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Abstract
Question Answering (QA) systems are increas-
ingly deployed in applications where they sup-
port real-world decisions. However, state-of-
the-art models rely on deep neural networks,
which are difficult to interpret by humans. In-
herently interpretable models or post hoc ex-
plainability methods can help users to com-
prehend how a model arrives at its prediction
and, if successful, increase their trust in the
system. Furthermore, researchers can lever-
age these insights to develop new methods
that are more accurate and less biased. In
this paper, we introduce SQUARE v2, the
new version of SQUARE, to provide an ex-
plainability infrastructure for comparing mod-
els based on methods such as saliency maps
and graph-based explanations. While saliency
maps are useful to inspect the importance of
each input token for the model’s prediction,
graph-based explanations from external Knowl-
edge Graphs enable the users to verify the rea-
soning behind the model prediction. In addi-
tion, we provide multiple adversarial attacks to
compare the robustness of QA models. With
these explainability methods and adversarial
attacks, we aim to ease the research on trust-
worthy QA models. SQUARE is available at
https://square.ukp-lab.de.1

1 Introduction

The recent explosion of Question Answering
datasets and models is pushing the boundaries
of QA systems and making them widely used by
the general public in virtual assistants or chatbots
(Rogers et al., 2021). This ubiquitous adoption
is making regulators start preparing policies for
artificial intelligence with special emphasis on ex-
plainability and robustness to adversarial attacks.2

∗Equal Contribution.
1The code is available at https://github.com/

UKP-SQuARE/square-core
2https://digital-strategy.

ec.europa.eu/en/policies/
european-approach-artificial-intelligence

Figure 1: Visualization of two saliency maps computed
using integrated gradients. The darker the highlighting
color, the higher its importance to get the prediction.
Hovering on a word shows its importance value.

There are multiple methods to explain the pre-
dictions of AI models (Danilevsky et al., 2020) and
analyze their robustness (Zhang et al., 2020). Some
explainability methods focus on specific input at-
tributions such as attention- and gradient-based
saliency maps (Simonyan et al., 2014). Others de-
sign interpretable models instead of using post hoc
methods (Yasunaga et al., 2021). Lastly, most ap-
proaches that analyze the robustness of AI systems
are based on adversarial attacks, i.e., the use of
inputs such as questions with minor modifications
that change the system’s output.

However, exploring and comparing these meth-
ods is not straightforward for most models. Re-
searchers usually need to manipulate libraries and
create interfaces to compare them in a satisfactory
manner, which is a slow and complicated process
that hinders the research in trustworthy QA.

The SQUARE platform (Baumgärtner et al.,
2022) simplifies the process of comparing QA mod-
els by empowering NLP researchers with an on-
line platform to deploy, run, and compare the most
common QA pipelines while removing technical
barriers such as model and infrastructure configu-

www.ukp.tu-darmstadt.de
https://square.ukp-lab.de
https://github.com/UKP-SQuARE/square-core
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rations. It includes dozens of models of multiple
types, namely open-domain, extractive, multiple
choice, and abstractive QA. However, the only ex-
plainability method currently implemented is be-
havioral test (Appendix 3), limiting the comparison
between QA models based solely on the models’
final predictions.

In this work, we propose SQUARE v2, a new
online platform for trustworthy QA research im-
plementing various explainability, interpretability,
and robustness methods and interfaces to facilitate
research in trustworthy QA models. Specifically,
we make the following contributions: 1) SQUARE
v2 supports the comparison of models based on dif-
ferent post hoc explainability methods. We create
interactive saliency maps that illustrate the impor-
tance of each input token for the model’s prediction
(Simonyan et al., 2014). 2) We extend the Data-
stores to include support for knowledge graphs
(KG), deploy QA-GNN (Yasunaga et al., 2021),
an interpretable graph-based model, and create an
interactive visualization graph. 3) SQUARE v2
further provides various adversarial attacks, which
change the prediction by modifying the input but
keeping its semantics in order to evaluate the ro-
bustness of QA models (Ebrahimi et al., 2018).

2 Related Work

AllenNLP demo3 is the closest system to SQUARE
v2. They provide a web interface to interact with
their library, where users can explore explainability
functionalities (Gardner et al., 2018; Wallace et al.,
2019). However, only two non-Transformer mod-
els include saliency maps and attack methods. In
addition, users cannot deploy their models on this
web demo, and instead, they would need to install
their library and create their own interface.

