embeddings as input to the masked
language modelling part of BERT model. We have
evaluated three different context constructions sug-
gested in (Hanna and Mareček, 2021): 1. “[MASK]
is a/an {parent}”; 2. “My favourite {parent} is a
[MASK]”; 3. “{parent} such as a [MASK]” . The
scores for the amount of true hyponyms in a list of
predicted candidates are presented in the first three
lines of Table 1.

Then we incorporate the result graph embed-

ding into the language model prediction using
mixed (or contextualised) prediction: embedding
of “[MASK]” token is averaged with projected
graph embedding. The replacement can happen
at three different stages: after first layer of BERT
encoder, after sixth (middle) or after twelfth (last).
Thus, the prediction head generates new lemmas
that are treated as candidate hyponyms for the tar-
get nodes.

3.3 Experiments and Results

In this research, we perform experiments on Word-
Net 3.0 (Miller, 134 1995) nouns (82,115 synsets,
117,798 lemmas). For each “parental” hypernym
all its hyponyms (leaves) were replaced by a single
“masked” node. This place in the taxonomy was
then considered for extension and the candidates
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predicted for the masked node could be compared
against true hyponyms. All in all, we masked 4,376
leaves out of 65,422 noun leaves to 1000 “[MASK]”
tokens. We limit our experiments to leaves only,
replacing all children with one mask in order to be
able to compare with a wide range of possible an-
swers, as one synset might have several hyponyms.

We utilize Precision@k (P@k), Recall (R@k),
and Mean Reciprocal Rank (MRR) for evaluation.
The results are presented in Table 1. We observe
that the patterns from (Hanna and Mareček, 2021)
show results are mostly far from the top ones. This
happened because the context encapsulated in the
patterns in general contains little information. We
also see that our method outperforms the BERT
(parent embedding on inference) baseline (which is
a simple prediction of encoded parent synset) and
a simple approach on fastText nearest neighbours
candidates.

4 System Design

TaxFree is designed to help lexicographers in their
work on updating taxonomies and inspecting them
for the required modifications. In the current sec-
tion we discuss each part of the tool and its usage
in detail.

4.1 Software Architecture

The system consists of a web-based user interface
through which users can explore the WordNet-3.0
taxonomy. The front-end is implemented with
JavaScript library vis.js3 used to display networks
consisting of nodes and edges. It supports the hi-
erarchical layout and allows us to integrate with
the network. Back-end is written in Python us-
ing Flask4 framework. It has an API with several
“GET” and “POST” queries that maintain function-
ing of the system: (i) searching for synsets, (ii)
getting image by node id, (iii) getting the current
node graph context, (iv) generating new nodes.

4.2 Main Page

As a start page 3 , you see the highest level of the
taxonomy, a tree with the root node “entity.n.01”
which is highlighted with green color. Normally,
the target node is displayed within its two-hop
neighbourhood. To the right of the graph visu-
alization there is a card with the description of the

3https://visjs.github.io/vis-network/docs/
network/

4https://flask.palletsprojects.com/en/2.2.x/

current node: its image from ImagNet (if any), def-
inition and the list of lemmas. Above the graph
visualization box there are two buttons: “Reset
graph”, “Back to root” and a search box with
a “Move to” button. “Reset graph” means that
all generated nodes will be deleted from memory
and only the initial WordNet-3.0 graph will be dis-
played. “Back to root” will return the user to the
display of the root of the taxonomy, leaving all
generated nodes untouched. Search bar allows to
easily navigate through the taxonomy and display
subgraphs for the queried node. More details for
each box are provided in the corresponding subsec-
tions.

4.3 Synset Search
The search bar accepts both synset names and lem-
mas and helps to disambiguate unclear queries to
WordNet-3.0. The user can enter a word or a phrase
separated with spaces or underscores. Moreover,
noun synsets are also accepted, e.g. “cat.n.01” or
“standard_poodle.n.01”. If the synset name is not
recognized there will be no error displayed, but the
search bar will be empty again. For the entered
lemma(s) there is a special pipeline that the query
word goes through:

1. If there is only one synset corresponding to
the query lemma, then this synsets will be
displayed.

2. If there are more than one synset, therefore,
the user is forwarded to the subgraph of the
most common synset, displaying other disam-
biguation options under the synset description
card (see Figure 6 as an example). Each dis-
ambiguated synset is presented with its synset
name and definition.

After the query synset has been identified (either
manually or automatically), the tool opens the re-
quired page with the query synset as the target node
in context. Subgraph display and synset description
card are described in the following subsections.

4.4 Subgraph Display
Central (query) synset is displayed with the closest
“relatives” two hops away from the query (it might
be less if there are no neighbours at the certain step
away of the target node) in the central box of the
page. It has green borders that highlight that the
current image is the target one. However, if the
image from the ImageNet is not presented, then the
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Figure 5: Generation of a new node for the leaf node “maltese_dog.n.01”

whole node is colored in green. Other nodes are
not highlighted and colored in blue (in case there
is no image to display).

Figure 5 shows the result page for the synset
“maltese_dog.n.01” as an example to demonstrate
synsets with images. Here we can see that all nodes
have their representations from WordNet-3.0. The
node “maltese_dog.n.01” is a leaf node, therefore,
it is placed in the bottom of the graph and has only
co-hyponyms at the same level and one hypernym
“toy_dog.n.01” and one hypo-hypernym “dog.n.01”.
The arrows always have the same direction: from
abstract words to more concrete. By clicking on
a node twice it will open you a subgraph for this
node, as it would consider it as a next query word.
Therefore, you might be able to navigate through
the graph even without queries. The graph might be
downloaded when pressing the “Download graph”
button.

In the bottom of the visualization box there are
buttons to zoom in/out and centering. You can
also move the graph using “left”, “right”, “up” and
“down” buttons on the screen or simply use mouse.

4.5 Synset Description Card

To the right of the subgraph display, there is a card
with the summary of the query node. It consists
of a definition, image from the ImageNet (if any),
synset name, list of lemmas. If any information
about the node is missing, then the row is skipped.

Image for the node is selected randomly, normally
the first one from the ImageNet dataset. Accord-
ing to the statistics, only 19,167 synsets have their
images.

4.6 New Synsets Prediction

Figure 5 demonstrates the process of adding new
nodes to the taxonomy using the algorithm de-
scribed in Section 3.2. First, you can generate a
new node starting from a leaf. By clicking twice on
it, we can generate children for the “maltese_dog”
synset, which does not possess hyponyms. Other-
wise, they would be displayed, as “maltese_dog” is
the central node. Therefore, by clicking twice on
the target (query) node we can predict a candidate
child for it. Figure 5 shows that there were gener-
ated new nods - the names of dog breeds. Another
option for new synset generation is to predict a new
node which is placed between two nodes (in this
case it means that on of them is hypernym to the
other). To generate this node, the user should click
twice on the edge that connects them. This option
has been added in case there are unaccounted words
that should be placed in the middle of the graph.
Figure 5 also depicts the “dog.n.01” and “toy_dog”
nodes. By clicking twice on the edge between them,
a new node is generated which is supposed to be
more general then its hyponym “maltese_dog” and
narrower than the word “toy_dog”. However, we
have not evaluated the performance of this specific
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Figure 6: Disambiguation blog for the “dog” lemma

type of node insertion, so we leave the application
of our method for this subtask for further research.

5 Conlusion

The growing popularity of implementing tax-
onomies in different research and industry tasks
has created the need for a platform for visualiza-
tion of tree-like taxonomic subgraphs (query node
in context). TaxFree provides such a platform for
the visualisation and analysis of hypo-hypernymy
subgraphs. The tool allows users to explore word-
net synsets in context and predict new synsets for
the leaf nodes. Our work aims to bring taxonomies

to a broader audience, by making WordNet inter-
face user-friendly in comparison to the standard
WordNet5 visualization.

Limitations

Despite multiple advantages of the presented sys-
tem it still has several limitations we list below:

1. Firstly, currently our system cannot predict
new hyponyms for synsets that are not leaves.
Yet, methodologically it’s possible.

2. Secondly, we demonstrate only the first image
of the synset, while there might be several
images for one concept.

Ethics Statement

In general, we do not see any ethical issues or
negative consequences within the current work. At
the same time, as we apply the pre-trained language
model we may inherit social bias learned from the
Web corpora.
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Abstract

We introduce fastcoref, a python package for
fast, accurate, and easy-to-use English corefer-
ence resolution. The package is pip-installable,
and allows two modes: an accurate mode based
on the LINGMESS architecture, providing state-
of-the-art coreference accuracy, and a substan-
tially faster model, F-COREF, which is the fo-
cus of this work. F-COREF allows to process
2.8K OntoNotes documents in 25 seconds on
a V100 GPU (compared to 6 minutes for the
LINGMESS model, and to 12 minutes of the
popular AllenNLP coreference model) with
only a modest drop in accuracy. The fast speed
is achieved through a combination of distilla-
tion of a compact model from the LingMess
model, and an efficient batching implementa-
tion using a technique we call leftover batch-
ing.1

1 Introduction

Coreference Resolution consists of identifying tex-
tual mentions that refer to the same entity in a given
text (Karttunen, 1969). This fundamental NLP task
can benefit various applications such as Informa-
tion Extraction (Luan et al., 2018; Li et al., 2020;
Jain et al., 2020), Question Answering (Dasigi
et al., 2019; Chen and Durrett, 2021), Machine
Translation (Stojanovski and Fraser, 2018; Voita
et al., 2018), and Summarization (Christensen et al.,
2013; Falke et al., 2017; Pasunuru et al., 2021).
However, compared to other core tasks such as
POS Tagging, named-entity recognition or syntac-
tic parsing, existing packages and state-of-the-art
models for coreference resolution are challenging
to apply: there are few easy-to-use packages imple-
menting state-of-the-art models, and the available
packages consume a lot of GPU memory, and take
very long to process each document. For example,
the coreference model in the popular AllenNLP

1https://github.com/shon-otmazgin/
fastcoref

package (Gardner et al., 2017), implementing the
model of Joshi et al. (2020), requires 27GB of GPU
memory and takes 12 minutes to process the 2.8K
documents of the OntoNotes corpus, on a V100
GPU.

In this work, we introduce F-COREF, a new open
source Python package for simply running an effi-
cient coreference model using a few lines of code.
F-COREF predicts coreference clusters 29 times
faster than the AllenNLP model (processing the
OntoNotes corpus in 25 seconds) and requires only
15% of its GPU memory use, with only a small
drop in performance (78.5 vs 79.6 average F1). The
package also includes LINGMESS (Otmazgin et al.,
2022), a state-of-the-art coreference model, which
is almost twice as fast as the AllenNLP model,
while being more accurate (81.4 average F1), un-
der the same API.

To achieve F-COREF’s speed, we use two addi-
tive techniques: model distillation of the strong-but-
slow LINGMESS model using large unlabeled data,
and an effective batching technique that reduces
the number of padded tokens in a batch.

2 The F-COREF API

The fastcoref Python package is pip installable
(pip install fastcoref) and provides an
easy and fast API for coreference information with
only few lines of code without any prepossessing
steps.

The F-COREF constructor initializes our pre-
trained model on a single device:
from fastcoref import FCoref

model = FCoref(device=’cuda:0’)

The main functionally of the package is the predict
function, which accepts a list of texts.
preds = model.predict(

texts=[’We are so happy to see you
using our coref package.
This package is very fast!’]

)
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The return value of the predict function is a list of
CorefResult objects, from which one can extract
the coreference clusters (either as strings or as char-
acter indices over the original texts), as well as the
logits for each corefering entity pair:

preds[0].get_clusters()
> [[(0, 2), (33, 36)],

[(33, 50), (52, 64)]
]

preds[0].get_clusters(string=True)
> [[’We’, ’our’],

[’our coref package’, ’This package’]
]

preds[0].get_logit(
span_i=(33, 50), span_j=(52, 64)

)

> 18.852894

Processing can be applied to a collection of texts
of any length in a batched and parallel fashion:

texts = [’text 1’, ’text 2’,.., ’text n’]

# control the batch size
# with max_tokens_in_batch parameter

preds = model.predict(
texts=texts, max_tokens_in_batch=100

)

The max_tokens_in_batch parameter can
be used to control the speed vs. memory consump-
tion tradeoff, and can be tuned to maximize the
utilization of the associated hardware.

To control speed vs. accuracy tradeoff, use the
larger but more accurate LINGMESS model, simply
import LingMessCoref instead of FCoref:

from fastcoref import LingMessCoref

model = LingMessCoref(device=’cuda:0’)

On top of the provided models, the package also
provides the ability to train and distill coreference
models on your own data, opening the possibility
for fast and accurate coreference models for addi-
tional languages and domains.

To summarize, the package provides a simple
API that makes predicting coreference entities
straightforward and easy-to-use. The package sup-
ports any text length as input, and performs effi-
cient batching. The package’s F-COREF model is
29 times faster and 4 times smaller than the popular
coreference model in the AllenNLP package, while
the provided LINGMESS mode is twice as fast the
AllenNLP implementation, and more accurate.

3 Background: Neural Coreference

Lee et al. (2017) present the first end-to-end model
that jointly learns mention detection and corefer-
ence decision. Successive follow-up works kept
improving performance through the incorporation
of widely popular pretrained architectures (Lee
et al., 2018; Joshi et al., 2019; Kantor and Glober-
son, 2019; Joshi et al., 2020). However, as the di-
mensionality of contextualized encoders increases,
keeping in memory all possible span representa-
tions becomes highly costly and computationally
untractable for long documents.

3.1 Faster Neural Coreference
Several methods have been proposed to address this
memory constraint at the cost of the computation
time and a slight performance deterioration (Xia
et al., 2020; Toshniwal et al., 2020; Thirukovalluru
et al., 2021). The s2e model of Kirstain et al. (2021)
managed to improve computation time with a slight
increase in accuracy.

s2e Our F-COREF is based on the architecture
of the s2e model by Kirstain et al. (2021). Like
other neural coreference models, s2e scores each
pair of spans in the text to be co-referring to each
other. However, in order to achieve lower memory
footprint s2e moves to representing each span as a
function of its start and end tokens. Consequently,
the model avoids holding vector representation for
each of the O(n2) spans in memory, and instead
stores only O(n) vectors. This reduced memory
footprint allows it to handle longer sequences.

The s2e architecture includes three components:
(1) Longformer (Beltagy et al., 2020), a contextual-
ized encoder; (2) a parameterized mention scoring
function fm; and (3) a parameterized pairwise an-
tecedent scoring function fa. To score any pair
of spans to be co-referring, the model starts by
encoding the text using Longformer into vectors
x1, ..., xn. Using these vectors, for each possi-
ble span q = (xk, xℓ) the mention scoring func-
tion fm(q), scores how likely q (“query”) being a
mention. Then for a pair of spans c = (xi, xj),
q = (xk, xℓ) where c (“candidate”) appears be-
fore q, the pairwise antecedent scoring function,
fa(c, q), scores how likely is c being an antecedent
of q. In practice, to avoid complexity of O(n4),
the antecedent function scores only the λT spans
with highest mention scores (where T is the num-
ber of tokens). Finally, the final pairwise score for
a coreference link between c and q is composed by
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the score of q being a mention, c being a mention,
and how likely is c being an antecedent of q:

F (c, q) =

{
fm(c) + fm(q) + fa(c, q) c ̸= ε

0 c = ε

where ε is the null antecedent.
The computation of fm and fq for the entire

sequence can be efficiently batched.

