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Abstract

Hate speech and profanity detection suffer
from data sparsity, especially for languages
other than English, due to the subjective na-
ture of the tasks and the resulting annotation
incompatibility of existing corpora. In this
study, we identify profane subspaces in word
and sentence representations and explore their
generalization capability on a variety of sim-
ilar and distant target tasks in a zero-shot
setting. This is done monolingually (Ger-
man) and cross-lingually to closely-related
(English), distantly-related (French) and non-
related (Arabic) tasks. We observe that, on
both similar and distant target tasks and across
all languages, the subspace-based representa-
tions transfer more effectively than standard
BERT representations in the zero-shot setting,
with improvements between F1 410.9 and
F1 +42.9 over the baselines across all tested
monolingual and cross-lingual scenarios.

1 Introduction

Profanity and online hate speech have been rec-
ognized as crucial problems on social media plat-
forms as they bear the potential to offend readers
and disturb communities. The large volume of user-
generated content makes manual moderation very
difficult and has motivated a wide range of natural
language processing (NLP) research in recent years.
However, the issues are far from solved, and the
automatic detection of profane and hateful contents
in particular faces a number of severe challenges.
Pre-trained transformer-based (Vaswani et al.,
2017) language models, e.g. BERT (Devlin et al.,
2019), play a dominant role today in many NLP
tasks. However, they work best when large
amounts of training data are available. This is typ-
ically not the case for profanity and hate speech
detection where few datasets are currently avail-
able (Waseem and Hovy, 2016; Basile et al., 2019;
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Struf3 et al., 2019) with moderate sizes at most. In
addition, these tasks are known to be highly sub-
jective (Waseem, 2016). Annotation protocols for
hate speech and profanity often rely on different
assumptions that make it non-trivial to combine
multiple datasets. In addition, such datasets only
exist for few languages besides English (Ousid-
houm et al., 2019; Abu Farha and Magdy, 2020;
Zampieri et al., 2020).

For such low-resource scenarios, few- and zero-
shot transfer learning has seen an increased inter-
est in the research community. One particular ap-
proach, using semantic subspaces to model specific
linguistic aspects of interest (Rothe et al., 2016),
has proven to be effective for representing con-
trasting semantic aspects of language such as e.g.
positive and negative sentiment.

In this paper, we propose to learn semantic sub-
spaces to model profane language on both the
word and the sentence level. This approach is espe-
cially promising because of its ability to cope with
sparse profanity-related datasets confined to very
few languages. Profanity and hate speech often
co-occur but are not equivalent, since not all hate
speech is profane (e.g. implicit hate speech) and
not all profanity is hateful (e.g. colloquialisms).
Despite being distantly related tasks, we posit that
modeling profane language via semantic subspaces
may have a positive impact on downstream hate
speech tasks.

We analyze the efficacy of the subspaces to en-
code the profanity (neutral vs. profane language)
aspect and apply the resulting subspace-based rep-
resentations to a zero-shot transfer classification
scenario with both similar (neutral/profane) and
distant (neutral/hate) target classification tasks.
To study their ability to generalize across lan-
guages we evaluate the zero-shot transfer in both a
monolingual (German) and a cross-lingual setting
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with closely-related! (English), distantly-related
(French) and non-related (Arabic) languages.

We find that subspace-based representations out-
perform popular alternatives, such as BERT or
word embeddings, by a large margin across all
tested transfer tasks, indicating their strong gen-
eralization capabilities not only monolingually but
also cross-lingually. We further show that semantic
subspaces can be used for word-substitution tasks
with the goal of generating automatic suggestions
of neutral counterparts for the civil rephrasing of
profane contents.

2 Related Work

Semantic subspaces have been used to identify
gender (Bolukbasi et al., 2016) or multiclass eth-
nic and religious (Manzini et al., 2019) bias in
word representations. Liang et al. (2020) identify
multiclass (gender, religious) bias in sentence rep-
resentations. Similarly, Niu and Carpuat (2017)
identify a stylistic subspace that captures the de-
gree of formality in a word representation. This
is done using a list of minimal-pairs, i.e. pairs of
words or sentences that only differ in the semantic
feature of interest over which they perform princi-
pal component analysis (PCA). We take the same
general approach in this paper (see Section 3).