Among the explainability libraries, Captum
(Kokhlikyan et al., 2020) is of special relevance.
It is a model interpretability library for PyTorch
that includes multiple saliency maps and provides
built-in visualizations. However, it does not pro-
vide a user interface to run all their methods and
compare them at a glance. On the other hand, it
provides an adversarial attack method, Fast Gra-
dient Sign Method (Goodfellow et al., 2015), and
some variants; however, these are not designed for
NLP.

Lastly, there are some efforts to ease the study
of adversarial attacks on NLP models. Textattack

3https://demo.allennlp.org

(Morris et al., 2020) is a library that supports sev-
eral attacks and is model agnostic. However, they
do not provide a web interface, so users must there-
fore create their own visualizations in order to be
able to easily compare attacks on multiple models.

In summary, SQUARE is a single entry-point for
NLP practitioners to analyze, compare, and teach
QA through models’ outputs, explainability, and
robustness with a user-friendly interface.

3 UKP-SQuARE

SQUARE (Baumgärtner et al., 2022) is an open-
source, online platform for NLP researchers to
share, run, compare, and analyze their QA models.
The platform implements a flexible and scaleable
microservice architecture containing four high-
level services:

1. Datastores: Provides efficient access to
large-scale background knowledge such as
Wikipedia.

2. Models: Allows the dynamic deployment and
inference of a wide variety of models imple-
mented in the Hugging Face transformers li-
brary (Wolf et al., 2020) or adapters (Pfeiffer
et al., 2020).

3. Skills: Implements a configurable QA
pipeline (e.g. multiple-choice, open-domain,
or extractive QA) leveraging the Datastores
and Models service. They can be added dy-
namically by the users to the system.

4. Explainability: provides a set of unit tests
(questions and answers in our case) (Ribeiro
et al., 2020) to compare the predictions with
the expected answers and, in this way, analyze
the biases and weaknesses of the Skills.

SQUARE is designed to ease the comparison and
analysis of models. Users can deploy their models
using a simple interface without the need of any
code and then, they can compare outputs of differ-
ent models side-by-side. This paper describes a
new major update of SQuARE.

4 Trustworthy Methods for QA

Modern neural networks have significantly im-
proved in performance in recent years; however,
their explainability have not followed the same
improvement (Rogers et al., 2020). Additionally,
despite their impressive performance, the models

https://demo.allennlp.org
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Figure 2: The "Explain this output" and "Attack Meth-
ods" are shown under the predictions of the Skill.

are vulnerable to adversarial attacks. The goal of
SQUARE v2 is to provide the research commu-
nity with a set of tools to facilitate the research on
trustworthy QA. SQUARE simplifies and provides
visualizations for saliency maps, graph-based in-
terpretable models, and adversarial attacks. The
following sections briefly describe the methods pro-
vided in SQUARE.

4.1 Saliency Maps

Saliency Maps assign an attribution weight to the
input tokens to assess their importance in the model
prediction, as illustrated in Fig. 1. To obtain this
visualization, a user needs to click on the button
"Explain this output" located after the predictions
of any Skill, as shown in Fig. 2.

In SQUARE, we use two families of attribution
methods to construct saliency maps: i) Gradient-
based methods and ii) Attention-based methods.

4.1.1 Gradient-based Methods
A common approach to obtaining an importance
score for the input tokens is to compute the gradi-
ents on the embedding layer against the model pre-
diction. The magnitude of the gradient corresponds
to the change of the prediction when updating the
embedding. Therefore, a large gradient has a large
effect on the prediction, indicating the importance
of the input.

Vanilla Gradient (Simonyan et al., 2014) uti-
lizes the plain gradients of the embedding layer of
the model as importance weights of the inputs.

Integrated Gradient (Sundararajan et al., 2017)
integrates the straight line path from the vector of
zeros to the input token embedding. The value of

this integral is the weight of this token to make
the prediction since it represents the amount of
information given with respect to the zero vector
(i.e., no information).

SmoothGrad (Smilkov et al., 2017) adds gaus-
sian noise to the input to create multiple versions
and then average their saliency scores. In this way,
this method can smooth the saliency scores and
alleviate noise from local variations in the partial
derivatives.