Word-level coreference Dobrovolskii (2021)
proposed moving from scoring pairs of spans to
scoring pairs of words, establishing coreference
relations between the words, and then expanding
each of the relevant words into their mention bound-
aries. This reduces the model complexity from
O(n4) to O(n2).

3.2 What remains slow?

While the s2e and the word-level models are con-
sidered lightweight and efficient, and substantally
improve in speed over Joshi et al. (2019), their com-
putation time is still dominated by their expensive
contextualized encoding stage. They also use rela-
tively large hidden layers in their scoring functions
(the s2e model has 26 layers and 494M parame-
ters). Thus, one avenue for improving coreference
speed is by reducing the model size. Additionally,
while batching computations can improve paral-
lelism and thus also throughput, the implementa-
tion of batching long documents of varying lengths
is often sub-optimal, and results in many padded
tokens which translate to wasted computation.

3.3 Accurate Neural Coreference

Our recent LINGMESS model (Otmazgin et al.,
2022) improves coreference accuracy by observ-
ing that different types of entities require differ-
ent strategies to score, and replacing the single
mention-pair scorer with a set of specialized scor-
ers. During inference, each mention pair is deter-
ministically routed to one of the scorers, based on
the the type of mentions being scored. This results
in state-of-the-art coreference accuracy, while be-
ing somewhat less efficient to run and to batch than
the s2e model.

4 Method

We employ two complementary directions in order
to obtain a fast and efficient coreference model.
First, we substantially reduce the size of the s2e

model using knowledge distillation (§4.1) from the
LINGMESS model. Second, our implementation
aims to maximize parallelism via batching while
limiting the number of unnecessary computations
such as padded tokens (§4.2).

4.1 Knowledge Distillation

Knowledge Distillation is the process of learning a
small student model from a large teacher model.

Teacher model We use the state-of-the-art
LINGMESS model of Otmazgin et al. (2022) as
the teacher model.

Student model we build our student model as
a variant of the s2e model with fewer layers and
parameters. The “expensive” Longformer (Belt-
agy et al., 2020) encoder was replaced with Dis-
tilRoBERTa (Sanh et al., 2019), which is on av-
erage ×8 faster than Longformer. The number of
parameters of the mention and the antecedent pair-
wise scorers was reduced by a factor of 6. This
reduces the total number of parameters from 494M
to 91M. In addition, the number of sequential lay-
ers in the network reduced from 26 layers to only 8
layers (6 encoder layers, 1 mention scorer and 1 an-
tecedent scorer). As a result, our student combines
the strengths of the s2e model by not constructing
span representation with a lightweight encoder and
substantially less model parameters.

Hard distillation Traditional approaches for
knowledge distillation trains the student on the log-
its of the teacher model’s predictions on unlabeled
data (Gou et al., 2021). However, as we will fur-
ther elaborate in Section §5.1, applying such an
approach to a coreference model with all its com-
ponents (i.e. encoder, mention scorer, pruning, an-
tecedent scorer) achieves poor performance. To
remedy this issue, we employ hard target knowl-
edge distillation, where the teacher model acts as
an annotator for the unlabeled data and the student
model learns from these “silver” annotations.

4.2 Maximizing Parallelism and Reducing
Unnecessary Computations

Mention pruning As mentioned in Section 3,
the coreference model computes antecedent scores
only for the λT spans with highest mention scores,
where T is the number of tokens. As the number
of coreferring spans cannot be known in advance,
the common approach is to use a soft pruning coef-
ficient (λ = 0.4) to guarantee high mention recall,
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Figure 1: Illustration of document batching using vanilla batching (left) and our leftovers approach (right). In our
leftover batching, we create two separate batches, one for the full segments without padding (orange) and one for
the leftover segments (green), thus substantially reducing the number of padded tokens (red) compared to the vanilla
approach.

while expecting the antecedent scorer to assign
a negative score to pairs involving a wrong men-
tion span (Lee et al., 2017; Kirstain et al., 2021).
In F-COREF, we adopt a more aggressive prun-
ing (λ = 0.25), which decreases the number of
pairwise comparisons by a factor of 2.56 without
harming performance.

Dynamic batching We adopt a dynamic batch-
ing approach which, given a large number of docu-
ments, batches documents until we reach a certain
maximum number of tokens. Compared with the
naive approach of batching a fixed number of doc-
uments together, dynamic batching enables to fully
exploit the available memory in our hardware (this
approach was also used by Kirstain et al. (2021)
when training the s2e model, but not for inference).

Leftovers batching Figure 1 illustrates our doc-
ument batching strategy, in comparison with the
common approach.

As mentioned in Section 3, the first step in our
coreference model consists of encoding the docu-
ment using a transformer-based encoder. The com-
mon approach for encoding long documents with
transformer encoders is to split the document into
non-overlapping segments of max_length, where
each segment is encoded separately (Joshi et al.,
2019; Xu and Choi, 2020). With that approach,
for each long document, we obtain two2 types
of segment lengths: (1) one or more segments of

2A document with fewer tokens than max_length has only
one segment.

max_length i.e. FULL tokens segment, (2) exact
one segment ≤ max_length, i.e the LEFTOVERS

tokens segment.
Then to batch multiple documents, a naive but

popular approach consists of padding each docu-
ment’s LEFTOVERS segment to max_length. This
results in a high number of padded tokens, e.g.,
34.7% of all tokens are padded when batching 2802
OntoNotes (Pradhan et al., 2012) training set doc-
uments with max_length = 512. Padded tokens
result in unnecessary computations in each layer
of the network, as well as unnecessary memory
allocation.

To avoid such unnecessary computations, we
split each batch into two batches such that the first
batch is for the FULL segments and the second
batch is for the LEFTOVERS tokens segment of
each document. Then we pad the second batch
to the max leftovers length rather than padding
the leftovers segments to max_length. Finally we
run the two batches separately and combine them
afterwards. With this technique, the padded tokens
in the OntoNotes training set reduced dramatically
to 0.6%. It should be noted that the aforementioned
batching technique is not specific for coreference
resolution and can be applied for other tasks that
require processing long documents.

5 Experiments and Results

Experiments setup In our experiments, we use
the Multi-news (Fabbri et al., 2019) dataset to train
our teacher-student architecture. The Multi-news
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MUC B3 CEAFϕ4

P R F1 P R F1 P R F1 Avg. F1

Joshi et al. (2020) 85.8 84.8 85.3 78.3 77.9 78.1 76.4 74.2 75.3 79.6
Kirstain et al. (2021) 86.5 85.1 85.8 80.3 77.9 79.1 76.8 75.4 76.1 80.3
Dobrovolskii (2021) 84.9 87.9 86.3 77.4 82.6 79.9 76.1 77.1 76.6 81.0
Otmazgin et al. (2022) (Teacher) 88.1 85.1 86.6 82.7 78.3 80.5 78.5 76.0 77.3 81.4

F-COREF OntoNotes only 78.5 84.3 81.3 68.2 74.8 71.4 64.1 72.9 68.2 73.7
F-COREF Multi-News 84.8 82.8 83.4 76.8 73.7 75.2 73.8 72.7 73.2 77.4

+ FT OntoNotes 85.0 83.9 84.4 77.6 75.5 76.6 74.7 74.3 74.5 78.5

Table 1: Performance on the test set of the English OntoNotes 5.0 dataset. The averaged F1 of MUC, B3, CEAFϕ is
the main evaluation metric.

Masc Fem Bias Overall

Otmazgin et al. (2022) (Teacher) 91.3 87.8 0.96 89.6
F-COREF 87.8 83.5 0.95 85.7

Table 2: Performance on the test set of the GAP corefer-
ence dataset. The reported metrics are F1 scores.

Runtime Memory

Joshi et al. (2020)1 12:06 27.4
Otmazgin et al. (2022) (Teacher) 06:43 4.6

+ Batching2 06:00 6.6
Kirstain et al. (2021) 04:37 4.4
Dobrovolskii (2021) 03:49 3.5
F-COREF 00:45 3.3

+ Batching2 00:35 4.5
+ Leftovers batching2 00:25 4.0

1 AllenNLP package implementation.
2 10K tokens in a single batch.

Table 3: The inference time(Min:Sec) and memory(GiB)
for each model on 2.8K documents. Average of 3 runs.
Hardware, NVIDIA Tesla V100 SXM2.

#Docs #Chains #Mentions

OntoNotes 2.8K 35K 155K
Multi-News 123K 2M 9M

Table 4: Coreference statistics of the training set of
OntoNotes and Multi-News.

dataset is an open source dataset aimed at NLP sum-
marization. Each entry in the dataset contains mul-
tiple documents and a summary of these documents.
For our purposes, we ignored the summaries, and
train our student model on the documents, a total of
123,227 documents in the news domain. We chose
Multi-News because it contains a large number of
documents in the news genre, which would result in
a large number of coreference clusters (see Table 4
for statistics). Furthermore, we use the English por-
tion of the OntoNotes (Pradhan et al., 2012) dataset
to evaluate the student model performance (on the

test set) and to further fine-tune the student model
(on the train set).

The student training procedure includes three
phases. In the first phase, we predict coreference
clusters on MultiNews using the teacher model (Ot-
mazgin et al., 2022). Secondly, following (Wu
et al., 2020; Dobrovolskii, 2021), we pre-train the
mention scorer of the student on the output men-
tions of the teacher, then train the full student
model on the predicted teacher coreference clus-
ters. Finally, we finetune the student model on the
OntoNotes training set.

Accuracy Table 1 shows F-COREF’s perfor-
mance on the OntoNotes test set according to the
standard evaluation metrics for coreference resolu-
tion. F-COREF achieved 78.5 F1 with knowledge
distillation and finetuning on OntoNotes. When
trained only on OntoNotes, F-COREF achieved only
73.7 F1 (−4.8 F1), showing a substantial bene-
fit from knowledge distillation on the Multi-news
dataset (Fabbri et al., 2019). In comparison with
other coreference models, F-COREF degrades by
1.1 point compared to the Joshi et al. (2019) model
in the AllenNLP package, by 2.9 F1 points com-
pared to LINGMESS (Otmazgin et al., 2022), the
teacher, and by 1.8 F1 points versus Kirstain et al.
(2021), the s2e model, which F-COREF is a vari-
ant of. Table 2 shows similar trends for the GAP
dataset (Webster et al., 2018). This degradation
comes in favor to the model efficiency, which we
will discuss in the next paragraph.

Speed and Memory Usage Table 3 summarizes
the efficiency of the different coreference mod-
els. Using the techniques described in Section §4
which reduces the model size, maximize batching
and avoids unnecessary computation, the inference
time on 2.8K documents is significantly reduced
by factor of 9 from the 03:49 minutes of Dobrovol-
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Figure 2: The knowledge distillation learning curve.
The x-axis is the number of documents we took from
the Multi-News dataset to train the student model. The
y-axis is the student F1 score for each size.

skii (2021)—the fastest model to date—to only 25
seconds for F-COREF.3

Most of the speed increase (80%) is due to the
smaller model size achieved through distillation,
which alone reduces the runtime to 45 seconds.
However, introducing batching further reduces the
runtime by additional 22% to 35 seconds, and our
novel leftover batching reduces further 29%, and
gets us to 25 seconds. The more aggressive men-
tion pruning (not shown in the table) had only a
negligible additive effect in our experiments, reduc-
ing the runtime from 25 to 24 seconds.

Without batching, F-COREF also consumes less
memory then Dobrovolskii (2021), a model that
recently reduces the coreference complexity from
O(n4) to O(n2).

Finally, compared to one of the most widely
used coreference models, the Joshi et al. (2020)
model available through the AllenNLP package
(Gardner et al., 2017), F-COREF is 29 times faster
and consumes 85% less memory.

5.1 Further Analysis

Effect of Unlabeled Data Size We first analyze
the effect of the amount of unlabeled data used
in distillation, by training the student model on
different amounts of training data. As Figure 2
shows the performance gain between 25K docu-
ments and 50K documents is 1 F1 point while the
gain between 100K and 125K documents decreases

3These experiments used batch sizes of 10k tokens. In-
creasing the batch sizes increase memory consumption, but
does not improve overall speed on our NVIDIA Tesla V100
hardware.

to 0.4 points. This indicates that the gain margin
is decreasing, but overall, increasing the dataset
size continuously improves the model performance
and there is a room for improvement with more
data. Fine-tuning the distilled model on the in-
domain OntoNotes data consistently improves the
results, but is also additive with the distillation: the
fine-tuned performance also increases with more
unlabaled data in distillation.

Effect of the Teacher Model To estimate the
effect of the teacher model, we compare the
LINGMESS teacher to a s2e model (Kirstain et al.,
2021) teacher on the same unlabeled data. We ob-
tain 76.6 F1 with s2e (vs. 77.4 F1 with LINGMESS)
on the OntoNotes (test set) when training only on
Multi-News and 78.3 F1 with s2e (vs. 78.5 F1 with
LINGMESS) after further fine-tuning on OntoNotes
(training set). This indicates that the student accu-
racy increases when more accurate models are used
in knowledge distillation, even with hard labels.

Soft VS. Hard Distillation Our first attempt
to transfer the coreference knowledge from the
teacher model to the student model was the tra-
ditional knowledge distillation, i.e. soft targets
knowledge distillation. For each example in the
training set, we forward it first in the teacher model
and obtained the top-scoring spans indices, and the
pairwise coreference logits. Then we forward the
example in the student network (at pruning stage
we use the teacher’s top-scoring spans indices) to
obtain the student coreference pairwise logits. Fol-
lowing common training objective (Hinton et al.,
2015; Sanh et al., 2019; Jiao et al., 2020), we opti-
mize the student model using the soft cross entropy
loss between the student and the teacher logits.

Our student model reached only 64 F1, while
achieving 73.7 F1 without knowledge distillation.
Soft distillation presents challenges in coreference
models. The main challenge we encounter is at
the pruning stage, where both teacher and student
should prune the exact same mentions from their
individual mention scorer. This forces the student
model to learn from a conditional antecedent dis-
tribution of the teacher spans indices instead of the
full antecedent distribution.

Additionally, we observe that learning to mimic
the teacher logits may trouble the training because
logits can violate transitivity (e.g positive score
for the mention pairs (a, b) and (b, c) but a nega-
tive score for (a, c)) and propagate contradictory
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information. Specifically, we build the coreference
clusters based on the positive pairwise scores, and
verify whether all pairwise scores within the same
coreference clusters are positive, as we would natu-
rally expect. In fact, 53.8% of the pairwise scores
within the same coreference cluster are negative. In
contrast, this undesired behavior does not happen in
hard distillation because we assign positive labels
for all coreferring antecedents for each mention.

6 Conclusions

We introduce the fastcoref python package for
coreference resolution, and hope its speed an ease
of use will facilitate work that utilizes coreference
resolution at scale.
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Abstract

The published materials science literature con-
tains abundant description information about
synthesis procedures that can help discover
new material areas, deepen the study of ma-
terials synthesis, and accelerate its automated
planning. Nevertheless, this information is ex-
pressed in unstructured text, and manually pro-
cessing and assimilating useful information is
expensive and time-consuming for researchers.
To address this challenge, we develop a Ma-
chine Learning-based procedural information
extraction and knowledge management system
(PIEKM) that extracts procedural information
(recipe steps), figures, and tables from materi-
als science articles, and provides information
retrieval capability and the statistics visualiza-
tion functionality. Our system aims to help
researchers to gain insights and quickly un-
derstand the connections among massive data.
Moreover, we demonstrate that the machine
learning-based system performs well in low-
resource scenarios (i.e., limited annotated data)
for domain adaption.