Conversely, Gonen and Goldberg (2019) show
that the methods in Bolukbasi et al. (2016) are not
able to identify and remove the gender bias entirely.
Following this, Ravfogel et al. (2020) argue that
semantic features such as gender are encoded non-
linearly, and suggest an iterative approach to identi-
fying and removing gender features from semantic
representations entirely.

Addressing the issue of data sparseness, Rothe
et al. (2016) use ultradense subspaces to gener-
ate task-specific representations that capture se-
mantic features such as abstractness and sentiment
and show that these are especially useful for low-
resourced downstream tasks. While they focus on
using small amounts of labeled data of a specific
target task to learn the subspaces, we focus our
study on learning a generic profane subspace and
test its generalization capacity on similar and dis-
tant target tasks in a zero-shot setting.

Zero-shot transfer, where a model trained on a

'Both English and German belong to the West-Germanic
language branch, and are thus closely-related. French, on the
other hand, is only distantly related to German via the Indo-
European language family, while Arabic (Semitic language
family) and German are not related.

w (profane) w (neutral)

Arschloch [asshole] Mann [man]
Fotze [cunt] Frau [woman]
Hackfresse [shitface] Mensch [human]

Table 1: Examples of word-level minimal pairs.

set of tasks is evaluated on a previously unseen task,
has recently gained a lot of traction in NLP. Nowa-
days, this is done using large-scale transformer-
based language models such as BERT, that share
parameters between tasks. Multilingual varieties
such as XLLM-R (Conneau et al., 2020) enable the
zero-shot cross-lingual transfer of a task. One ex-
ample is sentence classification trained on a (high-
resource) language being transferred into another
(low-resource) language (Hu et al., 2020).

3 Method: Semantic Subspaces

A common way to represent word-level semantic
subspaces is based on a set P of so-called minimal
pairs, i.e. N pairs of words (w, w) that differ only
in the semantic dimension of interest (Bolukbasi
et al., 2016; Niu and Carpuat, 2017). Table 1 dis-
plays some examples of such word pairs for the
profanity domain. Each word w is encoded as a
word embedding e(w):

P = {(e(wy),e(ir)), ..., (e(wy),e(in))}

Then, each pair is normalized by a mean-shift:

P = {(e(wi) — pi, e(;) — p;)|1 <i < N}

where each 1; = 1 (e(w;) + e(w@;)).

Finally, PCA is performed on the set P and the
most significant principal component (PC) is used
as a representation of the semantic subspace.

We diverge from this approach in four ways:

Normalization We note that there is no convinc-
ing justification for the normalization step. As our
experiments in the following sections show, we find
that the profanity subspace is better represented by
P than by P. For our experiments, we thus distin-
guish three different types of representations:

* BASE: The raw featurized representation r.

* PCA-RAW: Featurized representation r pro-
jected onto the non-normalized subspace
S(P).



* PCA-NORM: Featurized representation r
projected onto the normalized subspace S(P).

Here, projecting a vector representation r onto a
subspace is defined as the dot product r - S(P).

Number of Principal Components ¢ The use
of just a single PC as the best representation of the
semantic subspace is not well motivated. This is
recognized by Niu and Carpuat (2017) who experi-
ment on the firstc = 1,2,4,...,512 PC and report
results on their downstream-task directly. However,
a downside of their method for determining a good
value for c is the requirement of a task-specific vali-
dation set which runs orthogonal to the assumption
that a good semantic subspace should generalize
well to many related tasks.

Instead, we propose the use of an intrinsic eval-
uation that requires no additional data to estimate
a good value for c. Rothe et al. (2016) have shown
that semantic subspaces are especially useful for
classification tasks related to the semantic feature
encoded in the subspace. Here, we argue the in-
verse: if a semantic subspace with ¢ components
yields the best performance on a related classifi-
cation task, ¢ should be an appropriate number of
components to encode the semantic feature.