4.1.2 Attention Methods
Neural NLP models have broadly incorporated at-
tention mechanisms, which are frequently recog-
nized for enhancing transparency and increasing
performance (Vaswani et al., 2017). These meth-
ods compute a distribution over the input tokens
that can be considered to reflect what the model
believes to be important. Following (Jain et al.,
2020), we build a saliency map using the average
attention weights of the heads from the CLS token
to the other tokens of the input. However, Serrano
and Smith (2019) argue that attention weights are
inconsistent and may not always correlate with the
human notion of importance. Thus, they propose
an alternative, Scaled Attention, which we also
integrate in SQUARE, that multiplies the attention
weights by their corresponding gradients to make
it more stable.

4.2 Interpretable Graph-based Models

Knowledge graphs store knowledge in the form
of relations (edges) between entities (nodes). In
addition to the explicit facts they represent, they
enable explainable predictions by providing rea-
soning paths (Yasunaga et al., 2021). In SQUARE
v2, we deploy QA-GNN (Yasunaga et al., 2021), a
graph-based QA model, as a Skill (more details on
Appendix B) and ConceptNet (Speer et al., 2017)
as a graph Datastore. Since QA-GNN uses a KG
(i.e., ConceptNet) for QA reasoning, it is possible
to analyze its working graph to identify the most
important entities and relations for the answer pre-
diction. As shown in Fig. 3 and later discussed
in §6.2, we provide an interface that enables the
visualization of the graph-based reasoning process
executed by the model.

User Interface. In order to plot the graphs,
SQUARE provides users with a "Show graph" but-
ton after the predictions of the QA-GNN Skill at
the bottom of the page. Clicking on this button
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Figure 3: Visualization of the graph used by QA-GNN
Skill to answer the question. Question nodes in purple,
answer nodes in green.

displays a modal window with multiple options to
render the graph, as shown in Fig. 3. Controls in-
clude a switch to show or hide edge labels, a slider
to show the top k nodes, another slider to select the
spacing factor between nodes, and a group of radio
buttons to select the layout (Dagre4, Breath First,
and Grid). In addition, we offer two types of visu-
alizations: i) a graph where the nodes are sorted by
the relevance scores generated by the model and
ii) a graph with the nodes sorted by the sum of the
attention scores of their incoming edges.

4.3 Adversarial Attacks

Adversarial attacks make use of inputs that expose
vulnerabilities of machine learning models to un-
derstand their robustness and identify how to im-
prove them (Ebrahimi et al., 2018). To simplify the
exploration of adversarial attacks on a wide range
of Skills, we implement the following four methods
in SQUARE for span-extraction Skills and leave
the other Skills for future updates.

Figure 4: HotFlip Attack. Changing one word changes
the prediction.

4https://github.com/cytoscape/cytoscape.
js-dagre

HotFlip (Ebrahimi et al., 2018) uses a saliency
method (§4.1) to score input words and subse-
quently replaces the top words with semantically
similar words to alter the prediction of the model.
An example of the interface is shown in Fig. 4.
The words highlighted in green are replacements,
and when hovering over them, the original word is
shown in a tooltip.

Input Reduction (Feng et al., 2018) iteratively
removes unimportant words from the question
based on their saliency scores (§4.1), without
changing the model’s prediction. An example is
shown in Fig. 5 (Appendix C).

Sub-Span Jain et al. (2020) computes the
saliency scores of the input words to select a
contiguous span that maximizes the accumulative
saliency score and uses this span as an explainabil-
ity method. Instead, we leverage this method to
create an adversarial attack. We identify a sub-span
of the context that explains the output and use it
as the whole context. In this way, the model has
the key information, such as a phrase containing
the answer, but not the whole context. Therefore,
it is possible to identify a sub-span that lacks the
nuance to answer the question properly, but since
the answer occurs in the sub-span, the model may
retrieve it due to spurious correlations. Fig. 6 (Ap-
pendix C) and § 6.3 show an use case of this attack.

Top K. Similarly as in the previous case, Jain
et al. (2020) compute the saliency scores of the in-
put words to identify the top k words from the con-
text that explains the output answer. We leverage
this method to create an adversarial attack. While
the top k words are key to obtaining the answer,
they are usually not contiguous. Therefore, creat-
ing a new context by concatenating these words
yields a grammatically and semantically incorrect
text. If the model still identifies the correct answer
using this new context, it would be due to spurious
correlations. An example of this attack is shown in
Fig. 7 (Appendix C).