1 Introduction

The procedural information in materials science
literature aims to help researchers reproduce exper-
iments and gain insights to speed up the process
of new materials synthesis development (Vaucher
et al., 2020; Kononova et al., 2019). It takes the
form of recipes (e.g., Figure 4) and is normally de-
fined as a series of actions and their corresponding
conditions and results. Such information contains
imperatives, action verbs, steps of operations, and
constructions (Yang et al., 2019). This informa-
tion can be commonly found in method sections
of materials science research literature. However,
a great amount of scientific literature is published
every year by the growing materials science re-
search community. These well-established works
provide a foundation to enlighten researchers and
explore new materials development simultaneously.

Acquiring valuable information from the year-over-
year increasing scientific literature efficiently and
effectively remains one of the great challenges
(Kononova et al., 2021). The existing scholarly
literature search engines, such as Google Scholar
and Semantic Scholar, provide a good service to
discover the relevant publications, but they cannot
directly deliver the recipe steps of the experiments
that are included in the literature. Therefore, an
intelligent system that provides the functions of
procedural information searching and viewing, vi-
sualization, and analysis is highly demanded.

Information Extraction (IE) which is a sub-area
of Natural Language Processing (NLP) provides
an efficient way to automatically extract struc-
tured information from large unstructured text data.
Likewise, in the materials science domain, IE has
been applied to similar tasks, such as experimental
steps classification with unsupervised approaches
of probabilistic methods for inorganic materials
(Huo et al., 2019) and named entity recognition in
materials science domain (Kim et al., 2017; Yang
and Hsu, 2021). One of the biggest challenges
of extracting information in materials science arti-
cles is that the annotated datasets are insufficient
(Olivetti et al., 2020), which can be overcome by
machine learning, particularly transfer learning,
with pre-trained models obtained from other large
training datasets (Zhang et al., 2021). Transfer
learning can help with domain adaptation in mate-
rials science. We use transfer learning through fine-
tuning a pre-trained language model with datasets
in the materials science domain for chemical entity
extraction. The trained model is integrated into the
PIEKM system and performs well. This solves real
cases where the number of training data in the ma-
terials science domain is very small for information
extraction.

This paper presents PIEKM, a prototype of a
machine learning-based procedural information ex-
traction and knowledge management system based
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on materials scientific literature. The goal of
PIEKM is to demonstrate procedural information
extraction and information retrieval capabilities.
Three crucial contributions of PIEKM are summa-
rized as follows:

• This system helps researchers to obtain ma-
terials science-related procedural information
efficiently and effectively from massive publi-
cations.

• The system utilizes transfer learning ap-
proaches, such as chemical entity extraction,
which can solve the issues with the small size
of training dataset.

• The system is flexible and can be easily de-
ployed in other domains.

2 System Architecture

In this section, we describe the detailed architecture
of PIEKM system. The proposed system consists
of three modules: (A) Information Processing, (B)
User Interface, and (C) Query Processing and In-
formation Storage. Figure 1 shows the architecture
of PIEKM system. Figure 2 shows the home page
of PIEKM system. The details of each module are
introduced as follows.

Figure 1: Architecture of PIEKM system

(A) Information Processing Module: This
module processes the information from the digital
scientific literature. We focus on Portable Docu-
ment Format (PDF) digital scientific literature in
the PIEKM system. The input corpus of digital sci-
entific literature has been segmented into text and
non-text (figures, tables) parts (section 3.1). Then
the procedural information (section 3.2) and name
entities (section 3.3) are extracted from these texts.

Figure 2: Home page of PIEKM system

The extracted figures and tables are stored in the
corresponding folders. The rest of extracted text
information is stored in as a semi-structured format
in the database for quick query response.

(B) User Interface Module: This module is in
charge of responding to user queries and showing
the result corresponding to each query, providing
the preview of figures and tables of articles avail-
able in the system, and presenting the details of
every single article which includes procedural in-
formation and chemical entities.

(C) Query Processing and Information Stor-
age Module: This module is responsible for query
processing and information storage. The queries
are sent by users, then the answers would be ac-
quired from the information storage database and
returned back to the user interface module for dis-
play. The module supports different material com-
positions and morphology searches.

The PIEKM system is deployed by Flask1 frame-
work and written in Python. We use MongoDB2 to
store the information data and respond to queries.
The Plotly3 and Dash4 are used for interactive vi-
sualizations.

3 Information processing

In this section, we present the implementation
details of the information processing module in
PIEKM system. This module serves as a pipeline
including free-text extraction, procedural informa-
tion extraction, and chemical entity recognition.
The details of each stage are described as follows.

1https://flask.palletsprojects.com/
2https://www.mongodb.com/
3https://plotly.com/javascript/
4https://plotly.com/dash/
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3.1 Free-Text Extraction

The first step is to extract the text from the digi-
tal scientific literature, such as Portable Document
Format (PDF) files, which is not in readable for-
mat and cannot be processed by computer directly,
before processing it further. However, the very
diverse formats and structures of scientific litera-
ture corpora could make text extraction and section
classification difficult. The existing tools, such
as PDFMiner (Shinyama, 2007) and PDFReader
(Polshcha, 2020), may not fully extract the sec-
tions (e.g., methodology, experiment, results), and
leave them in the wrong order. This could signif-
icantly affect recipe extraction if the recipe steps
are not in sequential order. We, therefore, make
use of heuristic rule-based Metadata-Analytic Text
and Section Extractor (MATESC) (Maria et al.,
2018) system to solve the issues of different for-
mats. MATESC is a heuristic rule-based pattern
analysis tool that is used for extracting text and
classifying sections from the scientific literature.
The key purpose of this tool is to accelerate the
extraction of information and semantic knowledge
among variant formats of scientific literature across
different domains. We can extract text spans and
utilize metadata features (i.e., spatial layout loca-
tion, font type, and size) via MATESC. By doing so,
we are able to create grouped blocks of text which
can be then classified into groups and subgroups
depending on characterized paper sections.

MATESC extracts text including the metadata
features of all characters (i.e., font type and size,
spatial layout location) from PDF scientific articles
which are considered as input. It is worth noting
that the irrelevant text left in the margins of ev-
ery page of these documents can be automatically
removed from the extracted text based on the cor-
responding spatial layout location. Following that,
words will be placed into the appropriate line, and
then the different fonts and locations of characters
will be considered to differentiate between section
titles and section content. Lastly, the lines created
will be merged into paragraphs which will then
be ordered sequentially by the computation of the
bounding box of paragraphs.

MATASC has been evaluated with 300 scientific
articles, including 150 articles that are related to the
materials science domain, and the others are ran-
domly selected from online resources. All sections
of these 300 articles are extracted as ground truth
for MATASC performance evaluation. We choose

Table 1: Evaluation results comparison between
MATESC and GROBID

Article Name Accuracy F1
Random MATESC 0.85 0.57
Random GROBID 0.82 0.44
Relevant MATESC 0.88 0.72
Relevant GROBID 0.76 0.40

GROBID (Lopez, 2009) which is a prevailing tool
for metadata extraction from scholarly articles. The
Longest Common Subsequence (LCS) that com-
pares the longest common subsequence between
ground truth and automatic extracts serves as the
evaluation metric. Table 1 reports the performance
evaluation results.

3.2 Procedural Information Extraction

The procedural information takes the form of the
recipe in our PIEKM system. It describes the main
synthesis steps of experiments in materials science
literature. We use two approaches to ensure the
quality of extracted procedural information: rele-
vant synthesis sentence classification and checking
if a relevant sentence contains recipe entities.

Relevant sentences classification: We applied
the binary Naïve Bayes (NB) classifier to relevant
sentence classification in the experiment section
which was output by the free-text extraction. The
sentences can be considered relevant if they contain
the recipe elements (e.g., named compounds, chem-
ical entities, unit operations or sub-procedures). We
annotated 2600+ sentences from 98 relevant litera-
ture for training the classification model. Particu-
larly, two domain experts annotated 120 sentences
from 5 relevant literature and the rest of the anno-
tation work was done by three trained annotators.
To better predict the class attribute of the input sen-
tence, we train the NB classifier with word term
frequency as count features to achieve a leaned
function with 80% accuracy of prediction.

Relevant sentences entities checking: We use
ChemicalTagger (Hawizy et al., 2011), an open-
source tool for semantic text-mining in the chem-
istry domain, for recipe sentence checking. The
ChemicalTagger uses regex expression to tag differ-
ent entities, such as conditions, molecules, actions,
and phrases, from sentences. In our PIEKM sys-
tem, the procedural information or recipe should
include at least one action which can be represented
by a verb word (e.g., dry, distill, dissolve). The sys-

59



tem will ignore the sentence even if it has been
classified as a relevant sentence.

3.3 Chemical Entity Extraction

Chemical entity extraction is considered as named
entity recognition (NER) which is used to recog-
nize and classify the concepts in texts to iden-
tify the objects of semantic value. We are able
to broadly pre-define the name entities, such as
material names, material properties, and sample
deceptions, in materials science contexts, based on
the task requirements (Mysore et al., 2019). Large,
annotated corpora are required to be able to train
a machine learning model for NER tasks, which
brings a challenge in the materials science domain
due to the insufficient annotated dataset. Addi-
tionally, manually labeling based on an enormous
number of articles would be very time-consuming
and expensive for domain exports. We address
this issue with transfer learning that is based on
the combination of attention-based pre-trained lan-
guage model SciBERT (Beltagy et al., 2019), Bidi-
rectional Long Short-term Memory (BiLSTM)
(Huang et al., 2015), and Conditional Random
Fields (CRF), or SciBERT-BiLSTM-CRF for short.
Specifically, the pre-trained SciBERT model serves
as the embedding layer which takes raw sentences
as input and outputs the contextual embedding vec-
tors for each word to the BiLSTM layer. BiLSTM
layer takes these inputs for syntactic and seman-
tic feature representation learning and outputs the
predicted scores of each label which then will be
fed into the CRF layer. Finally, the CRF layer will
select the label sequence with the highest predicts
score as output.

Considering the insufficient annotated datasets
that are available for chemical entity extraction, we
merged two annotated corpora in the materials sci-
ence domain to train the model. One of them is
materials synthesis procedural text corpus (MSP)
(Mysore et al., 2019), which has 230 experiment
paragraphs regarding synthesis procedure in the ma-
terials science domain and 21 different pre-defined
named entities. The other corpus is in the field
of solid oxide fuel cell (SOFC) (Friedrich et al.,
2020), including 45 open-access scholarly articles
and 5 different pre-defined named entities. In ad-
dition, the BIO format is used to annotate both of
the corpora mentioned above, where B indicates
the word beginning entity, I represents the words
inside the entity, and O is the outside of the entity.

Table 2: Evaluation results comparison

Model Precision Recall F1
SciBERT-BiLSTM-CRF 0.93 0.91 0.92
ChemDataExtractor 0.88 0.83 0.85

We keep only the material name as the pre-
defined named entity in the corpus to train the
SciBERT-BiLSTM-CRF model since PIEKM sys-
tem only focuses on the chemical entity extraction
rather than the extraction of other named entities.
We compared our model with ChemDataExtractor
(Swain and Cole, 2016), a tool for the automated ex-
traction of chemical information from the scientific
literature. Table 2 shows the comparison of evalua-
tion results between SciBERT-BiLSTM-BRF and
ChemDataExtractor. Note that the ChemDataEx-
tractor is not trained on this merged corpora but
only for evaluation comparison.

4 Query processing and information
storage

We use the model that is fine-tuned from section
3.3 to extract the key information from the title
of the paper. The key information in our system
could be considered into two types: material and
morphology. For example, copper and gold are
the type of material; nanocube and nanowire are
the type of morphology. We integrate all this in-
formation and store it into the database as a query
feature for users.

5 Demonstration

The demonstration covers all of the features of
PIEKM system. Figure 2 shows the home page of
PIEKM system. It visualizes the overview of the
association between the number of articles within
the database of nanomaterial composition and the
corresponding morphology. The user can click the
material name to see the number of relevant ar-
ticles across different morphology. The relevant
literature can be searched by material or morphol-
ogy name, and the search result page will show
a preview figure browser that offers all different
options of material or morphology names to select
and provides all figures included in the relevant ar-
ticles (Figure 3). In addition, the chemical entities,
recipe, and the full content of extracted literature
can be displayed after clicking the title on the top
of each figure on the browser (Figure 4).
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Figure 3: Search result page showing extracted papers and a preview figure browser

Figure 4: Chemical entities, recipe, and full content of extracted literature

6 Conclusion

This work presents a machine learning-based pro-
cedural information extraction and knowledge man-
agement system, namely PIEKM, for the materials
science domain. PIEKM system integrates multi-
ple functionalities, such as procedural information

extraction, chemical entities extraction, informa-
tion retrieval capabilities, and statistics interactive
visualization, into a single web interface. This sys-
tem provides an efficient way for researchers to
gain insights from an enormous number of well-
established literature and offers a feasible way to
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manage knowledge and publications in not only
materials science but also other domains.
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Abstract
We present BiomedCurator1, a web applica-
tion that extracts the structured data from scien-
tific articles in PubMed and ClinicalTrials.gov.
BiomedCurator uses state-of-the-art natural lan-
guage processing techniques to fill the fields
pre-selected by domain experts in the relevant
biomedical area. The BiomedCurator web ap-
plication includes: text generation based model
for relation extraction, entity detection and
recognition, text classification model for ex-
tracting several fields, information retrieval
from external knowledge base to retrieve IDs,
and a pattern-based extraction approach that
can extract several fields using regular expres-
sions over the PubMed and ClinicalTrials.gov
articles. Evaluation results show that different
approaches of BiomedCurator web application
system are effective for automatic data curation
in the biomedical domain.

1 Introduction

Scientific article contains a lot of valuable infor-
mation. For example, reports on clinical studies
provide the pieces of information including the ap-
plied drug, the target disease, the dose, the dosing
period, the ages of the human subjects, and the
results. Such pieces of information are useful in
data mining and statistical analysis for drug dis-
covery and drug development, if they are properly
structured. We call this structurization process data
curation in this paper, aiming at two-dimensional
spreadsheet style structured data as illustrated in
Figure 1. Data curation is usually conducted by hu-
man experts, who are supposed to read and under-
stand scientific papers, and fill in the spreadsheet.
The purpose of this paper is to develop a web ap-
plication system for automatic data curation in the

∗*Equal Contribution
1BiomedCurator is publicly available at

https://biomed-text.airc.aist.go.jp/
biomedcurator/ as well as its GitHub repos-
itory at https://github.com/aistairc/
BiomedCurator.

biomedical domain, which we name BiomedCura-
tor. Specifically, for a PubMed/ClinicalTrials.gov
ID given by a user, BiomedCurator returns values
for 61 information pieces (henceforth, fields).