More specifically, we apply a classifier func-
tion f(x) = y, which learns to map a subspace-
based representation x = e - S(P) to a label
y € {profane,neutral}. We learn f(x) on the
same set P used to learn the subspace. In order
to evaluate on previously unseen entities, we em-
ploy 5-fold cross validation over the available list
of minimal pairs P and evaluate Macro F1 on the
held-out fold. Due to the simplicity of this intrinsic
evaluation, the experiment can be performed for all
values of ¢ and the c yielding the highest average
Macro F1 is selected as the final value. The above
holds for P and P equally.

Sentence-Level Minimal Pairs We move the
word-level approach to the sentence level. In this
case, minimal pairs are made up of vector represen-
tations of sentences (e(s), e(3)).

In order to standardize the approach and to focus
the variation in the sentence representations on the
profanity feature, sentence-level minimal pairs are
constructed by keeping all words contained equiva-
lent except for significant words that in themselves
are minimal pairs for the semantic feature of inter-
est. For instance, a sentence-level minimal pair for
the profanity feature with significant words:

The food here is shitty.
The food here is disgusting.

Zero-Shot Transfer In order to evaluate how
well profanity is encoded in the resulting word-
and sentence-level subspaces, we test their gen-
eralization capabilities in a zero-shot classifica-
tion setup. Given a subspace S(P) (or S(P)), we
train a classifier f(z) = y to classify subspace-
based representations © = e - S(P) as belonging
to class y € {profane|neutral}. The z used to
train the classifier are the same entities in the min-
imal pairs used to learn S(P). This classification
task is the source task T = {xz,y}. As the classi-
fier is learned on subspace-based representations,
it should be able to generalize significantly better
to previously unseen profanity-related tasks than a
classifier learned on generic representations r = e
(Rothe et al., 2016). Given a previously unseen
task 7 = {7,7}, we follow a zero-shot transfer
approach and let classifier f, learned on source task
T only, predict the new labels ¢ given instances T
without training it on data from 7. The zero-shot
generalization can be quantified by calculating the
accuracy of the predicted labels 7 given the gold la-
bels §. The extend of this zero-shot generalization
capability can be tested by performing zero-shot
classification on a variety of unseen tasks 7~ with
variable task distances 7 < 7.

4 Experimental Setup

4.1 Data

Word Lists The minimal-pairs used in our exper-
iments are derived from a German slur collection?.

Fine-Tuning We use the German, English,
French and Arabic portions of a large collection of
tweets® collected between 20132018 to fine-tune
BERT. For the German BERT model, all available
German tweets are used, while the multilingual
BERT is fine-tuned on a balanced corpus of SM
tweets per language. For validation during fine-
tuning, we set aside 1k tweets per language.

Target Tasks We test our sentence-level repre-
sentations, which are used to train a neutral/profane
classifier on a subset of minimal pairs, on several
hate speech benchmarks. For all four languages,
we focus on a distant task DT (neutral/hate). For

Zwww.hyperhero.com/de/insults.htm
Swww.archive.org/details/twitterstream
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Corpus # Sentences # Tokens
Fine-Tuning

Twitter-DE 59M 45(85)M
Twitter-EN M 44M
Twitter-FR M 58M
Twitter-AR M 75M
Target Tasks

DE-ST 111/111 1509/1404
DE-DT 2061/970  14187/9333
EN-ST 93/93 1409/1313
EN-DT 288/865 8032/3647
AR-ST 12/12 164/84
AR-DT 46/54 592/506
FR-DT 5822/302  49654/2660

Table 2: Number of sentences and tokens of the data
used for fine-tuning BERT for the sentence-level ex-
periments. Target task test sets are reported with their
respective neutral/hate (DT) and neutral/profane (ST)
distributions.

German, English and Arabic we additionally eval-
uate on a similar task ST (neutrallprofane), for
which we removed additional classes (insult, abuse
etc.) from the original finer-grained data labels and
downsampled to the minority class (profane).

For German (DE), we use the test sets of
GermEval-2019 (Struf3 et al., 2019) Subtask 1
(Other/Offense) and Subtask 2 (Other/Profanity)
for DT and ST respectively. For English (EN),
we use the HASOC (Mandl et al., 2019) Subtask
A (NOT/HOF) and Subtask B (NOT/PRFN) for
DT and ST respectively. French (FR) is tested
on the hate speech portion (None/Hate) of the
corpus created by Charitidis et al. (2020) for DT
only, while Arabic (AR) is tested on Mubarak et al.
(2017) for DT (Clean/Obscene+Offense) and ST
(Clean/Obscene). As AR has no official train/test
splits, we use the last 100 samples for testing. The
training data of these corpora is not used.