User Interface After the user queries any Skill,
the button "Attack Method" is shown under the
predictions, as shown in Fig. 2. After clicking on
it, a modal page is shown where users can conduct
adversarial attacks.

5 Datastores for Knowledge Graphs

To best re-use the existing Datastore while being
efficient and robust, we rely on an Elasticsearch
instance to store KGs. In particular, we represent

https://github.com/cytoscape/cytoscape.js-dagre
https://github.com/cytoscape/cytoscape.js-dagre
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nodes and edges as documents and include infor-
mation to recreate the graph structure, such as their
connectivity. We show the schema of these docu-
ments in Appendix A.

In addition, we implement two main functionali-
ties: Firstly, users can dynamically add and update
new KGs as long as the structure of the KG can
be converted to the schema shown in Appendix A.
This allows supporting any KG that is requested
by the community. For demonstration purposes,
we provide ConceptNet (Speer et al., 2017) as a
built-in KG. More information is available on the
Datastores documentation5. Secondly, we imple-
ment a subgraph extraction method. Given a list
of root nodes (e.g., the entities in a question), it
extracts all the nodes and edges in the vicinity of
k hops to the roots. Since ConceptNet is densely
connected, we limit the maximum number of hops
to 3. However, this is a parameter that can be ad-
justed for any KG. Lastly, after the extraction, we
prune the disconnected nodes.

6 Case Study

6.1 Saliency Maps

Our new saliency map interface allows users to
compare the explanation of the outputs of up to
three Skills. As shown in Fig. 1, thanks to this visu-
alization, we can easily observe that the first Skill,
NewsQA BERT Adapter, gives the correct answer
for the right reasons since it identifies "races" as a
keyword. Even though the second Skill, MiniLM
SQuAD 2, also returns the correct answer, the Skill
does not seem to understand the context properly.
In particular, the most important words for the pre-
dictions are not related to the answer. We argue
that this interface can provide insights into whether
the model understands the task and thus make the
Skills more trustworthy.

6.2 Interpretable Models

ConceptNet provides background knowledge that
can boost the commonsense abilities of NLP mod-
els. As shown in Fig. 3, the QA-GNN Skill makes
use of the KG to connect the entities crab with
sea and with saltwater, the answer. This explicit
path helps to identify why the model returns its an-
swers. However, it still requires some human effort
to interpret the graph. For example, ConceptNet

5https://square.ukp-lab.de/docs/api/
datastores/

does not include the triple (sea, is a, environment),
which could be seen as counter-intuitive.

On the other hand, other non-graph-based Skills
need post hoc explainability methods such as
saliency maps (§4.1) to explain their output. How-
ever, post hoc methods have raised concerns about
the possibility of not being faithful to the actual
computations performed by the model or giving
incomplete explanations as in saliency maps (Liu
et al., 2021). In particular, saliency maps identify
what parts of the input are relevant for the predic-
tion, but they do not explain how or why the model
obtains the output.

6.3 Adversarial Attacks

Using the Sub-span attack method shown in Fig. 6
(Appendix C), we can observe that the Skill gives
the correct answer even though it does not have
information about Super Bowl 50, which is needed.
A robust Skill should instead return "not enough
information." This example suggests that the Skill
is conducting a superficial question-context overlap
matching without understanding the nuances of the
question, a phenomenon previously identified by
Lim et al. (2020). Similarly, the input reduction at-
tack shown in Fig. 5 (Appendix C) shows the same
phenomenon. After removing most words from the
question, the resulting question is not semantically
complete, yet the Skill gives the correct answer.

