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Abstract

The goal of Event Factuality Prediction (EFP)
is to determine the factual degree of an event
mention, representing how likely the event
mention has happened in text. Current deep
learning models has demonstrated the impor-
tance of syntactic and semantic structures of
the sentences to identify important context
words for EFP. However, the major problem
with these EFP models is that they only encode
the one-hop paths between the words (i.e., the
direct connections) to form the sentence struc-
tures. In this work, we show that the multi-
hop paths between the words are also neces-
sary to compute the sentence structures for
EFP. To this end, we introduce a novel deep
learning model for EFP that explicitly con-
siders multi-hop paths with both syntax-based
and semantic-based edges between the words
to obtain sentence structures for representation
learning in EFP. We demonstrate the effective-
ness of the proposed model via the extensive
experiments in this work.

1 Introduction

In Information Extraction (IE), an event mention is
represented via an anchor/trigger word that evokes
an event in the input sentence. We study the prob-
lem of Event Factuality Prediction (EFP) that aims
to identify the degrees of uncertainty/factuality for
event mentions in text. Among others, EFP finds
its applications in knowledge base construction to
differentiate between factual and non-factual event
mentions. In this work, we follow the recent re-
gression formulation for EFP that seeks to predict
a real-valued score in the range of [-3,3] to indi-
cate the occurrence possibility for a given event
mention (Stanovsky et al., 2017; Rudinger et al.,
2018). For instance, in the sentence “He cannot go
to the restaurant.”, “go” is the trigger word for an
event mention with the factuality score of -3 (i.e.,
certainly not happened).

In order to predict the factuality scores for the
event mentions, the EFP models need to locate the
important context words in the sentences (i.e., the
cue words) and combine them appropriately to re-
veal the factuality for the event triggers. As the
important context words might be distributed at dif-
ferent positions in the sentences, the current state-
of-the-art deep learning models for EFP have relied
on the sentence structures to facilitate the identifi-
cation of the cue words. In particular, the sentence
structures in the EFP models can be represented
via the importance score matrices that involve cells
to quantify the contribution of a context word for
the representation vector computation of the cur-
rent word for EFP (Veyseh et al., 2019a). The
sentence structures would then be used to induce
the representation vectors for the words to perform
factuality prediction. Both syntactic and semantic
structures of the sentences have been exploited in
the deep learning models for EFP. As such, the syn-
tactic structures are based on the direct connections
between the words in the dependency parsing trees
of the input sentences while the contextual similar-
ities between the words are employed to form the
semantic structures (Veyseh et al., 2019a).

Despite their success, a major limitation of the
current deep learning models for EFP is their in-
ability to capture the multi-hop paths between the
words to produce the importance scores in the sen-
tence structures for EFP. In particular, the current
deep learning models for EFP have only focused on
the direct connection/relation (i.e., one-hop path)
between a pair of words to determine the impor-
tance score for the words in the structures. For
example, the syntactic structures in (Veyseh et al.,
2019a) involve an binary importance score matrix
where a cell is only set to 1 if the two words cor-
responding to that cell are directly connected in
the dependency tree. This is not desirable as based
on our analysis, the multi-hop paths between the
words are also important and should be considered
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to generate better importance scores for the struc-
tures for EFP. Consider the trigger word “involve-
ment” in the following sentence as an example:

It was confirmed that Hagai, Basir’s brother, had
been a key member of al-Qaeda while their repre-
sentatives constantly denied the involvement of any
Basir’s family members in this terrorist group.

The important context words to correctly predict
the factuality score +3 (i.e., actually happened) for
“involvement” in this case involve “any Basir’s fam-
ily members”, “Basir’s brother”, “Hagai”, “a key
member”, and “confirmed”. In the deep learning
models for EFP, these important words should be
encoded into the representation vector for “involve-
ment” to perform factuality prediction. Using the
dependency tree for this sentence, ones can use
the one-hop paths (i.e., the edges) to link “involve-
ment” with the information in ‘any Basir’s family
members”. Similarly, the direct semantic similarity
between “involvement” and “member” can also be
used to connect “a key member” to “involvement”
for representation learning in this case. However, it
is very challenging for the one-hop paths to directly
connect “involvement” with the other important
context words (i.e., “Basir’s brother”, “Hagai”, and
“confirmed”) (either syntactically or semantically)
due to the far distances/differences between them
in the sentence. Fortunately, by considering the
multi-hop paths between the words, we can rely on
“any Basir’s family members” to link “involvement”
with “Basir’s brother” (i.e., with the semantic con-
nection between “family members” and “brother”)
that can be further extended to “Hagai”, “member”,
and “confirmed” via the dependency connections
for representation learning. Besides the multi-hop
nature, we also note that the edges along the multi-
hop path in this example contains both syntactic
and semantic connections (i.e., heterogeneous edge
types) that are necessary to identify the important
context words for EFP.

