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Abstract

The published materials science literature con-
tains abundant description information about
synthesis procedures that can help discover
new material areas, deepen the study of ma-
terials synthesis, and accelerate its automated
planning. Nevertheless, this information is ex-
pressed in unstructured text, and manually pro-
cessing and assimilating useful information is
expensive and time-consuming for researchers.
To address this challenge, we develop a Ma-
chine Learning-based procedural information
extraction and knowledge management system
(PIEKM) that extracts procedural information
(recipe steps), figures, and tables from materi-
als science articles, and provides information
retrieval capability and the statistics visualiza-
tion functionality. Our system aims to help
researchers to gain insights and quickly un-
derstand the connections among massive data.
Moreover, we demonstrate that the machine
learning-based system performs well in low-
resource scenarios (i.e., limited annotated data)
for domain adaption.

1 Introduction

The procedural information in materials science
literature aims to help researchers reproduce exper-
iments and gain insights to speed up the process
of new materials synthesis development (Vaucher
et al., 2020; Kononova et al., 2019). It takes the
form of recipes (e.g., Figure 4) and is normally de-
fined as a series of actions and their corresponding
conditions and results. Such information contains
imperatives, action verbs, steps of operations, and
constructions (Yang et al., 2019). This informa-
tion can be commonly found in method sections
of materials science research literature. However,
a great amount of scientific literature is published
every year by the growing materials science re-
search community. These well-established works
provide a foundation to enlighten researchers and
explore new materials development simultaneously.

Acquiring valuable information from the year-over-
year increasing scientific literature efficiently and
effectively remains one of the great challenges
(Kononova et al., 2021). The existing scholarly
literature search engines, such as Google Scholar
and Semantic Scholar, provide a good service to
discover the relevant publications, but they cannot
directly deliver the recipe steps of the experiments
that are included in the literature. Therefore, an
intelligent system that provides the functions of
procedural information searching and viewing, vi-
sualization, and analysis is highly demanded.

Information Extraction (IE) which is a sub-area
of Natural Language Processing (NLP) provides
an efficient way to automatically extract struc-
tured information from large unstructured text data.
Likewise, in the materials science domain, IE has
been applied to similar tasks, such as experimental
steps classification with unsupervised approaches
of probabilistic methods for inorganic materials
(Huo et al., 2019) and named entity recognition in
materials science domain (Kim et al., 2017; Yang
and Hsu, 2021). One of the biggest challenges
of extracting information in materials science arti-
cles is that the annotated datasets are insufficient
(Olivetti et al., 2020), which can be overcome by
machine learning, particularly transfer learning,
with pre-trained models obtained from other large
training datasets (Zhang et al., 2021). Transfer
learning can help with domain adaptation in mate-
rials science. We use transfer learning through fine-
tuning a pre-trained language model with datasets
in the materials science domain for chemical entity
extraction. The trained model is integrated into the
PIEKM system and performs well. This solves real
cases where the number of training data in the ma-
terials science domain is very small for information
extraction.

This paper presents PIEKM, a prototype of a
machine learning-based procedural information ex-
traction and knowledge management system based
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on materials scientific literature. The goal of
PIEKM is to demonstrate procedural information
extraction and information retrieval capabilities.
Three crucial contributions of PIEKM are summa-
rized as follows:

• This system helps researchers to obtain ma-
terials science-related procedural information
efficiently and effectively from massive publi-
cations.

• The system utilizes transfer learning ap-
proaches, such as chemical entity extraction,
which can solve the issues with the small size
of training dataset.

• The system is flexible and can be easily de-
ployed in other domains.

2 System Architecture

In this section, we describe the detailed architecture
of PIEKM system. The proposed system consists
of three modules: (A) Information Processing, (B)
User Interface, and (C) Query Processing and In-
formation Storage. Figure 1 shows the architecture
of PIEKM system. Figure 2 shows the home page
of PIEKM system. The details of each module are
introduced as follows.

Figure 1: Architecture of PIEKM system

(A) Information Processing Module: This
module processes the information from the digital
scientific literature. We focus on Portable Docu-
ment Format (PDF) digital scientific literature in
the PIEKM system. The input corpus of digital sci-
entific literature has been segmented into text and
non-text (figures, tables) parts (section 3.1). Then
the procedural information (section 3.2) and name
entities (section 3.3) are extracted from these texts.

Figure 2: Home page of PIEKM system

The extracted figures and tables are stored in the
corresponding folders. The rest of extracted text
information is stored in as a semi-structured format
in the database for quick query response.

(B) User Interface Module: This module is in
charge of responding to user queries and showing
the result corresponding to each query, providing
the preview of figures and tables of articles avail-
able in the system, and presenting the details of
every single article which includes procedural in-
formation and chemical entities.