Table 2 summarizes the data used for fine-tuning
as well as testing.

Pre-processing The Twitter corpora for fine-
tuning were pre-processed by filtering out incom-
pletely loaded tweets and duplicates. We also ap-
plied language detection using spacy to further
remove tweets that consisted of mainly emojis or
tweets that were written in other languages.

4.2 Model Specifications

To achieve good coverage of profane language, we
use 300-dimensional German FastText embeddings
(Deriu et al., 2017) trained on 50M German tweets
for the word-level experiments in Section 5.

The BERT models (Devlin et al., 2019) used
in Section 6 are Bert -Base-German-Cased*
and Bert-Base-Multilingual-Cased for
the monolingual and multilingual experiments re-
spectively, since they pose strong baselines. We
fine-tune on the Twitter data (Section 4.1) us-
ing the masked language modeling objective and
early stopping over the evaluation loss (§ = 0,
patience = 3). All classification experiments use
Linear Discriminant Analysis (LDA) as the classi-
fier.

5 Word-Level Subspaces

Before moving to the lesser explored sentence-level
subspaces, we first verify whether word-level se-
mantic subspaces can also capture complex seman-
tic features such as profanity.

5.1 Minimal Pairs

Staying within the general low-resource setting
prevalent in hate speech and profanity domains,
and to keep manual annotation effort low, we ran-
domly sample a small amount of words from the
German slur lists, namely 100, and manually map
these to their neutral counterparts (Table 1). We
focus this list on nouns describing humans.

Each word in our minimal pairs is featurized
using its word embedding, this is our BASE repre-
sentation. We learn PCA-RAW and PCA-NORM
representations on the embedded minimal pairs.

5.2 Classification

We evaluate how well the resulting representations
BASE, PCA-RAW and PCA-NORM encode infor-
mation about the profanity of a word by focusing
on a related word classification task where unseen
words are classified as neutral or profane. To eval-
uate how efficient the subspaces can be learned
in a low-resource setting, we downsample the list
of minimal pairs to learn the subspace-based rep-
resentations and the classification task to 10-100
word pairs. After the preliminary exploration of
the number of principal components (PC) required
to represent profanity, the number of PC for the
final representations lie within a range of 15-111.
Each experiment is run over 5 seeded runs and we
report the average F1 Macro with standard error.
As each seeded run resamples the training and test
data, the standard error is also a good indicator

‘www.deepset .ai/german-bert
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Figure 1: Projections of profane and neutral words from TL-1 (left), TL-2 (middle) and TL-3 (right) onto a word-
level profane subspace learned by PCA-NORM on 10 minimal pairs (e Profane, v Neutral).

of the variability of the method when trained on
different subsets of minimal pairs.

Test Lists For this evaluation, we create three
test lists (TL-{1,2,3}) of profane and neutral words.
The contents of the three TLs are defined by their
decreasing relatedness to the list of minimal pairs
used for learning the subspace, which are nouns
describing humans. TL-1 is thus also a list of nouns
describing humans, TL-2 contains random nouns
not describing humans, and TL-3 contains verbs
and adjectives. The three TLs are created by ran-
domly sampling from the word embeddings that
underlie the subspace representations and adding
matching words to TL-{1,2,3} until they each con-
tain 25 profane and 25 neutral words, i.e. 150 in
total.

Projecting the TLs onto the first and second PC
of the PCA-NORM subspace learned on 10 mini-
mal pairs suggests that a separation of profane and
neutral words can be achieved for nouns describing
humans (TL-1), while it is more difficult for less
related words (TL-{2,3}) (Figure 1).