Motivated by this limitation, in this work, we
propose to learn the importance scores for the sen-
tence structures, leveraging Graph Transformer
Networks (GTN) (Yun et al., 2019) to facilitate the
emergence of the effective multi-hop paths with
heterogeneous edge types for EFP. In particular,
we propose to first generate the initial sentence
structures for EFP based on both the syntactic and
semantic information. These initial sentence struc-
tures are then combined by the GTN model via the
weighted sums, serving as the intermediate struc-

tures that are able to capture both syntactic and
semantic one-hop connections between the words
for EFP. Afterward, the intermediate structures are
multiplied to induce the final structures that enable
the modeling of the multi-hop paths with heteroge-
neous edge types to compute the importance scores
for the structures (Yun et al., 2019). As illustrated
by our example, we expect that these multi-hop
paths between the words can help to produce more
effective representation vectors for the deep learn-
ing models to achieve better performance for EFP.

Finally, in order to improve the generalization of
the proposed model for EFP, we propose a novel in-
ductive bias for the GTN model based on the Infor-
mation Bottleneck technique (Tishby et al., 2000).
In particular, the rich combined structures from the
syntactic and semantic information might offer the
proposed GTN model with the high capacity for
representation learning to encode the detailed in-
formation in the input sentences. As the training
datasets for EFP are generally small, such high ca-
pacity might eventually lead to the overfitting of the
GTN model where all the context information in
the input sentences, including the irrelevant ones, is
preserved in the induced representation vectors. To
this end, we propose to promote the GTN model in
this work as an information bottleneck so the GTN-
produced representations are trained to not only
have good factuality prediction performance but
also maintain a minimal mutual information with
the input sentences (Belghazi et al., 2018). The
extensive experiments on four benchmark datasets
demonstrate the benefits of the proposed model,
yielding the state-of-the-art performance for EFP
in this work.

2 Related Work

Various methods have been proposed to solve EFP,
including the early rule-based approaches (Nairn
et al., 2006; Saurí, 2008; Lotan et al., 2013), the
feature-based machine learning approaches (Diab
et al., 2009; Prabhakaran et al., 2010; De Marn-
effe et al., 2012; Lee et al., 2015), and the hybrid
methods (Saurí and Pustejovsky, 2012; Qian et al.,
2015). The recent work has featured deep learning
as the state-of-the-art method for EFP. In partic-
ular, (Qian et al., 2018) presents a model based
on Generative Adversarial Networks (GAN) while
(Rudinger et al., 2018) applies Long-short Term
Memory Networks (LSTM) over both the sequen-
tial order and the dependency tree of the input sen-



48

tences for factuality prediction. The best perfor-
mance for EFP so far is reported by (Veyseh et al.,
2019a) that linearly combines the syntactic and se-
mantic structures for Graph Convolutional Neural
Networks (GCN). We also employ syntactic and
semantic structures for EFP in this work; however,
our model presents novel techniques with trigger-
based structure customization, GTNs to learn the
sentence structures with the multi-hop path rea-
soning, and information bottleneck to improve the
generalization for EFP. Model-wise, our work bears
some similarity with other NLP models that lever-
age syntactic structures and GCNs to encode input
texts for different NLP tasks, including relation ex-
traction (Zhang et al., 2018), joint information ex-
traction (Nguyen et al., 2021), metaphor detection
(Le et al., 2020), and rumor detection (Veyseh et al.,
2019b). Finally, we also note some related tasks
for EFP that seek to classify event trigger words in
texts, including event detection (Nguyen and Gr-
ishman, 2015; Chen et al., 2015; Lai et al., 2020;
Veyseh et al., 2021), event realis classification (Mi-
tamura et al., 2015; Nguyen et al., 2016) and uncer-
tainty detection (Adel and Schütze, 2017).