(C) Query Processing and Information Stor-
age Module: This module is responsible for query
processing and information storage. The queries
are sent by users, then the answers would be ac-
quired from the information storage database and
returned back to the user interface module for dis-
play. The module supports different material com-
positions and morphology searches.

The PIEKM system is deployed by Flask1 frame-
work and written in Python. We use MongoDB2 to
store the information data and respond to queries.
The Plotly3 and Dash4 are used for interactive vi-
sualizations.

3 Information processing

In this section, we present the implementation
details of the information processing module in
PIEKM system. This module serves as a pipeline
including free-text extraction, procedural informa-
tion extraction, and chemical entity recognition.
The details of each stage are described as follows.

1https://flask.palletsprojects.com/
2https://www.mongodb.com/
3https://plotly.com/javascript/
4https://plotly.com/dash/
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3.1 Free-Text Extraction

The first step is to extract the text from the digi-
tal scientific literature, such as Portable Document
Format (PDF) files, which is not in readable for-
mat and cannot be processed by computer directly,
before processing it further. However, the very
diverse formats and structures of scientific litera-
ture corpora could make text extraction and section
classification difficult. The existing tools, such
as PDFMiner (Shinyama, 2007) and PDFReader
(Polshcha, 2020), may not fully extract the sec-
tions (e.g., methodology, experiment, results), and
leave them in the wrong order. This could signif-
icantly affect recipe extraction if the recipe steps
are not in sequential order. We, therefore, make
use of heuristic rule-based Metadata-Analytic Text
and Section Extractor (MATESC) (Maria et al.,
2018) system to solve the issues of different for-
mats. MATESC is a heuristic rule-based pattern
analysis tool that is used for extracting text and
classifying sections from the scientific literature.
The key purpose of this tool is to accelerate the
extraction of information and semantic knowledge
among variant formats of scientific literature across
different domains. We can extract text spans and
utilize metadata features (i.e., spatial layout loca-
tion, font type, and size) via MATESC. By doing so,
we are able to create grouped blocks of text which
can be then classified into groups and subgroups
depending on characterized paper sections.

MATESC extracts text including the metadata
features of all characters (i.e., font type and size,
spatial layout location) from PDF scientific articles
which are considered as input. It is worth noting
that the irrelevant text left in the margins of ev-
ery page of these documents can be automatically
removed from the extracted text based on the cor-
responding spatial layout location. Following that,
words will be placed into the appropriate line, and
then the different fonts and locations of characters
will be considered to differentiate between section
titles and section content. Lastly, the lines created
will be merged into paragraphs which will then
be ordered sequentially by the computation of the
bounding box of paragraphs.

MATASC has been evaluated with 300 scientific
articles, including 150 articles that are related to the
materials science domain, and the others are ran-
domly selected from online resources. All sections
of these 300 articles are extracted as ground truth
for MATASC performance evaluation. We choose

Table 1: Evaluation results comparison between
MATESC and GROBID

Article Name Accuracy F1
Random MATESC 0.85 0.57
Random GROBID 0.82 0.44
Relevant MATESC 0.88 0.72
Relevant GROBID 0.76 0.40

GROBID (Lopez, 2009) which is a prevailing tool
for metadata extraction from scholarly articles. The
Longest Common Subsequence (LCS) that com-
pares the longest common subsequence between
ground truth and automatic extracts serves as the
evaluation metric. Table 1 reports the performance
evaluation results.

3.2 Procedural Information Extraction

The procedural information takes the form of the
recipe in our PIEKM system. It describes the main
synthesis steps of experiments in materials science
literature. We use two approaches to ensure the
quality of extracted procedural information: rele-
vant synthesis sentence classification and checking
if a relevant sentence contains recipe entities.

Relevant sentences classification: We applied
the binary Naïve Bayes (NB) classifier to relevant
sentence classification in the experiment section
which was output by the free-text extraction. The
sentences can be considered relevant if they contain
the recipe elements (e.g., named compounds, chem-
ical entities, unit operations or sub-procedures). We
annotated 2600+ sentences from 98 relevant litera-
ture for training the classification model. Particu-
larly, two domain experts annotated 120 sentences
from 5 relevant literature and the rest of the anno-
tation work was done by three trained annotators.
To better predict the class attribute of the input sen-
tence, we train the NB classifier with word term
frequency as count features to achieve a leaned
function with 80% accuracy of prediction.

Relevant sentences entities checking: We use
ChemicalTagger (Hawizy et al., 2011), an open-
source tool for semantic text-mining in the chem-
istry domain, for recipe sentence checking. The
ChemicalTagger uses regex expression to tag differ-
ent entities, such as conditions, molecules, actions,
and phrases, from sentences. In our PIEKM sys-
tem, the procedural information or recipe should
include at least one action which can be represented
by a verb word (e.g., dry, distill, dissolve). The sys-
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tem will ignore the sentence even if it has been
classified as a relevant sentence.