Results Across all TLs, the subspace-based rep-
resentations outperform the generalist BASE rep-
resentations (Figure 2), with PCA-NORM reach-
ing F1-Macro scores of up to 96.0 (TL-1), 89.9
(TL-2) and 100 (TL-3) when trained on 90 word
pairs. This suggests that they generalize well to
unseen nouns describing humans as well as verbs
and adjectives, while generalizing less to nouns
not describing humans (TL-2). This may be due
to TL-2 consisting of some less frequent com-
pounds (e.g. GroBmaul [big mouth]). PCA-NORM
and PCA-RAW perform equally on TL-1 and TL-3,
while PCA-NORM is slightly stronger on the mid-
resource (50-90 pairs) range on TL-2. This sug-
gests that the normalization step when constructing
the profane subspace is only marginally beneficial.
Even when the training data is very limited (10—
40 pairs), the standard errors are decently small
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(F1 £1-5), indicating that the choice of minimal
pairs has only a small impact on the downstream
model performance. When more training data is
available (80-100 pairs), the influence of a single
minimal pair becomes less pronounced and thus
the standard error decreases significantly.

5.3 Substitution

We use the profane subspace Sy, to substitute a
profane word w with a neutral counterpart w. We
do this by removing Sp,,¢ from w,

W — Sprt

(D

O T = Sl

and replacing it by its new nearest neighbor
NN(w) in the word embeddings. Here, we focus
on the PCA-NORM subspace learned on 10 mini-
mal pairs only. We use this subspace to substitute
all profane words in TL-{1,2,3}.

Human Evaluation To analyze the similarity
and profanity of the substitutions, we perform a
small human evaluation. Four annotators were
asked to rate the similarity of profane words and
their substitutions, and also to give a profanity
score between 1 (not similar/profane) and 10 (very
similar/profane) to words from a mixed list of slurs
and substitutions.

Original profane words were rated with an aver-
age of 6.1 on the profanity scale, while substitu-
tions were rated significantly lower, with an aver-
age rating of 1.9. Minor differences exist across TL
splits, with TL-1 dropping from 6.8 to 1.3, TL-2
from 6.1 to 3.1 and TL-3 from 5.4 to 2.1.

The average similarity rating between profane
words and their substitution differs strongly across
different TLs. TL-1 has the lowest average rating
of 2.8, while TL-2 has a rating of 3.3 and TL-3 a
rating of 5.1. This is surprising, since the subspaces
generalized well to TL-1 on the classification task.
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Figure 2: F1-Macro of the LDA models, using BASE or PCA-{RAW,NORM} representations on the word classi-

fication task based on 10 to 100 training word pairs (—s— BASE,

PCA-NORM, —— PCA-RAW).

Word w NN(w) NN()

Scheisse Scheifle, Scheissse, Scheissse04, Scheiflee schrecklich, augenscheinlich, schwerlich, schwesterlich

[shit] [horrible, evidently, hardly, sisterly]

Spast Kackspsst, Spasti, Vollspast, Dummerspast Mann, Mensch, Familienmensch, Menschn

[dumbass] [man, person, family person, people]

Bitch x6bitch, bitchs, bitchin, bitchhh Frau, Afrikanerin, Mann, Amerikanerin
[woman, african, man, american]

Arschloch  Narschloch, Arschlochs, Arschloc, learschloch Mann, Frau, Lebenspartnerin, Menschwesen

[asshole] [man, woman, significant other, human creature]

Fresse Fresser, Schnauze, Kackfufresse, Schnauzefresse ~ Frau, Mann, Lebensgefihrtin, Rentnerin

[cakehole] [woman, man, significant other, retiree]

Table 3: Profane words w with top 4 NNs before (NN(w)) and after (NN (w)) removal of the profane subspace.