The task of data curation requires a number of
different NLP techniques including named entity
recognition (NER), entity linking, relation extrac-
tion, and text classification. One notable character-
istic of this task is that datasets curated by human
experts provide spreadsheet-style supervision sig-
nal, but do not tell where in the paper each infor-
mation piece is described; we cannot annotate BIO
tags to the paper unlike the training data for NER.

One approach to perform automatic data cura-
tion is to use both structured data obtained from the
literature and the original literature as training data.
The advantage of this approach is that it can output
important fields in a data format that is needed by
intended users. On the other hand, disadvantages
emerge, as typified by the following. (1) Since only
information that is important to intended users is
included in the structured data, information that
is important in NLP (e.g., where each data field is
described in the original literature) tends to be omit-
ted. (2) In the process of creating such structured
data, the words are often bundled into a notation
different from that used in the original literature for
the correction of word distortions. In this study, we
have developed a web application that can easily
realize automated data curation by solving these
technical issues with the methods described in Sec-
tion 2.2.

2 BiomedCurator: Data Curation System
for Biomedical Domain

We first describe the dataset for this task, and then
the natural language processing techniques used
in the system, followed by the description of our
system as a web application.
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Figure 1: A quick overview of spreadsheet style structured data. The first and second rows refer to categories and
their associated fields. The first column indicates PubMed and ClinicalTrials.gov articles and the other columns are
the lists of information pieces of PubMed and ClinicalTrials.gov respectively. "..." indicates more other categories
and fields.

2.1 Dataset for BiomedCurator

The information required by the intended user is
extracted from the articles in a comprehensive man-
ner and structured. As information required by the
intended user, 11 categories of articles in PubMed
and ClinicalTrials.gov were selected, and each cat-
egory was further divided into subcategories for a
total of 61 fields (lists of information pieces). In the
selection process, freely available PubMed articles
from the last five years were screened according
to whether they were about Idiopathic Pulmonary
Fibrosis (IPF), Idiopathic Pulmonary (IP), or fibro-
sis. From these, priority was given to those with
a text as well as an abstract, and the words were
extracted manually to a pre-determined DESCRIP-
TION. A similar screening was then carried out for
papers on lung cancer, with similar prioritization
and extraction. To assess the quality of data cura-
tion for selecting the 11 categories and its 61 fields
is based on two criterion. (1) Determination of
items: Necessary information in various processes
of drug discovery was extracted by dividing it into
categories. This was determined by a pharmacolo-
gist with experience in drug discovery in discussion
with a curator biologist. (2) For curation, a primary
curator and an editor in the field of biology were
provided, and further quality assurance and quality
control checks were conducted.

We developed NLP models trained on a dataset
from which information was manually extracted by
biologists with domain knowledge as a supervisory
dataset. Figure 1 shows a quick overview of spread-
sheet style structured data 2. We refer to the read-
ers to visit our project page https://github.
com/aistairc/BiomedCurator to learn
more details about 11 categories and its 61 fields,
as well as the models used for each field. See Ap-
pendix A for a quick overview of 11 categories and
its 61 fields.

2Releasing of the structured data set is under consider-
ation through the project page https://github.com/
aistairc/BiomedCurator.

2.2 NLP Approaches in BiomedCurator

We address the task of data curation by five main
components: (1) Generative relation extraction, (2)
Named entity recognition, (3) Text classification,
(4) Pattern-based extraction and (5) Information
retrieval from external knowledge-base (KB).

2.2.1 Generative Relation Extraction
To extract relations in BiomedCurator, we address
two main challenges: (1) the system needs to re-
turn the entities and relations where their positions
are not given in the training data as mentioned in
Introduction, and (2) many entities and relations in
our gold data were rephrased/normalized in differ-
ent ways; pure extraction might not work. These
make the preparation of training data and training
the discriminative relation extraction model more
difficult.

In order to address these challenges, we formal-
ize n-ary relation extraction task as a template gen-
eration problem. For a given paragraph, we ex-
pect to train a model that can generate a sequence
in our predefined structure. For the sequence-to-
sequence model, we utilize the BigBirdPegasus
model3 which is designed for summarization tasks
to deal with long sequences. For instance, here is a
simple training example for extracting relations of
drug and dose entities from a given input text: eligi-
ble patients received up to six cycles of pemetrexed,
500 mg/m(2) plus cisplatin, 75 mg/m(2) (day 1) or
gemcitabine, 1000 mg/m(2) (days 1 and 8) plus
cisplatin, 75 mg/m(2) (day 1). os and toxicity were
assessed.

TARGET OUTPUT:
[start]

[drug] gemcitabine [/drug]
[dose] 1000 mg/m2 [/dose]
[and]
[drug] cisplatin [/drug]

3https://huggingface.co/google/
bigbird-pegasus-large-pubmed
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Figure 2: An overview of the workflow of BiomedCurator. The articles from PubMed and ClinicalTrials.gov are
parsed through the processes (a) to (d) to extract the value of each field.

[dose] 75 mg/m2 [/dose]
[or]

[drug] pemetrexed [/drug]
[dose] 500 mg/m2 [/dose]
[and]
[drug] cisplatin [/drug]
[dose] 75 mg/m2 [/dose]

[end]

The target output can be expressed as

Combination 1:
Rel_1(gemcitabine, 1000 mg/m2)
+ Rel_2(cisplatin, 75 mg/m2)

Combination 2:
Rel_3(pemetrexed, 500 mg/m2)
+ Rel_4(cisplatin, 75 mg/m2)

where [start] and [end] are special tokens
to indicate the beginning and the end of the tem-
plate. Similarly, [drug], [/drug], [dose],
and [/dose] are special tokens to denote the
beginning and the end of entity drug and dose.
[and] and [or] are special tokens that act as op-
erators for combining different relations together.
We propose [and] and [or] to help the model
be able to predict multiple relations at the same
time. [and] is used to combine two relations

together and [or] is used to separate two rela-
tions. When parsing a generated output to extract
relations, [and] is greater precedence than [or].
Rel indicates relation of [drug] and [dose]
entities.

BigBird Encoder-Decoder Model The BigBird
architecture can process up to 8x longer se-
quences than BERT (Devlin et al., 2019). There-
fore, for the sequence-to-sequence model, we
utilize the BigBirdPegasus (Zaheer et al., 2020)
model to extract the relations from a given para-
graph which is an input to the BigBirdPegasus
model. Unlike discriminative model, we address
the relation extraction task based on generative
model to fill the fields of dose, drug, and
route of administration.

2.2.2 Named Entity Recognition
In the named entity recognition (NER) task, we em-
ploy pre-trained BERT-based NER models as they
have been proven to be effective in many down-
stream tasks (Devlin et al., 2019). We also make
use of the spaCy4 library which is very well inte-
grated with BERT-based models to simplify our
prediction process. To extract the required infor-
mation to fill the ethnicity field, we use BERT-

4https://spacy.io/
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based NER model finetuned on OntoNotes 5 (Prad-
han et al., 2007) dataset using SciBERT (Beltagy
et al., 2019) as initial weights. In contrast to fill the
Biomarker name field, SciBERT NER model
finetuned on BioNLP13CG (Pyysalo et al., 2015)
is used. For other fields, we first generate train-
ing data using distant supervision as our curated
dataset do not provide position information of gold
entities. Then, we finetune separate SciBERT NER
models on each noisy generated data and use the
trained models to extract the required information.

2.2.3 Text Classification

To extract the information of some fields, we im-
plement two multi-class classification models: (1)
SciBERT-based and (2) RandomForest-based5 clas-
sification models. The SciBERT-based classifica-
tion model is used to predict the labels of a given
text input. In contrast, the RandomForest-based
classification model is used to predict the labels
for a combination of feature vectors as an input
data. For instance, to predict the labels of the field
association where we encode the output of
three fields marker_type, marker_nature,
phenotype as a feature vector.

2.2.4 Pattern-based Extraction

We observe that pattern-based extraction can
be applied to extract the information of many
fields (e.g. reference_id, grade, stage,
total_sample_number, etc.). In this ap-
proach, it needs to find a substring that matches a
pre-specified regular expression pattern in the text
and extract the information. We refer to the readers
through our project page to know more about the
data fields and its corresponding approaches.

2.2.5 Information Retrieval from External
Knowledge Base

Given a field information which is extracted from
an article, the task is to retrieve its corresponding
ID from a knowledge base (KB). This task is an
entity linking problem without context. Instead
of building our own model from scratch, we
use existing KB API services. We look up the
fields CAS ID, ChEMBL ID, DrugBank ID,
Entrez ID, Uniprot ID, HGVS Name,
Rs ID, and KEGG Pathway Name

5https://scikit-learn.org/stable/
modules/generated/sklearn.ensemble.
RandomForestClassifier.html

by using the keywords of CAS ID6,
ChEMBL7, DrugBank Accession8,
Entrez ID9, Uniprot ID10, HGVS11,
RSID12, Pathway ID13, respectively.

2.3 Web Application of BiomedCurator
The overall workflow of BiomedCurator is illus-
trated in Figure 2.

Given an article ID, the system first retrieves its
corresponding article from the online databases;
PubMed or ClinicalTrials.gov. The article is then
preprocessed before feeding into the five core com-
ponents, which are designed to extract different
types of information from the input article. Fi-
nally, the extracted information is returned and
displayed to the user. The recursion connection
below the core components in the diagram denotes
that some predictions are reused and combined as
input features to predict other fields. For instance,
the system requires the results of marker_type,
marker_nature, and phenotype to be able
to predict the label for the field association.

3 Experimental Settings

In this section, we evaluate our system on our
datasets.

3.1 Datasets
We conduct experiments on our curated datasets
based on PubMed and ClinicalTrials.gov to address
the biomedical data curation tasks. The PubMed
and ClinicalTrials.gov datasets consist of 2,570 and
2,371 PubMed and ClinicalTrials.gov related sci-
entific articles respectively. For ClinicalTrials.gov
and PubMed datasets, the predefined template is
labeled into 11 main categories that labeled further
into several subcategories to make 61 fields. The
details of 61 fields are stated on the project page14.
Statistics of both datasets is shown in Table 1.

6https://commonchemistry.cas.org, https:
//go.drugbank.com

7https://go.drugbank.com
8https://go.drugbank.com
9https://www.ncbi.nlm.nih.gov/gene/,

https://www.genecards.org
10https://www.uniprot.org/uniprot/,

https://www.genecards.org
11https://www.ncbi.nlm.nih.gov/

CBBresearch/Lu/Demo/LitVar/api.html
12https://www.ncbi.nlm.nih.gov/

CBBresearch/Lu/Demo/LitVar/api.html
13https://www.genome.jp/kegg/pathway.

html
14https://github.com/aistairc/

BiomedCurator
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3.2 Data Preprocessing
The data preprocessing component includes 4 main
steps: (1) Text normalization, (2) Sentence split-
ting, (3) Section or paragraph segmentation, and
(4) Tokenization.

Text normalization This step is to eliminate
XML tags and multiple white spaces in the article,
and special characters are converted to spaces. We
then apply NFC normalization using ftfy (Speer,
2019) to convert letters followed by combining
characters into single combined characters.

Sentence Splitting After the normalization step,
we apply the GENIA sentence splitter model15 to
the articles to split into sentences.

Section or Paragraph Segmentation In our cu-
rated data, there are several fields that require the
system to work on paragraph level instead of sen-
tence level. For example, the relation of fields
drug and dose could span across multiple sen-
tences in the article. Therefore, we propose a sim-
ple two-step method to split the entire article into
smaller chunks, namely sections and paragraphs.
The first step is to leverage the article’s metadata
provided by PubMed and ClinicalTrials.gov in
XML format. Unfortunately, there are cases where
we do not have the needed metadata to be able to
perform the segmentation, such as not all PubMed
articles exist in the PubMed Central16 database
to be downloadable in XML format, or there are
sections in ClinicalTrials.gov articles provided in
a plain text format. For instance, the section
criteria in ClinicalTrials.gov articles usually
contains sub-sections Inclusion Criteria
and Exclusion Criteria in a plain text for-
mat. For that reason, our second step is to utilize a
rule-based classifier to predict whether a sentence
is a heading/sub-heading or not. Then, we use those
headings as splitting points to separate the article
into different sections. Our rule-based approach is
based on an observation that headings often contain
some phrases like Abstract, Introduction, Method,
Approach, Results etc. at the beginning of a sen-
tence.

Tokenization Finally, we employ PegasusTok-
enizer of the BigBirdPegasus model17 and BertTo-

15http://www.nactem.ac.uk/y-matsu/
geniass/

16https://www.ncbi.nlm.nih.gov/pmc/
17https://huggingface.co/google/

bigbird-pegasus-large-pubmed

kenizer of the SciBERT model18 to tokenize sen-
tences into words.

3.3 NER Model Training

One of the challenges of our curated dataset is that
it does not include the position information of the
curated entities, which makes the task of training
a NER model more difficult. To train the NER
model of BiomedCurator, a distantly supervised
approach is taken into account to generate the train-
ing data. Given a set of entities, we retrieve all the
sentences that are associated with the entities (with
case-insensitive and a string matching threshold of
90%) and only use those as input data for training.

3.4 Implementation

We optimize all of our models using
AdamW (Loshchilov and Hutter, 2019) with
a learning rate of 3e-5. For curriculum learning,
we trained our generative relation extraction
models with 50 epochs and a total batch size of 32
on 8 GPUs (4 examples per GPU). We trained our
NER models with 5 epochs and a batch size of
32 on a single GPU with half precision enabled.
We conducted each experiment on a server with
8x NVIDIA A100 for NVLink 40GiB. For NER
models, we set the max input length up to 512
tokens. For relation extraction models, we use the
max length of 768 tokens for encoder input and
512 tokens for decoder output.

4 Results and Discussion

Table 2 shows the performance of 17 fields in
terms of precision (P), recall (R), and F-score (F)
over the PubMed dataset. In this table, most of
the fields performance based on F-score perform-
ing well where some fields including duration,
grade, disease_name, and phenotype are
performing comparatively lower than other fields.
For disease_name, the model is trained on a
distantly supervised dataset, which is filtered on
gold entity mentions. Since many disease names
have multiple variant forms, many were left out by
the strict match filtering of the noisy dataset, which
led to a poor recall score.

In contrast, Table 3 shows the accuracy perfor-
mance on six other fields on PubMed dataset. We
compute the accuracy for evaluating the fields that
have only one answer in an article. For example,

18https://huggingface.co/allenai/
scibert_scivocab_cased
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Dataset Statistics
Split #Docs Avg. Tokens/Doc Avg. Sec./Doc Avg. Para./Doc
Train 1542 3296.52 10.90 37.89

PubMed Dev 514 3037.13 10.38 35.32
Test 514 3277.14 10.87 36.96

Train 1421 1395.08 8.41 15.34
ClinicalTrials.gov Dev 475 1296.97 8.39 15.00

Test 475 1343.81 8.43 15.07

Table 1: Statistics of curated dataset based on PubMed and ClinicalTrials.gov

Field Name P R F (%)
associated_clinical
trials 54.24 60.38 57.10
Relation of
(drug/therapy-dose) 53.77 50.59 52.13
duration 4.91 38.57 8.71
Cell line/Model Name 44.07 41.67 42.83
study_type 85.80 82.43 84.08
ethnicity 27.72 73.29 40.23
grade 10.53 21.43 14.12
phase 18.07 82.86 29.67
disease_name 91.67 5.66 10.66
stage 44.34 70.19 54.35
association 97.00 97.00 97.00
phenotype 9.09 45.19 15.14
p_value 33.37 32.68 33.02
application 94.00 95.00 94.50
allocation 39.02 72.73 50.79
masking 37.50 46.15 41.38
authors 86.35 87.35 86.85

Table 2: Performance of extraction on PubMed dataset.
The performances are based on F-score for evaluating
fields that have multiple answers.

an article has only one published year informa-
tion, and our system just needs to predict only one
answer. So there are 2 possibilities: correct and
incorrect. We compute the F-score for evaluating
the fields that have multiple answers. For example,
a certain document contains two gold answers and
our system predicts one or more predictions.