3.3 Chemical Entity Extraction

Chemical entity extraction is considered as named
entity recognition (NER) which is used to recog-
nize and classify the concepts in texts to iden-
tify the objects of semantic value. We are able
to broadly pre-define the name entities, such as
material names, material properties, and sample
deceptions, in materials science contexts, based on
the task requirements (Mysore et al., 2019). Large,
annotated corpora are required to be able to train
a machine learning model for NER tasks, which
brings a challenge in the materials science domain
due to the insufficient annotated dataset. Addi-
tionally, manually labeling based on an enormous
number of articles would be very time-consuming
and expensive for domain exports. We address
this issue with transfer learning that is based on
the combination of attention-based pre-trained lan-
guage model SciBERT (Beltagy et al., 2019), Bidi-
rectional Long Short-term Memory (BiLSTM)
(Huang et al., 2015), and Conditional Random
Fields (CRF), or SciBERT-BiLSTM-CRF for short.
Specifically, the pre-trained SciBERT model serves
as the embedding layer which takes raw sentences
as input and outputs the contextual embedding vec-
tors for each word to the BiLSTM layer. BiLSTM
layer takes these inputs for syntactic and seman-
tic feature representation learning and outputs the
predicted scores of each label which then will be
fed into the CRF layer. Finally, the CRF layer will
select the label sequence with the highest predicts
score as output.

Considering the insufficient annotated datasets
that are available for chemical entity extraction, we
merged two annotated corpora in the materials sci-
ence domain to train the model. One of them is
materials synthesis procedural text corpus (MSP)
(Mysore et al., 2019), which has 230 experiment
paragraphs regarding synthesis procedure in the ma-
terials science domain and 21 different pre-defined
named entities. The other corpus is in the field
of solid oxide fuel cell (SOFC) (Friedrich et al.,
2020), including 45 open-access scholarly articles
and 5 different pre-defined named entities. In ad-
dition, the BIO format is used to annotate both of
the corpora mentioned above, where B indicates
the word beginning entity, I represents the words
inside the entity, and O is the outside of the entity.

Table 2: Evaluation results comparison

Model Precision Recall F1
SciBERT-BiLSTM-CRF 0.93 0.91 0.92
ChemDataExtractor 0.88 0.83 0.85

We keep only the material name as the pre-
defined named entity in the corpus to train the
SciBERT-BiLSTM-CRF model since PIEKM sys-
tem only focuses on the chemical entity extraction
rather than the extraction of other named entities.
We compared our model with ChemDataExtractor
(Swain and Cole, 2016), a tool for the automated ex-
traction of chemical information from the scientific
literature. Table 2 shows the comparison of evalua-
tion results between SciBERT-BiLSTM-BRF and
ChemDataExtractor. Note that the ChemDataEx-
tractor is not trained on this merged corpora but
only for evaluation comparison.

4 Query processing and information
storage

We use the model that is fine-tuned from section
3.3 to extract the key information from the title
of the paper. The key information in our system
could be considered into two types: material and
morphology. For example, copper and gold are
the type of material; nanocube and nanowire are
the type of morphology. We integrate all this in-
formation and store it into the database as a query
feature for users.

5 Demonstration

The demonstration covers all of the features of
PIEKM system. Figure 2 shows the home page of
PIEKM system. It visualizes the overview of the
association between the number of articles within
the database of nanomaterial composition and the
corresponding morphology. The user can click the
material name to see the number of relevant ar-
ticles across different morphology. The relevant
literature can be searched by material or morphol-
ogy name, and the search result page will show
a preview figure browser that offers all different
options of material or morphology names to select
and provides all figures included in the relevant ar-
ticles (Figure 3). In addition, the chemical entities,
recipe, and the full content of extracted literature
can be displayed after clicking the title on the top
of each figure on the browser (Figure 4).
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Figure 3: Search result page showing extracted papers and a preview figure browser

Figure 4: Chemical entities, recipe, and full content of extracted literature

6 Conclusion

This work presents a machine learning-based pro-
cedural information extraction and knowledge man-
agement system, namely PIEKM, for the materials
science domain. PIEKM system integrates multi-
ple functionalities, such as procedural information

extraction, chemical entities extraction, informa-
tion retrieval capabilities, and statistics interactive
visualization, into a single web interface. This sys-
tem provides an efficient way for researchers to
gain insights from an enormous number of well-
established literature and offers a feasible way to
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manage knowledge and publications in not only
materials science but also other domains.
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