7 Conclusion and Future Work

We present SQUARE v2, a web platform that uni-
fies three families of methods for analyzing QA
models: saliency maps, adversarial attacks, and
interpretable models. Firstly, we offer an interac-
tive interface that allows users to compare multiple
saliency map methods for all the Skills deployed
in SQUARE. Secondly, we provide an interface to
conduct adversarial attacks. This interface allows
the community to study the robustness of QA mod-
els. Lastly, we deploy an interpretable graph-based
model and provide an interface to visualize the
reasoning paths that the model may conduct. To de-
ploy this Skill, we extend the Datastores module to
support both text documents and KGs. These con-
tributions give SQUARE a set of tools to compare,
analyze, and explain the behavior of QA models.
Since SQUARE allows the deployment of almost
any Transformer-based model effortlessly, our new
explainability interface empowers the community
with tools for trustworthy QA research. SQUARE

https://square.ukp-lab.de/docs/api/datastores/
https://square.ukp-lab.de/docs/api/datastores/
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is actively under development. Future updates will
include new KGs such as WikiData (Vrandečić and
Krötzsch, 2014), automated Skill selection (Geigle
et al., 2021), and Skill collaboration (Puerto et al.,
2021).

Limitations

Although saliency maps attempt to explain the out-
put of the models, they should be analyzed with
skepticism. As discussed in §4.1.2, attention-based
saliency maps may not correlate with the human
interpretation of importance, and in general, they
do not explain how and why the model creates the
outputs. Instead, saliency maps only aim to identify
regions of the input that upon removal, changes the
output.

Currently, we only deploy one graph-based
model (QA-GNN) and one knowledge graph (Con-
ceptNet). However, our Datastores §5 and graph
visualization interface §4.2 are flexible enough to
accommodate any other model, and thus, we invite
the community to create pull requests and deploy
their graph-based models on SQUARE.

Ethics and Broader Impact Statement

Intended Use. The intended use of SQUARE is
to facilitate the comparison of QA models through
multiple angles such as performance, explainabil-
ity, interpretability, and robustness. Our platform
allows NLP practitioners to share their models with
the community removing technical barriers such
as configuration and infrastructure so that any per-
son can reuse these models. This has a straight-
forward benefit for the research community (i.e.,
reproducible research and analysis of prior works)
but also to the general public because SQUARE
allows them to run state-of-the-art models without
requiring any special hardware and hiding complex
settings such as virtual environments and package
management.

Potential Misuse. Our platform makes use of
models uploaded by the community. However, this
current version does not incorporate any mecha-
nism to ensure that these models are fair and with-
out bias. We hope that the new tools we provide in
this work can help the community understand the
outputs of QA models and identify potential biases
or unfair behaviors. Thus, we currently delegate
the fairness checks to the authors of the models.
We are not held responsible for errors, false or of-

fensive content generated by the models. Users
should use them at their discretion.

Environmental Impact. Since SQUARE em-
powers the community to run publicly available
Skills on the cloud, it has the potential to reduce
CO2 emissions from retraining previous models
to make the comparisons needed when developing
new models.
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A Knowledge Graph Document Schema

The nodes of a knowledge graph are stored in the
Datastore as a json document using the following
schema:

{
"node_id": {

"_id": "keyword",
"name": "keyword",
"description": "text",
"type": "keyword"

}
}

The edges of a knowledge graph are stored in the
Datastore as a json document using the following
schema:

{
"edge_id": {

"_id": "keyword",
"name": "keyword",
"description": "text",
"type": "keyword",
"in_id": "keyword",
"out_id": "keyword",
"weight": "double"

}
}

B QA-GNN Implementation

We implement the QA-GNN inference pipeline on
SQUARE based on the official implementation of
QA-GNN model.6 We disregard the training code
since training QA models is not in the scope of
SQUARE and connect the model with the Datas-
tores service holding the KG. This makes it more
flexible for future updates of ConceptNet. Lastly,
the retrieved nodes with corresponding attention
weights and relevance scores are accessible along
with the answer prediction. With this information,
we plot the graph using the JavaScript library Cy-
toscape.js (Franz et al., 2016).

6https://github.com/michiyasunaga/qagnn

https://github.com/michiyasunaga/qagnn
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C Adversarial Attack Figures

Figure 5: Input Reduction. After removing tokens from the question, the new question is not specific enough to be
answerable. Yet, the model still gives the same answer evidencing a spurious correlation.

Figure 6: Sub-Span Attack. Removing part of the context leaves a new context without the nuances needed to
properly respond to the question (i.e., at Super Bowl 50).
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Figure 7: Top K Attack. Using as context the highlighted words, the Skill still gives the same answer even though
the context is semantically and grammatically incomplete and does not include Super Bowl 50.