In the ClinicalTrials.gov dataset, Tables 4 and
5 show the performance of different fields in
terms of F-score and accuracy. In these tables,
the results show the extraction performances over
most of the fields are good except duration,
disease_sub_category, and BNAMIR are
relatively very poor. The low performance of the
field duration can be explained by the fact that

Field Name Accuracy (%)
type of alteration 87.44
phenotype_alteration 93.00
significance 99.95
author_conclusion 100.00
title 95.33
year 99.61

Table 3: Performance of extraction on PubMed Dataset.
The performances are based on accuracy for evaluating
fields that have single answer "correct" or "incorrect".

gold entities of the field duration are usually
made up of 1-3 digits followed by a single word
representing the unit of time (e.g. 24 hours, 120
days, 2 weeks, 3 months, etc.). As we use distant
supervision to generate training examples, this re-
sults in the generation of many noisy sentences
from which the entities were not actually curated.
Training on this noisy data causes our model to ig-
nore the context around entities. This explains why
the model has low precision and high recall because
the model tends to predict entities whenever it sees
number-like tokens. Another major challenge that
leads to poor scores in some fields: during manual
data curation by domain experts, some information
normalized or rephrased in different ways or col-
lected in different ways which is hard to find in the
article that leads to difficulty to evaluate.

5 Related Work

Several web-based tools exist that support the re-
trieval of biomedical information using text min-
ing. Huang et al. (2021) addresses document-level
entity-based extraction (EE), aiming at extracting
entity-centric information such as entity types and
entity relations, which is a key to automatic knowl-
edge acquisition from text corpora for various do-
mains. The authors propose a generative frame-
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Field Name P R F (%)
Relation of
(drug/therapy-dose) 38.36 33.15 35.5
duration 2.53 81.82 4.90
disease_name 61.66 73.44 67.04
disease_sub_category 11.75 51.43 19.13
stage 23.44 85.80 36.82
BNAMIR 1.29 7.38 2.20
phenotype 22.43 51.03 31.16
total_sample_number 74.95 75.11 75.03
patient_number (case) 74.95 75.11 75.03
age(case) 87.77 87.96 87.86
gender(case) 99.37 100.00 99.68
ethnicity (case) 55.56 71.43 62.50
sponsor & collaborator 66.67 88.93 76.20
phase 97.31 97.97 97.64
inclusion_criteria 73.05 83.41 77.89
authors 95.61 94.37 94.99
intervention_model 96.25 96.48 96.37
masking 97.92 98.38 98.15
primary_purpose 98.84 99.07 98.96
association 98.00 98.00 98.00
application 99.00 99.00 99.00

Table 4: Performances on ClinicalTrials.gov
Dataset over the 21 fields. BNAMIR indicates
biomarker_name_as_mentioned_in_reference.

Field Name Accuracy (%)
trial_status 56.21
title 93.89
year 86.11

Table 5: Performance of data extraction on ClinicalTri-
als.gov Dataset based on accuracy.

work for two document-level EE tasks: role-filler
entity extraction (REE) and relation extraction (RE)
to address the issue of long-term dependencies
among entities at the document-level. In this work,
the authors first formulate the task as a template
generation problem, allowing models to efficiently
capture cross-entity dependencies, exploit label se-
mantics, and avoid the exponential computation
complexity of identifying n-ary relations. Other
works such as Christopoulou et al. (2019) and Jia
et al. (2019) addressed the document-level rela-
tion extraction. Christopoulou et al. (2019) intro-
duced constructing a document-level graph from
sentence encoding, then extracting entity relations
from edge representations in the graph. Where,

Jia et al. (2019) proposed a layer classifiers-based
pipeline architecture to obtain hierarchical repre-
sentation of n-ary relations.

Li et al. (2022) proposed pubmedKB, a web
server designed to extract and visualize seman-
tic relationships between four biomedical entity
types: variants, genes, diseases, and chemicals.
pubmedKB uses state-of-the-art natural language
processing techniques to extract semantic rela-
tions from the large number of PubMed abstracts.
Wang et al. (2018) proposed a novel framework
CPIE (Clause+Pattern-guided Information Extrac-
tion) that incorporates clause extraction and meta-
pattern discovery to extract structured relation tu-
ples. Deng et al. (2021) addressed an extraction
of gene-disease association using a BERT-based
language model. Xing et al. (2018) proposed a
pipeline based approach to extract the relation be-
tween gene-phenotype from biomedical literature.

In contrast, our work is broader in the sense that
it addresses entity and relation-based extraction
along with entity linking based on external KB
from PubMed and ClinicalTrials.gov datasets. We
also introduce multi-class classification and pattern-
based approaches for data curation.

6 Conclusion

We propose BiomedCurator based on several data
curation approaches from biomedical literature.
Our approach is distantly supervised based ap-
proach to create training data. Besides, it follows
the state-of-the-art NLP techniques that extracts the
information from PubMed and ClinicalTrials.gov
articles and fill the 61 data fields. We also present
an interactive web application of BiomedCurator
to facilitate the biomedical research. Experimental
results on two datasets show that BiomedCurator
performs very well to extract the template fields
information in terms of both F-score and accuracy.
The BiomedCurator system is continually evolv-
ing; we will continue to improve the system as well
as to implement new functions such as n-ary rela-
tion extraction to further facilitate BiomedCurator
research.
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A Curated Data Fields

The overview of categories, fields, related natu-
ral language processing techniques (NLPT), and
descriptions are illustrated in Table 6. The first
and second columns indicate category and its fields
name. The third column stands for different NLP
approaches applied in each field. In this column,
PE, RE, EE, EL, and TC refer to pattern-based ex-
traction, relation extraction, entity extraction, entity
linking, and text classification-based approaches
are applied for data curation. Besides, Fixed Value
(FV) means a specific value in the curated data and
NA means Not Available at the moment. Fields
Descriptions are also added in column four.
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Category Field Name NLPT Description
reference_type FV Source of the article. Ex: PubMed or Clinical trial

Reference reference_id PE Unique Pubmed ID or Clinical trial id of the curated document
Information associated_clinical trials PE Provides the associated clinicaltrial ids for which the results were published

s_no NA Each assertion has given a unique number
drug/therapy RE Captured the list of authors focus drug/s of case group.

reference_drug/therapy RE Captured the list of authors focus drug/s of reference group.
treatment_details NA Detail description of the treatment, including but not limited to patient

details, drug/therapy, dose/cycles, duration, route, schedule, analysis.
dose RE It represents the concentration value of the drug used in the given reference

route of administration RE The route through which the drug is administered.
Intervention duration EE+PE Time period of the treatment.

Characteristics CAS id EL Chemical abstracts service registry number of the drug.
ChEMBL EL Unique id as provided by ChEMBL.

drug bank id EL Drug bank id for the given drug.
approved_drug NA Name of the drug which is approved by any approval authority.

approval_authority NA Name of the organization/institution has the authority to approve the respective drug.
Ex: FDA.

disease_name EE+PE Name of the focused indication for which the biomarker was studied.
Disease disease_sub_category EE+PE Represents the subtype or any state of the disease mentioned in the given reference.

Characteristics Stage PE Stages of the disease Eg: Stage I, II, III, IV, etc.
Grade PE Grading of the disease Eg: Grade I, II, III, IV, etc.

Histopathology EE Additional details of the disease mentioned in the article Ex: Stage, histopathology etc.
BNAMIR EE Complete name of the biomarker. Abbreviations are extended for ease of understanding.

marker_type EE Represents the type of the biomarker based on the techniques used to measure the
biomarker Eg: Biochemical, Genomic etc.

marker_nature EE Represents the chemical nature of the biomarker based on the techniques
used to measure the biomarker Eg: Protein, Gene, Lipid etc.

Biomarker Entrez id EL Unique ID as provided by the NCBI Entrez gene database for each gene.
Details Uniprot id EL Protein accession number of UniprotKB database.

type_of_variation EL Represents standard HGVS constructs unique for each variation.
rs_id EL Represents the unique reference number for each SNP at a specific position.

Taken from NCBI site – (dbSNP) Eg: rs763110.
HGVS Name EL Field describes nucleotide/DNA (c.) change as per the HGVS format

(the nucleotide/genomic numbering should be as in article only)
association TC Describes about the high level type/category of biomarker association with outcomes.

Associations are of 5 types: Gene - drug relationships; Gene - gene interactions; Gene -
pathway relationships; Gene - phenotype relationships; Gene - transcript information

marker_alteration EE Represents the type of alteration or measurement done for biomarker
Eg: Gene expression, Polymorphism, Biomarker level etc.

Biomarker type of alteration PE Represents the modification of the marker mentioned in the article i.e change of biomarker
association expression or levels. Eg: High; Low; Decreases; Association; Upregulation etc.

with outcomes phenotype TC Biomarker associates with any phenotype character, end point, outcome,
any physiological process and other biomarkers of the study sample.

phenotype_alteration PE Represents the state of change for the outcome variables which are
associated with the studied biomarker.

significance PE Represents the level of significance of P value between different groups
Eg: Non-significant or Significant.

p_value PE P value (Significance) between the different groups for comparison of biomarker
result values or any other values related to biomarker. Ex: P=0.016

application TC Denotes the utility of the biomarker for a given condition in a specific reference
(either clinical trial or pubmed article).

Utility author_conclusion TC Represents the utility of the biomarker from the author’s perspective in the given reference.
Yes indicates that author, in the reference, supports the application of the biomarker

for the given indication. No indicates that author in the reference does not
support the application of the biomarker for the given indication.

evidence_statement NA Gives the structured description of the application text of the
biomarker in a given condition specific to each reference and clinical status.

study_type (Clinical/PreClinical) PE Represents the status of the clinical study Ex: Clinical, Preclinical etc.
Cell line/ Model Name EE Represents the cell lines used in the preclinical

model/It represents the preclinical model Eg: Mouse, rat etc.
total_sample_number PE Denotes total number of participants from both study and reference sample group

in a particular study.
Study patient_number (case) PE To capture the study group sample size for the curated assertion from the article.

characteristics patient_number (reference) PE To capture the reference group sample size for the curated assertion.
age (case) PE Used to capture the study sample age from the article.

gender (case) PE Used to capture the gender for studied samples from the article.
ethnicity (case) EE This represents the nationality/ethnicity of the study group as stated in the article.

trial_status PE Current stage of a clinical study. Ex: Completed, Terminated etc.
Trial level sponsor & collaborator PE Sponsors/collaborators of the clinical study.

information phase PE Represents the clinical phase of the trial. Ex: 0, I, II, III, IV.
inclusion_criteria PE Description on the Inclusion criteria for the patients in the clinical study.
exclusion_criteria PE Description on the Exclusion criteria for the patients in the clinical study.

allocation PE Assigning trial subjects to treatment or control groups. Ex: Non-randomized, Randomised.
Study design intervention_model PE Type of intervention model from the study.

Ex: Single Group Design, Parallel Design, Crossover Design and Factorial Design.
masking PE Types of Masking include None, Open Label, Single and Double Blind Masking.

primary_purpose PE Represents purpose of the study primarily under taken for the research.
Additional details pathway_name EL+PE Names of the pathways in which a biomarker has a role. Taken from KEGG database.

Source FV whether the curated data is from full-text or abstract of the article or ClinicalTrials.
Title PE Title of the article.

Reference Authors PE Authors of the article.
details Article/URL PE Name of the journal or specific links from which the information is captured

Year PE Year in which the given article published Ex: Article published year.
for Pubmed articles and First received year is considered for Clinicaltrials.

Table 6: An overview of category, field with corresponding description, and methodology.
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Abstract

We present a tool, Text Characterization Toolkit
(TCT), that researchers can use to study char-
acteristics of large datasets. Furthermore, such
properties can lead to understanding the influ-
ence of such attributes on models’ behaviour.
Traditionally, in most NLP research, models are
usually evaluated by reporting single-number
performance scores on a number of readily
available benchmarks, without much deeper
analysis. Here, we argue that – especially
given the well-known fact that benchmarks of-
ten contain biases, artefacts, and spurious cor-
relations – deeper results analysis should be-
come the de-facto standard when presenting
new models or benchmarks. TCT aims at fill-
ing this gap by facilitating such deeper analysis
for datasets at scale, where datasets can be for
training/development/evaluation. TCT includes
both an easy-to-use tool, as well as off-the-shelf
scripts that can be used for specific analyses.
We also present use-cases from several differ-
ent domains. TCT is used to predict difficult
examples for given well-known trained mod-
els; TCT is also used to identify (potentially
harmful) biases present in a dataset.

1 Introduction

NLP technology has progressed tremendously over
the recent decades with significant advances in al-
gorithms and modeling. Yet, by comparison, our
understanding lags behind significantly for datasets
(including all datasets types in the model life cycle:
training, validation, evaluation) that contribute to
model performance. This is mostly due to the lack
of frameworks, methods, and tools to draw insights
into datasets, especially at scale.

Most NLP models, to date, are evaluated us-
ing a relatively small number of readily available
evaluation benchmarks, that are often created au-
tomatically, or via crowd-sourcing (e.g. Bowman
et al., 2015; Wang et al., 2018; Williams et al.,
2018; Zellers et al., 2018). It is well-known that

most popular (evaluation) datasets are rife with bi-
ases, dataset artefacts and spurious correlations,
and are prone to be solved with shortcuts (Gard-
ner et al., 2021; Kiela et al., 2021). Presenting
models with adversarial examples for which those
biases or correlations do not hold, often results in
stark performance drops (e.g. Linzen, 2020; Mc-
Coy et al., 2019; Jia and Liang, 2017; Chen et al.,
2016; Tsuchiya, 2018; Belinkov et al., 2019). At
best, using datasets with such known issues might
result in overestimation of a models’ capability on
the task in question, which may not be reflective of
how well they can execute this task in more realistic
scenarios. More worrying, however, is that training
or finetuning on datasets that contain biases and
artefacts may result in models implementing unde-
sired, biased behaviour (e.g. Rudinger et al., 2018;
Blodgett et al., 2016).

Additionally, datasets are usually treated as ho-
mogeneous collections of text, performance for
which is captured in a single number – even though
there is often a substantial difference between the
difficulty/complexity of different examples in a
dataset (e.g. Sugawara et al., 2022). Research pa-
pers rarely report thorough analysis of performance
broken down by characteristics of the data set ex-
amples ignoring underlying patterns performance
numbers may reflect. The problem is exacerbated
by the pervasiveness of benchmarks coupled with a
leaderboard competitive culture, where what counts
most is system rank.