Qualitative Analysis To understand the quality
of the substitutions, especially on TL-1, which
has obtained the lowest similarity score in the hu-
man evaluation, we perform a small qualitative
analysis on 3 words sampled from TL-1 (Spast,
Bitch, Arschloch) and 1 word sampled from TL-
2 (Fresse) and TL-3 (Scheiss) each. Before re-
moval, the nearest neighbors (NNs, Table 3) of the
sampled offensive words were mostly orthographic
variations (e.g. Scheisse [shit] vs. Scheifle) or com-
pounds of the same word (e.g. Spast [dumbass] Vs.
Vollspast [complete dlunhusx/). After removal, the
NNs are still negative but not profane (e.g. Scheisse
—schrecklich [horrible]). While the first NNs are
decent counterparts, later NNs introduce other (gen-
der, ethnic, etc.) biases, possibly stemming from
the word embeddings or from the minimal pairs
used to learn the subspace. The counterparts to
Scheisse [shit] seem to focus around the phonetics
of the word (all words contain sch), which may also
be due to the poor representation of adjectives in
embedding spaces. Fresse [cakehole] is ambiguous®,
thus the subspace does not entirely capture it and
the new NN are neutral, but unrelated words.
While human similarity ratings on TL-1 were
low, qualitative analysis shows that these can still
be reasonable. The low rating on TL-1 may be
due to annotators’ reluctance to equate human-

3Fresse can mean shut up, as well as being a pejorative for
face and eating.
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referencing slurs to neutral counterparts.

The ability to automatically find neutral alter-
natives to slurs may lead to practical applications
such as the suggestion of alternative wordings.

6 Sentence-Level Subspaces

In Section 5, we identified profane subspaces on
the word-level. However, abuse mostly happens
on the sentence and discourse-level and is not lim-
ited to the use of isolated profane words. There-
fore, we move this method to the sentence-level,
exploring the two subspace-based representation
types PCA-RAW and PCA-NORM. Concretely, we
learn sentence-level profane subspaces that allow a
context-sensitive representation and thus go beyond
isolated profane words, and verify their efficacy to
represent profanity. Similarly to the word-level
experiments, we focus our analysis on the abil-
ity of the subspaces to generalize to similar (neu-
tral/profane) and distant (neutral/hate) tasks. We
compare their performance with a BERT-encoded
BASE representation, which does not use a seman-
tic subspace.

6.1 Minimal Pairs

Using the German slur collection, we identify
tweets in Twitter-DE containing swearwords, from
which we then take 100 random samples. We cre-
ate a neutral counterpart by manually replacing
significant words, i.e. swearwords, with a neutral



variation while keeping the rest of the tweet as is:

a) ich darf das nicht verkacken!!!
[I must not fuck this up!!!]]
b) ich darf das nicht vermasseln!!!

[I must not mess this up!!!]
6.2 Monolingual Zero-Shot Transfer

We validate the generalization of the German
sentence-level subspaces to a similar (profane) and
distant (hate) domain by zero-shot transferring
them to unseen German target tasks and analyz-
ing their performance.

6.2.1 Representation Types

We fine-tune Bert-Base—-German—-Cased on
Twitter-DE (9M Tweets). Each sentence in our list
of minimal pairs is then encoded using the fine-
tuned German BERT and its sentence represen-
tation s = mean({hq,..., hp}) is the mean over
the 7" encoder hidden states h. This is our BASE
representation. We further train PCA-RAW and
PCA-NORM on a subset of our minimal pairs. We
chose 14-96 PCs for PCA-RAW and 9-94 PCs for
PCA-NORM depending on the size of the subset
of minimal pairs used to generate the subspace.

6.2.2 Results

We train the PCA-RAW and PCA-NORM
representations on subsets of increasing size
(10,20, ...,100 minimal pairs). For each sub-
set and representation type (BASE, PCA-RAW,
PCA-NORM), we train an LDA model to identify
whether a sentence in the subset of minimal pairs
is neutral or profane. These models are zero-shot
transferred to the German similar task ST (neu-
tral/profane) and distant task DT (neutral/hate).
We report the average F1-Macro and standard error
over 5 seeded runs, where each run resamples its
train and test data.

ST: Similar Task Despite the fact that the LDA
models were never trained on the target task data,
the PCA-RAW and PCA-NORM representations
yield high peaks in F1 when trained on 50 (F1 68.9,
PCA-RAW) minimal pairs and tested on DE-ST
(Figure 3). PCA-RAW outperforms PCA-NORM
for almost all data sizes. PCA-RAW outperforms
the BERT (BASE) representations especially on
the very low-resource setting (10—60 pairs), with an
increase of F1 +14.2 at 40 pairs. Once the training
size reaches 70 pairs, the differences in F1 become
smaller. The subspace-based representations are
especially useful for the low-resource scenario.
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Figure 3: F1-Macro of the LDA models, zero-shot
transferred to the similar (top) and distant (bottom) Ger-
man tasks (-=- BASE, - PCA-NORM, -~ PCA-RAW).