In part, this may be due to the fact that deeper
analysis of results – especially when a number of
different datasets is involved – is complex and time-
consuming, and there are no standard frameworks
or protocols that practitioners can resort to. The
problem is even more pervasive, where we curate
datasets for development and evaluation. How we
curate, create, select data plays a critical role in un-
derstanding our models. Many NLP models (even
beyond text) require up/down sampling of specific
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types of data. These processes should rely on prin-
cipled characterization of data for any given model.

To this end, we believe that the existence of a
standard toolkit that provides an easy to use set of
tools and metrics allowing researchers to analyze
and systematically characterize datasets, at scale,
involved in the model life cycle, while gaining
insights into the relationship between model per-
formance and data properties could become more
common place.

In this paper, we introduce the Text Character-
ization Toolkit1 (TCT), which aims to enable re-
searchers to gain a detailed understanding of the
datasets and models they create – with minimal
effort. TCT is inspired by the Coh-Metrix toolkit
(Graesser et al., 2004), a collection of over 100
diverse text characteristics intended for use for text
analysis in various applications. TCT offers these
capabilities at scale by design. While TCT can
process a dataset of 20000 paragraphs in less than
a minute on a MacBook Pro laptop, the very same
library, for instance, can also be used as part of a
distributed PySpark pipeline to compute text char-
acteristics for a full snapshot of Common Crawl
(3.1B web pages) in a matter of hours. While text
characteristics in TCT are currently implemented
for the English language only, the framework is
designed to scale to any new language via configu-
ration of new resource files and SpaCy backends.

In this paper we present:
1. A repository of text metrics that can help re-

veal (latent) patterns in datasets coupled with
model performance on these datasets;

2. A set of off-the-shelf analysis tools that re-
searchers can use in a simple notebook to
study properties of the dataset and the influ-
ence of those properties on model behaviour;

3. A framework that enables the community to
share, reuse and standardize metrics and anal-
yses methods/tools;

4. Use cases that demonstrate the efficacy of
TCT in practice covering Language Model
prompting, Translation, and Bias Detection.

With these contributions, we aspire to help the
NLP community in particular and the AI commu-
nity at large improve how we assess NLP models,
and get closer to a scenario where providing de-
tailed results’ analyses becomes the standard for
NLP research. Equally important, we believe that

1https://github.com/facebookresearch/text_
characterization_toolkit

Figure 1: Text Characterization Toolkit extends model
evaluation to provide insights about the role of data.

TCT could be an effective tool for data selection
for both training and evaluation, in particular at
scale.

2 [TCT] Text Characterization Toolkit

TCT consists of two main components:
• A framework for defining and computing text

characteristics.
• A collection of analysis tools that help users

interpret text characteristics and evaluate re-
sults with respect to these characteristics.

As illustrated by Figure 1, the workflow of ex-
tending a standard evaluation process with TCT is
typically the following:

1. Given a dataset, extract text fragments from
each data point into a file. For instance, a
QA dataset comprising text fragments could
be individual questions, whereas in document
summarization, the text fragments would be
the documents themselves.

2. Using the TCT command line tool, compute
the characteristics of the text fragments and
dump the results in a file. Furthermore, one
might use the default characteristics already
included in the framework or define their own
specific metric in a new configuration file.

3. Create a Python notebook and include the
TCT library. Using tools from this library
load the computed characteristics and other
evaluation specific data, then use some of the
analysis tools provided by the framework: one
might analyze the dataset itself (e.g. to iden-
tify spurious correlations or biases) or jointly
analyze model evaluation metrics and text
characteristics (e.g. through correlation analy-
sis between TCT features and models’ evalua-
tion set accuracy).

4. Use the results of the analysis to improve the
dataset, the model, or the evaluation protocol
– for example by extending evaluation data
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Category Example Metrics

Descriptive Word Count
Sentence Length

Lexical Diversity Type-Token Ratio
MTLD

Complexity Left Embeddedness
# of NP modifiers

Incidence Scores Different POS tags
Types of connectives

Word Property Age of Acquisition
Concreteness

Table 1: Categories of characteristics currently
implemented. See Appendix A for an exhaustive list.

with examples where a model is expected to
perform poorly or focusing evaluation on a
challenging subset of the test data.

Concrete examples of the workflow above are
described in §3 and in Appendix B. The rest of this
section provides more details on the two important
components of the framework.

2.1 Text Characteristics
While the majority of the characteristics found in
TCT is motivated by metric classes in Coh-Metrix
(Graesser et al., 2004), we have included new data
bases for existing metrics and added entirely new
metrics. At the time of writing, there are 61 charac-
teristics implemented in TCT. An overview of the
main categories of currently implemented charac-
teristics can be found in Table 1. The toolkit pro-
vides a standardized framework to implement, con-
figure, and compute these metrics. Adding a new
metric is as simple as implementing two Python
functions: one that loads any required resource
(such as a word database) and initializes computa-
tion, and one that computes the metric given these
resources and an input text.

2.2 Analysis tools
To further decrease the effort required to carry out
text characteristics based analysis, we provide an
initial set of analysis tools that users can use out
of the box. We encourage users to contribute their
own implementations of TCT-based analyses to
the toolkit, to allow for re-use in the future de-
velopment of datasets and models. The current
functionality of the toolkit includes:

1. Visualising distributions of different charac-
teristics;

2. Visualising a pairwise correlation matrix for
the characteristics, as illustrated in Figure 2;

Figure 2: An illustration of a correlation plot from TCT.
Users might find these plots valuable to find unexpected
correlations or to interpret results of multi-variable re-
gression models.

3. Visualising correlations between individual
characteristics and outcomes (e.g., accuracy),
as illustrated in Figure 4;

4. Fitting a model on all characteristics to out-
comes (logistic regression and random forests
are supported currently) and analyzing a
model’s predictive power and coefficients.
This is illustrated in Figure 3.

3 Example Use Cases

In order to demonstrate the ability of TCT to pro-
duce meaningful and actionable insights, we pro-
vide 3 examples of its use on real world data. For
each one of these use cases, a thorough description
of the experimental setup and results is included in
Appendix B and reference notebooks are provided
in the examples directory of the TCT repository.

Predicting Accuracy of OPT Baselines Open
Pre-trained Transformer Language Models (OPT,
Zhang et al. 2022) are a sequence of publicly re-
leased LLMs that span model scales from 125M to
175B parameters. While scaling thees models lead
to significant gains on numerous benchmarks, they
still occasionally produce results that would seem
trivially wrong to any human.

With the help of TCT, we attempted to better
understand the robustness of these models quantita-
tively. We use the multi-variable logistic regression
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(a) Model accuracy versus the regression output variable. Us-
ing the multi-variable regression tool can surface larger varia-
tions in model performance.

(b) TCT displays the most important feature coefficients to
help users understand what characteristics contributed to the
results shown in Figure 3a

Figure 3: Results from the TCT multi-variable regres-
sion analysis tool. Screenshots taken from the OPT
analysis described in §3.

analysis tool to fit a model that predicts the ac-
curacy of the 6.7B parameter OPT model on the
HellaSwag common-sense inference task (Zellers
et al., 2019) based on simple characteristics such
as mean word length and concreteness. Using this
model we can identify subsets of the test data with
model accuracy as low as 40% and as high as 90%
– shown on Figure 3.

Fluctuations in Translation Performance Us-
ing TCT we show how translation performance
of the NLLB model (Costa-jussà et al., 2022) us-
ing the HuggingFace pipeline (Wolf et al., 2019)
fluctuates as a function of sample characteristics,
like the number of sentences - Figure 4 shows the
output of TCT in this analysis. This performance

Figure 4: Model performance of a translation model in
function of various characteristics of the text translated,
produced by the TCT single-variable analysis tool. Ap-
pendix B.3 describes the experimental setup in detail.

heterogeneity can be fixed by segmenting sentences
before using the pipeline, showing that TCT can
help debug model pipelines even with many layers
of abstraction.

Gender Bias in Co-reference Resolution By
computing genderedness metrics on co-reference
labels and using these metrics as inputs to the anal-
ysis tools, we reproduce the results of Zhao et al.
(2018) showing that models perform much worse
when the stereotypically associated gender of an oc-
cupation does not match the gender of the pronom-
inal reference.

4 Related Work

There exist several tools that offer similar func-
tionality to TCT in some specific respects. Data-
Lab (Xiao et al., 2022) is a tool for detailed data
analysis that, among other things, allows users to
inspect datasets through the lens of a few text char-
acteristics such as text length, lexical diversity and
gender-related features. The Know Your Data2

tool allows for inspection of image data, it sur-
faces spurious correlations, biases and imbalances
in datasets. However, both tools do not connect
model behavior to properties of datasets.

Collins et al. (2018) predicts overall hardness
of classification datasets based on label statistics
and a few text characteristics such as readability

2https://knowyourdata.withgoogle.com/
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and lexical diversity. ExplainaBoard (Liu et al.,
2021) focuses on model performance analysis and
provides a model performance breakdown by sim-
ple attributes of data points such as text length,
providing a functionality most similar to our work.

Our toolkit distinguishes itself by including a
much wider variety of text characteristics. As a
concrete example, ExplainaBoard does not provide
features similar to WRDPRP2 (personal pronoun
incidence), WRDPOLc (mean word polysemy) or
DESSC (number of sentences per text), each play-
ing an important role in our chosen use cases anal-
yses described in §3. TCT also features a multi-
variable analysis tool that can identify larger varia-
tions in model performance compared to simpler,
single-variable analyses.

By packaging our toolkit as a simple Python
library used in notebooks – in contrast to the pre-
viously described feature-rich systems – we also
intend to minimize the effort needed to both use it
as well as contribute to it (eg. crowd sourcing more
functionality).

The Coh-Metrix tool (Graesser et al., 2004) col-
lected the most diverse set of text characteristics to
our knowledge, designed for various use cases in
linguistics and pedagogy. However, the tool, devel-
oped in 2004, is slow as it is designed to process
a single document at a time, relatively difficult to
access, and the underlying word databases are out-
dated. Our toolkit aims to make a subset of the
Coh-Metrix metrics easily accessible to the NLP
community, while simultaneousy addressing the
scale impediment noted in the original Coh-Metrix
tool.

5 Future Work

As illustrated in §2 we envision TCT to be a frame-
work and an associated tool that allows for com-
munity contributions, crowdsourcing even more
functionality and use cases. Future work involves
usage of the tool:

Firstly, we encourage creators of new datasets
to use TCT as a data annotation tool, to extract a
wide range of dataset statistics in a straightforward
manner, and report about them in academic publi-
cations for transparency. Such statistics could be
included in datasheets and data cards (Gebru et al.,
2021), and they can aid in outlier detection during
data (pre-)processing and cleaning.

We also prompt dataset creators to perform sta-
tistical analyses capturing which features are pre-

dictive of the gold targets before further training
computational models, to ensure one is aware about
potential shortcut learning opportunities due to bi-
ases in the dataset. Naturally, not all correlations
are bad or avoidable – e.g. consider sentences con-
taining the word ‘fantastic’ that are likely to have a
positive label in sentiment analysis – but others are
good to be aware of when working with a dataset
– e.g. consider a natural language inference task
where all sentences with the label ‘entailed’ have
an atypical average word length. Such analyses
could be included in a ‘cautions’ section with a
dataset’s release.

A third type of usage would be by owners of
new models, that, on the one hand, use TCT to
measure whether some dataset characteristics are
predictive of success and failure by their model,
and, on the other hand, provide performance on
subclasses of samples. One may already know that
model performance is lower for longer sentences,
but what about performance on different readabil-
ity classes, classes with varying amounts of causal
connectives or different ratings for syntactic com-
plexity (e.g. SYNLE)? TCT will help answer those
questions. Understanding how the model perfor-
mance fluctuates for different data subsets provides
further understanding in model robustness, and can,
in turn, improve datasets’ quality if model owners
report back on biases identified in datasets.

Limitations

Text Characteristics in our framework have varying
levels of coverage depending on their type. Word
property based characteristics, for example, are
limited by the coverage of the word databases that
back them – this can be limited even for English.

Despite covering a sizeable number of metrics in
Coh-Metrix’s original toolkit, we still don’t cover
all possible relevant metrics for text processing, es-
pecially at different levels of granularity (eg. docu-
ment/paragraph/character levels).

We are mostly limited to the text modality which
could cater to speech data however TCT lacks anal-
ysis tools and metrics for more speech oriented
datasets such as prosody and syllables for instance.

While we plan to extend the framework to multi-
ple languages in the near future, language coverage
of backend word databases and NLP pipelines such
as WordNet (Miller, 1995) or SpaCy (Honnibal
et al., 2020) will affect the ability to scale the num-
ber of languages supported.
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Category Metric Key Description

Descriptive

DESPC Number of paragraphs

DESSC Number of sentences

DESWC Number of words

DESPL Average number of sentences per paragraph

DESPLd Standard deviation of paragraph lengths (in sentences)

DESPLw Average number of words per paragraph

DESSL Average number of words per sentence)

DESSLd Standard deviation of sentence lengths (in words)

DESWLsy Average word length (syllables)

DESWLsyd Standard Deviation of word lengths (in syllables)

DESWLlt Average word length (letters)

DESWLltd Standard Deviation of word lengths (in letters)

Lexical Diversity

LDTTRc Type-Token Ratio (TTR) computed over content words

LDTTRa Type-Token Ratio (TTR) computed over all words

LDMTLD Measure of Textual Lexical Diversity (MTLD)

LDHDD HD-D lexical diversity index

Syntactic Complexity

SYNLE Left embeddedness: average words before main verb

SYNNP Number of modifiers per noun phrase, mean

SYNMEDpos Average edit distance between POS tags of consecutive sentences

SYNMEDwrd Average edit distance between consecutive sentences

SYNMEDlem Average edit distance between consecutive sentences (lemmatized)

SYNSTRUTa Sentence syntax similarity, adjacent sentences, mean

SYNSTRUTt Sentence syntax similarity, all combinations, mean

Readability RDFRE Flesch Reading Ease (Peter et al.)

READFKGL Flesch-Kincaid Grade Level (Peter et al.)

Table 2: List of paragraph-level metrics currently supported by TCT

A List of Text Characteristics

Tables 2 and 3 list all currently implemented metrics along with a short description. For a large number of
metrics the Coh-Metrix website3 provides further details. For word property metrics we also document
the source database in Table 3.