DT: Distant Task For the distant task DT, the
general F1 scores are lower than for the similar task
ST. However, PCA-RAW still reaches a Macro-F1
of 63.5 at 50 pairs for DE-DT. This indicates that
the profane subspace found by PCA-RAW partially
generalizes to a broader, offensive subspace. Simi-
lar to ST, the projected PCA-RAW representations
are especially useful in the low-resource case up to
50 sentences. The F1 of the BERT baseline is well
below the PCA-RAW representations when data is
sparse, with a major gap of F1 +10.9 at 30 pairs for
DE-DT. The classifier using BASE representations
stays around F1 53.0 (DE-DT) and does not benefit
from more data, indicating that these representa-
tions do not generalize to the target tasks. Howeyver,
once normalization (PCA-NORM) is added, the
generalization is also lost and we see a drop in per-
formance around or below the baseline. As for ST,
all three representation types level out once higher
amounts of data (70-80 pairs) are reached.

The standard errors show a similar trend to those
in the word-level experiments: we observe a small
standard error when training data is sparse (10-40
pairs), indicating that the choice of minimal pairs
has a small impact on the subspace quality, which
decreases further when more minimal pairs are
available for training (50-100 pairs).

6.3 Zero-Shot Cross-Lingual Transfer

To verify whether the subspaces also generalize
to other languages, we zero-shot transfer and test
the German BASE, PCA-RAW and PCA-NORM
representations on the similar and distant tasks of
closely-related (English), distantly-related (French)
and non-related (Arabic) languages. For French,
we only test on DT due to a lack of data for ST.
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Figure 4: F1-Macro of the LDA model, using BASE or PCA-{RAW,NORM } representations, zero-shot transferred
to the similar (bottom) and distant (top) German, English, Arabic and French tasks.

6.3.1 Representation Types

The setup is the same as in Section 6.2.1, except for
using Bert-Base-Multilingual-Cased
and fine-tuning it on a corpus consisting of the
5M {DE.EN,FR,AR} tweets. The resulting model
is used to generate the hidden-representations
needed to construct the BASE, PCA-RAW and
PCA-NORM representations. After performing
5-fold cross validation, the optimal number of PC
is determined. Depending on the number of mini-
mal pairs, the resulting subspace sizes lie between
8-67 (PCA-RAW) and 10-44 (PCA-NORM).

6.3.2 Results

As in Section 6.2.2, we train on increasingly large
subsets of the German minimal pairs.

ST: Similar Task We test the generalization of
the German representations on the similar (neu-
trallprofane) task on EN-ST and AR-ST as well as
DE-ST for reference. Note that the LDA classifiers
were trained on the German minimal pairs only,
without access to target task data.

The trends on the three test sets are very similar
to each other (Figure 4, bottom), indicating that
the German profane subspaces transfer not only
to the closely-related English, but also to the un-
related Arabic data. For all three languages, the
PCA-{RAW,NORM} methods tend to grow in per-
formance with increasing data until around 40 sen-
tence pairs when the method seems to converge.
This yields a performance of F1 66.1 on DE-ST at
80 pairs, F1 74.9 on EN-ST at 100 pairs and F1
68.4 on AR-ST at 70 pairs for PCA-RAW.

Overall, larger amounts of pairs are needed to
reach top-performance in comparison to the mono-
lingual case. This trend is also present when testing
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on DE-ST, leading us to posit that it is caused not
by the cross-lingual transfer itself, but by the dif-
ferent underlying BERT models used to generate
the initial representations. The differences in F1
between PCA-RAW and PCA-NORM are mere
fluctuations between the two methods. The BASE
representations are favorable only at 10 training
pairs, with more data they overfit on the source task
and are outperformed by the subspace representa-
tions, with differences of F1 4+20.6 at 100 sentence
pairs (PCA-RAW) on EN-ST, and F1 +-22.4 at 100
sentence pairs (PCA-NORM) on AR-ST.

DT: Distant Task Similar trends to ST are ob-
served on the distant (neutral/hate) tasks (Figure 4,
top). While the BASE representations are strongest
at 10 sentence pairs, they are outperformed by the
subspace-based representations at around 30 pairs.
PCA-RAW outperforms PCA-NORM and peaks
at F1 59.6 (60 pairs), F1 65.6 (60 pairs), F1 66.2
(70 pairs) and F1 56.1 (30 pairs) for the German,
English, Arabic and French test sets respectively.

We conclude that the German profane sub-
spaces are transferable not only monolingually
or to closely-related languages (English) but also
to distantly-related (French) and non-related lan-
guages (Arabic), making a zero-shot transfer pos-
sible on both similar (neutral/profane) and distant
tasks (neutral/hate). The BERT embeddings, on
the other hand, were not able to perform the initial
transfer, i.e. from minimal-pair training to similar
and distant target tasks, thus making the transfer to
other languages futile. Subspace-based representa-
tions are a powerful tool to fill this gap, especially
for classifiers trained on small amounts of source
target data and zero-shot transfer to related tasks.



External Comparison The transfer capabilities
of our subspace-based models can be set into per-
spective by comparing them to state-of-the-art clas-
sification models that were trained directly on our
target tasks. For DT, the top scoring team on EN-
DT reaches higher levels of F1 (75.6) (Mandl et al.,
2019) than our best PCA-RAW representations (F1
65.6). Similarly, the top scoring model on CHS-FR
(Charitidis et al., 2020) lies at F1 82.0 and thus
F1 +25.9 over PCA-RAW. However, PCA-RAW
outperforms the best-performing model reported in
Mubarak et al. (2017) (F1 60.0) by F1 +6.2. Note,
however, that this comparison is vague, as there
is no standard train-test split for AR. For ST, no
direct comparison to SOTA models can be made,
since the profane-neutral classification task is usu-
ally part of a larger multi-class classification task.
Nevertheless, the success of simple subspace-based
LDA models, trained on very small amounts of
task-distant German data, at cross-lingually zero-
shot transferring to various tasks underlines the
generalization capability of our approach.

6.4 Qualitative Analysis

A qualitative per-task analysis of the errors of the
best performing models (PCA-RAW) reveals that
some of the gold labels are debatable. The sub-
jectivity of hate speech is a well-known issue for
automatic detection tasks. Here, it is especially
observable for EN, AR and FR, where arguably
offensive comments were annotated as neutral but
classified as offensive by our model:

C’est toi la pute. Va voir ta mere

[You are the whore. Go see your mom]

We find that the models tend to over-blacklist
tweets across languages as most errors stem from
classifying neutrally-labeled tweets as offensive.
This is triggered by negative words, e.g. crime, as
well as words related to religion, race and politics,

e.g.:

No Good Friday agreement, no deals
with Trump.

7 Conclusion and Future Work

In this work, we have shown that a complex feature
such as profanity can be encoded using semantic
subspaces on the word and sentence-level.

On the word-level, we found that the subspace-
based representations are able to generalize to pre-
viously unseen words. Using the profane subspace,
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we were able to substitute previously unseen pro-
fane words with neutral counterparts.

On the sentence-level, we have tested the gen-
eralization of our subspace-based representations
(PCA-RAW, PCA-NORM) against raw BERT rep-
resentations (BASE) in a zero-shot transfer setting
on both similar (neutral/profane) and distant (neu-
trallhate) tasks. While the BASE representations
failed to zero-shot transfer to the target tasks, the
subspace-based representations were able to per-
form the transfer to both similar and distant tasks,
not only monolingually, but also to the closely-
related (English), distantly-related (French) and
non-related (Arabic) language tasks. We observe
major improvements between F1 +10.9 (PCA-
RAW on DE-DT) and F1 +42.9 (PCA-NORM on
FR-DT) over the BASE representations in all sce-
narios. As our experiments have shown that the
commonly used mean-shift normalization is not
required, we plan to conduct further experiments
using unaligned significant words/sentences.

The code, the fine-tuned models, and the list of
minimal-pairs are made publicly available®.
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