3http://cohmetrix.memphis.edu/cohmetrixhome
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Category Metric Key Description

Incidence Scores

TOKEN_ATTRIBUTE_RATIO_ALHPA Alphanumerical tokens

TOKEN_ATTRIBUTE_RATIO_DIGIT Tokens consisting of digits

TOKEN_ATTRIBUTE_RATIO_PUNCT Punctuation tokens

TOKEN_ATTRIBUTE_RATIO_URL URLs

TOKEN_ATTRIBUTE_RATIO_EMAIL E-mail addresses

WORD_SET_INCIDENCE_WRDPRP1s First person singular pronouns

WORD_SET_INCIDENCE_WRDPRP1p First person plural pronouns

WORD_SET_INCIDENCE_WRDPRP2 Second person pronouns

WORD_SET_INCIDENCE_WRDPRP3s Third person singular pronouns

WORD_SET_INCIDENCE_WRDPRP3p Third person plural pronouns

WORD_SET_INCIDENCE_CNCCaus Causal connectives

WORD_SET_INCIDENCE_CNCLogic Logical connectives

WORD_SET_INCIDENCE_CNCTemp Temporal connectives

WORD_SET_INCIDENCE_CNCAdd Additive connectives

WORD_SET_INCIDENCE_CNCPos Positive connectives

WORD_SET_INCIDENCE_CNCNeg Negative connectives

WORD_PROPERTY_WRDNOUN Incidence score for POS tag ’PROPN’, ’NOUN’

WORD_PROPERTY_WRDVERB Incidence score for POS tag ’VERB’

WORD_PROPERTY_WRDADJ Incidence score for POS tag ’ADJ’

WORD_PROPERTY_WRDADV Incidence score for POS tag ’ADV’

Word Property

WORD_PROPERTY_WRDFRQc Mean Word frequency*, content words

WORD_PROPERTY_WRDFRQa Mean Word frequency*, all words

WORD_PROPERTY_WRDFRQmc Min Word frequency*

WORD_PROPERTY_WRDFAMc Mean Familiarity+, content words only

WORD_PROPERTY_WRDCNCc Mean Concreteness+, content words only

WORD_PROPERTY_WRDIMGc Mean Imagability+, content words only

WORD_PROPERTY_WRDMEAc Mean Meaningfulness+

WORD_PROPERTY_WRDPOLc Mean Polysemy†

WORD_PROPERTY_WRDHYPn Mean Hypernymy† (nouns)

WORD_PROPERTY_WRDHYPv Mean Hypernymy† (verbs)

WORD_PROPERTY_WRDHYPnv Mean Hypernymy† (verbs and nouns)

WORD_PROPERTY_AOA Mean Age of Acqusition (Kuperman et al.)

WORD_PROPERTY_AOA_MAX Max Age of Acqusition (Kuperman et al.)

WORD_PROPERTY_CONCRETENESS Mean Concreteness (Brysbaert et al., 2014)

WORD_PROPERTY_PREVALENCE Mean Prevalence (Brysbaert et al.)

WORD_PROPERTY_PREVALENCE_MIN Minimum Prevalence (Brysbaert et al.)

Table 3: List of word-level metrics currently supported by TCT. Common underlying word databases:
*SpaCy (Honnibal et al., 2020) +MRC (Coltheart, 2018) † WordNet (Fellbaum, 2010)
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(a) Sentence Count (b) Concreteness (c) Age of Acquisition

Figure 5: Correlations between text characteristics and accuracy for OPT experiments,

B Sample Use Cases

In this section we demonstrate how users can gain actionable insights on existing evaluation data using
TCT, with minimal amount of additional work. The examples provided below can be reproduced by
Python notebooks we included in the examples folder of the TCT repository.

B.1 Predicting Accuracy of OPT Baselines

Despite the recent success of large pre-trained language models (LLM), there are still ongoing debates
regarding how good they really are, and how to evaluate that. After all, LLMS such as PaLM (Chowd-
hery et al., 2022) or DeBERTa (He et al., 2020) have saturated the performance on benchmarks, even
outperforming human scores at times, but, at the same time, there still exist a myriad of seemingly trivial
scenarios in which they fail.

Experimental setup In this demonstration we offer an alternative approach: We take existing data from
the evaluation of the 6.7B OPT baseline (Zhang et al., 2022) then attempt to use simple data characteristics
to identify interpretable subsets of the dataset on which OPT’s performance substantially differs from its
overall high accuracy. We use the HellaSwag task (Zellers et al., 2019),4 a common-sense inference task
that is trivial to solve for humans but challenging for LLMs.

To evaluate OPT models on this task, prompts corresponding to different choices were scored with the
LLMs and the answer with the lowest perplexity was considered to be the choice of the model. For each
data point in the test set, we consider two text fragments: the prompt corresponding to the correct answer
and the concatenation of all the prompts corresponding to incorrect answers (see Table 6 for an example).
With a single command using the command_line_tool.py we compute characteristics for the extracted
texts and load the results into a notebook. We also load the result of the model evaluation, which is a
single binary variable per data point describing whether the model predicted the right answer.

Results First, we inspect correlations between individual metrics and model performance. This analysis
tool orders data points with respect to a particular TCT metric, groups them into buckets of 100 data
points and computes model accuracy for each bucket. We find several different data characteristics that
show high correlation with model performance, for example number of sentences per prompt or average
concreteness (Brysbaert et al., 2014) of words. A visualisation of these results is shown in Figure 5.

Secondly, we employ the TCT class named PredictFromCharacteristicsAnalysis to fit a logistic
regression model using all characteristics to predict whether the model will yield a correct answer for
a particular data point. The tool computes the regression scores on a held out part of the dataset and
visualizes model accuracy with respect to this score per data bucket, as shown in Figure 3a. We find more
variance between the best and worst performing buckets compared to the single variable analysis. On the
bucket with the highest predicted score the OPT baselines yield a 0.9 accuracy, but in the lowest scoring

4We chose the HellaSwag task for this demo as it had sufficiently many examples in the test set and showed the most
interesting correlations out of all tasks the model was evaluated on prior.
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Correct Prompt Roof shingle removal: A man is sitting on a roof. He starts pulling up roofing on a roof.

Incorrect Prompts
Roof shingle removal: A man is sitting on a roof. He is using wrap to wrap a pair of skis.
Roof shingle removal: A man is sitting on a roof. He is ripping level tiles off.
Roof shingle removal: A man is sitting on a roof. He is holding a rubik’s cube.

Figure 6: Example of text features extracted from the HellaSwag evaluation of the OPT model

bucket the accuracy is below 0.4, which approaches the random baseline of 0.25. To interpret the fitted
regression model, we inspect its coefficients,5 illustrated in Figure 3b. Interestingly, coefficients for given
characteristics often yield opposite signs associated with the correct and incorrect answers, indicating
that they are in fact, on their own, predictive of the correctness of an answer. For instance, the DESWLlt
metric (mean number of letters per word) has coefficients of -0.44 and 0.62 for the correct_prompt and
incorrect_prompts features, respectively.

We argue that such analyses are useful from two perspectives: i) Analyses that uncover patterns in what
characteristics make examples difficult help us improve our understanding of how well a model has in
fact learned the task we intended it to. This, in turn, provides a better estimate of the wider applicability
of a model. ii) If one knows which text characteristics lead to poor performance from LLMs, one could
improve the dataset’s coverage for characteristics associated with low model performance – e.g. one could
curate data points including tokens with low concreteness scores.

Table 6, Figure 5 and Figure 3b illustrate the model analysis process described previously in this section.

B.2 Gender Bias in Co-reference Resolution Models
Second, we would like to illustrate how TCT can aid in identifying biases in NLP systems, by revealing
gender bias in coreference resolution systems.

Experimental Setup We use a coreference resolution model proposed by Lee et al. (2017) and the
WinoBias dataset (Zhao et al., 2018). The model is evaluated using exact match to compute accuracy. To
capture gender statistics, we configure a new Word Property metric “genderedness” based on Labor Force
Statistics6 and compute it on two text fragments (the two spans of the ground truth co-reference). A higher
genderedness score represents that the occupation is associated with a female stereotype and vice versa.
For pronominal references, we assign 100 to female ones (e.g. “she”, “her”) and 0 to male ones (e.g. “he”,
“his”). We add the difference between the two characteristics as an additional feature for analysis.

Results The analysis obtained by the TCT toolkit is illustrated in Figure 7. There is a negative
correlation between model accuracy and the genderness difference between the occupation and the
pronominal reference. In other words, if a female stereotypical occupation and a male pronoun co-occur
in a test example (e.g. “nurse” and “he”) or a male stereotypical occupation and a female pronoun (e.g.
“constructor” and “she”) co-occurs, the model is more likely to make a wrong prediction.

B.3 NLLB: Interpretable Fluctuations of Translation Performance
A third example of a task that could benefit from using TCT in analyses is Neural Machine Translation
(NMT). We apply TCT to source sentences to identify patterns in translation success for an off-the-shelf
NMT system.

Experimental Setup To investigate performance heterogeneity in translation models, we use the No
Language Left Behind 1.3B distilled model and the English-Russian validation split of the multi-domain
dataset from the same work (Costa-jussà et al., 2022). We use the HuggingFace transformers translation
pipeline for easy inference (Wolf et al., 2019). We extract translations using the pipeline, and employ
the chrf++ metric to measure success per individual data point (Popović, 2017).7 Using the toolkit we
characterize the English source data with default settings.

5Since inputs to the regression were scaled to unit variance, direct comparison of coefficients is meaningful
6https://github.com/uclanlp/corefBias
7Note: we use this as it has better per data point properties than other corpus statistics like BLEU (Papineni et al., 2002).
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Figure 7: Genderness difference hurts the performance of a coreference resolution model.

Results Surprisingly, we find significant heterogeneity as seen in Figure 4. In particular, more sentences,
more verbs, polysemy for content words, and chat-like messages lead to performance drops. Conversely,
more nouns and words with more syllables correlate with better chrf++ scores.

The driver of this heterogeneity may be deceptive. The HuggingFace translation pipeline does not
keep track of the underlying model’s training distribution. It would not know that the NLLB model was
trained on sentence pairs and the evaluation data contains multi-sentence datapoints. An appropriate way
to match the training distribution would instead be to split by sentences and translate individual sentences
before re-concatenating. In fact, if we take this approach, we find that performance levels out with the
biggest improvements coming from the largest sources of heterogeneity (Figure 10). This demonstration
shows the power of TCT for debugging model workflows. With many layers of abstraction, it is easy to
forget that underlying models are likely trained on a particular data distribution.

Additional Details Figure 8 shows the distribution of data-characterized performance for NLLB using
the HuggingFace translate tool with no modification (other than increasing the maximum generated length
to 512 tokens). Figure 9 shows the distribution of chrf++ scores for NLLB with sentence segmentation8.
We pass each sentence in a batch to the segmentation pipeline before re-concatenating them by adding
a space between sentences (since we only use English and Russian for this demonstration this is an
appropriate concatenation method). Finally, Figure 10 shows the treatment effect. For each sentence
we subtract the segmented NLLB chrf++ score from the unsegmented chrf++ score. Then we run the
TCT toolkit on this outcome measure. We show that performance increases are such that they level out
performance heterogeneity to some extent.

In Table 4 we demonstrate how the unsegmented NLLB model can drop out entire portions of the
translation in multi-sentence validation datapoints. This is likely what leads to performance drops. The
segmented version fixes this. As such, we suggest that TCT should be run at eval time even when using a
known model that has been validated in the past. Different environmental setups can lead to failure modes
such as this one that can be difficult to detect without data characterization.

8Sentence segmentation by SpaCy (Honnibal et al., 2020)
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Figure 8: Top: A regression on the chrf++ score of a model pipeline using NLLB with no segmentation. Positive
values indicate improved score, lower values indicate a negative correlation with score. Bottom: As can be seen
there is even heterogeneity in treatment effects for several data characteristics.
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Figure 9: Top: A regression on the chrf++ score of a model pipeline using NLLB with segmentation. Positive values
indicate improved score, lower values indicate a negative correlation with score. Bottom: As can be seen there is
still some heterogeneity in treatment effects for several data characteristics but they have significantly flattened.
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Figure 10: Top: A regression on the per-sentence treatment effect between a translation run through NLLB with and
without sentence segmentation. Positive values indicate correlation with improved chrf++ from segmentation over
the base model. Bottom: As can be seen there is even heterogeneity in treatment effects. Sentence splitting has the
most positive effect correlation with the chat corpus and for the evaluation points with many sentences.
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English Yeah that would be so fun! It’s really easy honestly, there’s a bit of skill
with steering but once you get the hang of it it feels super natural.

True Да, было бы очень весело! Честно говоря, это очень просто, нужен
небольшой навык руления, но как только вы поймете, ощущение
будет очень естественным.

NLLB Да, это было бы так весело! но как только ты научишься управлять,
это будет очень естественно.

NLLB (seg) Да, это было бы так весело! Это очень просто, честно говоря,
требуется немного мастерства, но как только ты научишься
управлять, это будет очень естественно.

English
That’s right. How is your family? how many of you are there?

True
Точно. Как твоя семья? Сколько вас?

NLLB Как ваша семья?
NLLB (seg)

- Да, это так. Как твоя семья? Сколько вас там?

Table 4: NLLB without proper segmentation misses entire portions of the context. For example, the red-highlighted
portion is missing from the non-segmented NLLB text, but present elsewhere.
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Abstract

Meetings are a universal process to make de-
cisions in business and project collaboration.
The capability to automatically itemize the de-
cisions in daily meetings allows for extensive
tracking of past discussions. To that end, we de-
veloped Meeting Decision Tracker, a prototype
system to construct decision items comprising
decision utterance detector (DUD) and deci-
sion utterance rewriter (DUR). We show that
DUR makes a sizable contribution to improving
the user experience by dealing with utterance
collapse in natural conversation. An introduc-
tion video of our system is also available at
https://youtu.be/TG1pJJo0Iqo.

1 Introduction

Obtaining a brief description and salient contents
of meetings is a functionality that can certainly
help business operations. Although automatic
speech recognition enables us to transcribe meeting
records automatically, its transcription is possibly
much more verbose, noisy, or collapsed, and is far
from being utilized in its raw form. Previous re-
search attempted to extract important information
from dialogue, such as decision-making utterances,
(Bak and Oh, 2018; Karan et al., 2021), extrac-
tive summaries of online forums (Tarnpradab et al.,
2017; Khalman et al., 2021), or group chat threads
(Wang et al., 2022). Another study, Lugini et al.
(2020) presented a discussion tracker to facilitate
collaborative argumentation in classroom discus-
sion by visualizing discussion transcription.

However, extracted utterances are usually incom-
plete and difficult to understand due to ellipses and
co-references in conversations (Su et al., 2019).
Figure 1 (the right) shows an example of a partial
dialogue ending with a decision-related utterance in
our dataset. This shows that objects or indicatives
in utterances in natural conversations are usually
ambiguous, and the meaning of decision-related

∗∗Corresponding Author.

utterances has a strong dependency on context. Fur-
thermore, especially in Japanese, the format of the
spoken language is often far apart from the written
language because of frank expressions and many
filler phrases. This nature reduces user experience
with the naive use of utterances extracted from dia-
logues. In response to this, Incomplete Utterance
Restoration (IUR) (Pan et al., 2019; Su et al., 2019;
Huang et al., 2021; Inoue et al., 2022) handles the
problem where the model rewrites and restores in-
complete utterances by considering the dialogue
context with promising results. However, we have
yet to see IUR models applied for practical use in
actual business applications.

This paper presents Meeting Decision Tracker
(MDT), a system that automatically generates the
itemized decision list from meeting transcription.
Given the meeting transcription, MDT detects
decision-making utterances and rewrites them to
the de-contextualized utterance, i.e., the written
form with omissions restoration and filler removal.
Such a capability allows users to look back at the
previous meeting contents quickly and have asyn-
chronous communication with no effort from a
minute taker. The system has three crucial charac-
teristics.

• By combining modules for extracting and
rewriting decision-related utterances, the sys-
tem has a down-to-earth strategy to generate
itemized decision lists from meeting transcrip-
tion. The combination allows us to investigate
the role of IUR in a bigger context with sig-
nificant impact for real business applications.

• Besides the ordinary task of IUR, our rewriter
handles the translation from the spoken lan-
guage to written language by filtering filler
phrases. It enables users to understand the
decision item at a glance, which contributes
to improving the user experience.

• Although our system is originally built for
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Figure 1: The data flow in our system and the conversation example. The red in the dialogue shows information
omitted in the decision-related utterance. The blue shows information to be restored by Decision Utterance Rewriter.

decision utterance itemization, the proposed
method can be applied as a general solution
for information extraction from the dialogue.

2 System Design

The overall system architecture of Meeting Deci-
sion Tracker (MDT) is depicted in Figure 1 (the
left). The main function of MDT is to generate
decision items with de-contextualized representa-
tions from the transcription of daily business meet-
ings. MDT comprises of two modules: Decision
Utterance Detector (DUD) and Decision Utterance
Rewriter (DUR). The detector extracts a decision
list from meeting transcription and the rewriter
translates (rewrites) the list to the written format.
Figure 1 (the right) shows the example pair of the
input and expected output for the system. The
example indicates two points. First, the transcrip-
tion contains decision-related utterances that can
be used to summarize the content of the meeting.
Second, the decision utterance itself is usually not
self-consistent and comprehensible only after the
utterance is restored by DUR. The next sections
introduce the detector and rewriter.

2.1 Decision utterance detector
The first step of the detector is to detect decision-
related utterances from transcription. We formulate
the detection as a sequence labeling problem on
the utterance level and describe the detector in two
steps: input representation and classification.

Input representation The input uses the
sequence of utterances {u1, u2, ..., uw} for
the sequential classification, where w is
the window size. Following Cohan et al.

(2019), we used the input representation
{[CLS], u1, [SEP], u2, [SEP], ..., uw, [SEP]},
which contains the [CLS] token at the head of the
whole input and [SEP] tokens at the tail for each
utterance. Then the input was encoded by BERT
(Devlin et al., 2019) for contextual representation.
We set the window size as 5 empirically based on
the observation of results.

Classification There are several studies have ad-
dressed the decision utterance detection as a clas-
sification. Fernández et al. (2008) defined the
decision-making sub-dialogues as being composed
of several dialogue act tags such as the introduc-
tion of issue, decision adopted/proposed/confirmed,
agreement. Murray and Renals (2008) created ab-
stract describing decisions, actions and problems
of meeting and then associated the utterances used
for abstract as the action item utterances. Chen and
Hakkani-Tur (2016) classified action items in the
token level following the semantic intent schema.

In this study, the task of decision-related utter-
ance extraction was formulated as binary sequence
labeling on the sentence level, different from Fer-
nández et al. (2008). This is because we want to
keep a simple setting to confirm the efficiency of
IUR in actual cases. To take advantage of con-
text, we followed Cohan et al. (2019) to jointly en-
code consecutive utterances. Preceding utterances
leading to decision are essential because followed
by Fernández et al. (2008), we hypothesize that
the particular kinds of patterns of conversation co-
occur with decision. Utterances following decision
are also important since affirmative response by
others supports the confidence of detection.

For sequence labeling, the model uses the en-
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coding of [SEP] tokens corresponding to each ut-
terance and predicts tags (decision or not) by a
feedforward network. Different from Cohan et al.
(2019), we used only the prediction for the second
utterance from the back in the input and slide the
window with the stride of 1 over conversation to
obtain the predictions for all utterances.

2.2 Decision utterance rewriter
After extracting decision-related utterances, the
rewriter translates the extracted utterances from
the spoken to written language to improve user ex-
perience. We describe the rewriter in two steps:
input representation and rewriting.

Input representation The input of DUR
comprises of utterances {u1, u2, ..., un} where
u1, ..., un−1 is contextual dialogue and the tail ut-
terance un is the decision-related utterance. For in-
put representation, we followed Inoue et al. (2022)
to use three types of special tokens, [X1], [X2]
and <\s>. We inserted [X1] after each utterance
in contextual dialogue ui for i = 1, .., n− 1, [X2]
after decision-related utterance un, and <\s> at the
tail of whole input as the EOS token. For inference,
DUR rewrites only the decision utterances detected
by DUD. For each decision utterance, we used pre-
ceding utterances, including up to 360 tokens by
the T5’s tokenizer as the contextual dialogue.

Rewriting JET (Inoue et al., 2022) was adopted
and fine-tuned on our dataset for utterance rewrit-
ing. JET uses T5 (Raffel et al., 2020) for the picker
and writer which were jointly trained for picking
important tokens and text generation. The picker
picks up important tokens from dialogue context
which contribute to rewriting. The two components
are jointly optimized by sharing parameters of the
T5’s encoder, which allows the model to restore
omitted information while keeping the capability
of abstractive text generation to translate from the
spoken to written form with fillers removal.

3 Evaluation

In this section, we first show data annotation for the
detector and rewriter, and then describe the settings
used for experiments. We finally report the results
and discussion of the detector and rewriter.

3.1 Dataset
Decision utterance detector Our Japanese
dataset was constructed based on multi-party con-
versations with various users’ intents and decisions

in real-world business scenarios. We recorded
client meetings in a variety of fields, including
banking, finance, and insurance, and accurately
transcribed all speeches including fillers.

For decision detection annotation, as stated in
Section 2.1, we adopted the schema of binary to de-
cide whether an utterance is a decision (labeled by
TD) or not (non-TD). With this simple schema, we
aimed to extract decision-related utterances with
high coverage and relied on rewriter to restore the
contextual information involving decision.

To do the annotation, we asked three annotators
who have at least N2 Japanese skills to give a label
for each utterance whether it is a decision utterance
or not. N2 Japanese members are those who have
ability to understand Japanese used in everyday
situations and in a variety of circumstances to a
certain degree.1 We combined three annotators to
create three groups in which each group has two
annotators. To reduce resources and avoid specific
bias, each group was assigned a small part of the
dataset for annotation. To maintain label quality,
annotators prepared a list of the specific expres-
sions frequently used in decision utterances such
as "I decided to...", "I have to..." and shared it be-
tween them. It comes from the observation that
utterances containing the specific expression tend
to be decision-related utterances. Each utterance
was tagged by two annotators and if the tags dif-
fered, the final tag was determined after reconsider-
ation. The Cohen Kappa agreement computed over
the three groups is 0.672, showing that the agree-
ment is moderate. It is understandable because
transcription is quite noisy compared to common
data types, e.g., news. The annotated data was di-
vided into training, validation, and testing sets by
meeting units and contains 27006, 3030, and 1425
utterances. The dataset is highly imbalanced where
decisions only account for 6% of the entire data,
creating challenges for classifiers.

Decision utterance rewriter We created the
dataset for DUR based on the DUD dataset. We se-
lected 1120 utterances tagged by TD and extracted
their preceding utterances containing up to 360 to-
kens. Two native Japanese annotators created the
rewritten version of decision utterances. Annota-
tors re-wrote decision utterances with three require-
ments: (i) restore omitted information extracted
from preceding utterances, (ii) remove fillers, and
(iii) convert from the spoken form to written form.

1https://www.jlpt.jp/e/about/levelsummary.html
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To prepare a consistent dataset, annotators reused
the original words in contextual dialogue for rewrit-
ing as much as possible, rather than creating new
phrases. Annotators also checked rewriting each
other every 100 samples to align the quality.

3.2 Experimental settings
For the detector, we used pretrained BERT (Co-
han et al., 2019) (cl-tohoku/bert-base-japanese)
and fine-tuned MLP (dimensions 512, 400, 5) by
AdamW in 20 epochs with drop-out of 0.2, the
batch size of 16, and the learning rate of 5e − 5.
For rewriter, we trained JET with pretrained t5-
base-japanese T5 by AdamW with weight decay
of 0.01 in 70 epochs with the batch size of 6, the
leaning rate of 2e− 5, and the beam size of 5. All
models were trained on a single Tesla P100 GPU.

3.3 Results and discussion
Decision utterance detector We compared the
BERT model with two different task formulations:
sequential sentence labeling (SL) and sentence clas-
sification (SC). For sequence labeling, we used the
same model described in Section 2.1. For sentence
classification, we trained the model by using BERT
to predict the tag of the second utterance from the
back given the input utterances {u1,u2,...,uw}. It
follows input representation in Section 2.1 and uses
the [CLS] tokens for binary classification. To deal
with the imbalanced dataset, we also tested the
model with back translation (BT), a technique to
augment the data by translating original text data
into another language and then back into the origi-
nal language. We augmented the positive samples2

by seven times using seven languages.3

Table 1: Results of the Decision utterance detector.

Method Precision Recall F1
BERT (SC) 0.32 0.59 0.42
BERT (SC) + BT 0.33 0.58 0.42
BERT (SL) 0.48 0.55 0.51
BERT (SL) + BT 0.44 0.55 0.49

Table 1 shows the performance comparison. As
we can observe, sequence labeling (BERT (SL))
without using back translation is the best. BERT
(SL) achieves better performance than BERT (SC)
in general. This suggests that the knowledge of

2positive sample refers the consecutive utterances
u1, ..., uw with the decision tags for uw−2.

3We used Google Translate API with 7 languages, "vi",
"en", "zh-CN", "zh-TW", "fr", "de", "ko"

jointly predicting tags helps to better understand
the dependencies between utterances. So it leads
to improving the performance. Binary sentence
classification does not show high F-scores even
though the model uses context by using concatena-
tion. It suggests more sophisticated combinations
for improving the performance of binary sentence
classification. Back translation does not help to
improve the quality of the detector. This is because
utterances are quite broken in terms of writing and
contain fillers. It suggests other data augmentation
methods for conversation.

Decision utterance rewriter For the writing part,
we compared JET to T5 (Raffel et al., 2020) and
s2s-ft (Bao et al., 2021) due to its efficiency for
the IUR task. T5 uses a text-to-text framework pre-
trained on data-rich tasks with transformer encoder-
decoder. s2s-ft applies attention masks with fine-
tuning methods for the generation task. We did not
report the results of ProphetNet (Qi et al., 2020) and
UniLM (Dong et al., 2019) due to no pre-trained
models for Japanese; SARG (Huang et al., 2021)
and RUN-BERT (Liu et al., 2020) due to its low
accuracy for IUR (Inoue et al., 2022).

For evaluation, we followed Pan et al. (2019) to
use ROUGE, BLEU and f-scores.4 All methods
used the beam width of 5. To obtain the reliable
comparison, we also report the human evaluation
by using Text Flow and Understandability (Kiy-
oumarsi, 2015). Text Flow shows how the rewrit-
ten utterance is correct grammatically and easy to
understand. Understandability shows how much
the prediction is similar to reference semantically.
Three annotators (who are at least N2 Japanese
skills) involved the judgement and each annota-
tor gave a score (1: bad; 2: acceptable; 3: good)
to each rewritten utterance. The three evaluators
scored for each 190 testing samples and the final
scores were calculated by the average of scores
from the evaluators.

Results in Tables 2 and 3 show that JET is the
best for both automatic and human evaluation. This
is because the model was empowered by T5 and
the picker, that picks up important tokens for rewrit-
ing. T5 is the second best due to the strong pre-
trained model for Japanese. s2s-ft does not show
competitive performance compared to model with
text-to-text pre-training framework.

4We used sumeval for ROUGE and BLEU scores
(https://github.com/chakki-works/sumeval) and f-scores are
based on n-grams with the MeCab tokenizer.
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Table 2: Results of Decision utterance rewriter. RG is
ROUGE and BL stands for BLEU.

Method RG-1 RG-2 BL f1 f2
JET 56.71 36.60 25.97 36.81 21.52
T5 54.91 35.10 24.48 36.61 21.42
s2s-ft 47.71 29.52 19.91 27.41 15.74

Table 3: Human Evaluation

Method Text Flow Understandability
JET 2.53 1.90
T5 2.41 1.79
s2s-ft 2.16 1.55

Effectiveness of utterance rewriter A human
evaluation was conducted to see how the rewriter
contributes to improving the quality of decision
items. A good rewriter requires (i) to keep the
original contents before writing and (ii) to enrich
the content by supplementing omitted information.
Given the pair of the original decision utterance
(ODU) and the rewritten decision utterance (RDU),
we defined the scoring criteria in the range of 1 to
5 as the following.

1. RDU completely lost meaning of ODU.
2. RDU somewhat lost meaning of ODU.
3. RDU keep meaning of ODU but no additional

information.
4. RDU keep meaning of ODU with a few addi-

tional information.
5. RDU keep meaning of ODU with sufficient

additional information.

As far as the RDU lost the meaning of ODU, the
score would be 1 or 2 even there was any additional
information. In accordance with this criteria, we
collected the scores from the three evaluators by us-
ing the utterances before and after the rewriting on
test data from the DUR dataset. These three evalu-
ators are annotators who also worked to construct
the RDU dataset (Section 3.1).

Table 4: Effectiveness evaluation.

score 1 2 3 4 5
ratio 3.76% 7.04% 20.7% 27.7% 40.8%

Table 4 shows the result of evaluation with the
ratio of each score. It indicates 10.8% of samples
decrease in quality (score ≤ 2) while 68.5% of
samples increase in quality (score ≥ 4). The av-
erage score from the evaluators was 3.948, higher

than 3, showing that the quality of decision items
increases by our rewriter in general. These results
show our rewriter certainly contributes to better
user experience when displaying decision items
(Figure 2b).

4 Demonstration Scenario

We provide a UI5 that allows users to look back at
decision-making items in past meetings at a glance.
Especially in business settings, the accumulation of
daily meetings can be compactly stored as itemized
decisions to be accessed easily and support project
progress management and sharing.

(a) The uploaded meeting list.

(b) The decision items.

(c) The original transcription.

Figure 2: The screenshots from the system.

Figure 2 shows an example processed by our
system. The original decision-related utterance is
highlighted in blue in Figure 2c. Its content "Well,
I wonder if we can trust the number of, uh, prereq-
uisites come this month, well, we’ll check on the
number of containers to be replaced." is rewritten
and displayed in the first line of the decision list
in Figure 2b as the de-contextualized form, "Once
the prerequisites for processing at the Sapporo site

5The system: https://bit.ly/3sH6193; user and pwd are
Guest123@MDT.com. Please skip verification when login.
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arrive, the number of containers to be replaced
should be confirmed..".

The view of the first run is the list of the meet-
ings uploaded (Figure 2a). When users click on the
meeting from the list they intend to go back, so deci-
sion items for corresponding meeting are unfolded
(Figure 2b). Here we display de-contextualized de-
cision by DUR instead of original decision-related
utterances. Since the DUR module makes decision-
related utterances self-contained in the written lan-
guage format, displayed decision items are straight-
forward and user-friendly to quickly understand
them. To allow users to see the context of the
discussion, users can click on the decision item
and view the original transcription with a scrolling
position where the corresponding decision-related
utterance is at the bottom (Figure 2c).

5 Conclusion and Future Work

In this paper, we presented Meeting Decision
Tracker, a system to automatically itemise the
decision-making in daily meetings as well as the
tracking of past discussions. We showed the effec-
tive adaptation of IUR for decision-item tracking
in the context of actual business scenarios. MDT
not only displays itemized decision-utterances with
an easy-to-understand format, but also allows users
to go back and review the contextual dialogue de-
riving for the decision. Future work will firstly
improve the quality of the detector and rewriter.
Other potential directions will incorporate ASR
into MDT to create an end-to-end system and add
functions to remind users of detected decisions and
to search for past meetings.
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