3 Model

We formalize EFP as a regression problem in this
work. In particular, given an input sentence W =
w1, w2, . . . , wN of N words/tokens (i.e., wi is the
i-th token) and an event mention with the trigger
word located at the k-th position (i.e., wk), we need
to predict a real-valued score between -3 and +3 to
indicate the factual degree for wk.

In order to achieve a fair comparison with the
prior work for EFP (Veyseh et al., 2019a), we first
apply the BERTbase model in (Devlin et al., 2019)
to obtain a pre-trained embedding vector xi for
each word wi ∈ W . In particular, we run the
BERTbase model over the input sentence W and
use the hidden vector for the first wordpiece of wi

in the last layer of BERT as the embedding vec-
tor xi (of 768 dimensions) for wi. This encoding
step transforms W into a sequence of embedding
vectors X = x1, x2, . . . , xN (called the input vec-
tors) for the neural computation in the next steps.
The EFP model in this work involves three major
components: (i) structure generation, (iii) structure
combination, and (iii) representation regularization.
We will explain the details of these components in
the following sections.

3.1 Structure Generation

The goal of this section is to generate the initial
sentence structures that would be combined in the
next steps to generate richer structures for repre-
sentation learning in EFP. Formally, the sentence
structures in this work can be seen as the impor-
tance score matrices of sizeN×N . Each cell (i, j)
in these matrices contains a score to represent the
importance of the contextual information from wj

for the representation vector of wi if this vector is
used to create the features for factuality prediction
(called the importance score for the pair (wi, wj)).
Following the previous work for EFP, we consider
two types of sentence structures for EFP in this
work, i.e., the syntactic structures and the semantic
structures (Veyseh et al., 2019a).

Syntactic Structures: As presented in the in-
troduction, the syntactic structures would lever-
age the information in the dependency tree T of
W to compute the syntactic importance scores for
EFP. The simplest approach for the syntactic struc-
tures is to directly use the binary adjacency matrix
Asyn = {asyni,j }i,j=1..N of T for the importance
score matrix as in (Veyseh et al., 2019a): asyni,j = 1
if wi and wj are connected in T or i = j. This ap-
proach is based on the motivation that the syntactic
neighboring words of wi in T would be the most
informative words to reveal the contextual seman-
tics of wi for EFP (Veyseh et al., 2019a). However,
one problem with this syntactic structure is its igno-
rance of the trigger word wk ∈W (i.e., Asyn is not
dependent on wk). As wk is the focused word in
EFP, in this work, we argue that the syntactic struc-
tures should be conditioned on the trigger word
wk to produce more effective structures for repre-
sentation learning in EFP. To this end, we propose
to customize the syntactic structures for the event
triggers in EFP, leveraging the intuition that the
closer words to wk in the dependency tree T would
provide more contextual information for the repre-
sentation vectors in EFP than the farther ones (e.g.,
the words “Basir’s family members” in our running
example). The syntactic neighboring words of wk

in T should thus be assigned with higher impor-
tance scores in the syntactic sentence structures
for EFP, serving as the main method to achieve
trigger-based customization for the syntactic struc-
tures in this work. In particular, to generate the
task-specific syntactic structures, we first compute
the length di of the shortest path between wi and
the trigger word wk (i.e., the distance) in T for all
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1 ≤ i ≤ N . Afterward, we obtain the customized
syntactic structure Asyn = {asyni,j }i,j=1..N via:

asyni,j = σ(FF ([di, dj , di ∗ dj , di + dj , |di − dj |])) (1)

where [] is the vector concatenation, FF is a two-
layer feed-forward network to convert a vector to
a scalar, and σ is the sigmoid function. We expect
that learning the syntactic structures in this way
would introduce the flexibility to infer effective
structures for EFP.

Semantic Structure: The importance score for
a pair of words (wi, wj) in the semantic structures
would be based on the contextual semantics of
wi and wj in the sentence (Veyseh et al., 2019a).
As such, to capture the contextual semantic for
wi ∈ W , we directly utilize the embedding vec-
tor xi from the BERT model of the encoding step.
As BERT is a deep model that has been trained
on a large corpus, we expect that the BERT-based
vectors xi would provide effective semantic repre-
sentations for the importance scores in this case.
Concretely, given the semantic vectors xi and xj
forwi andwj , the semantic importance scores asemi,j

for the semantic structure Asem = {asemi,j }i,j=1..N

can be learned via asemi,j = f(xi, xj) where f is
some learnable function to fuse xi and xj to pro-
duce a score. A simple version of the function f
for the semantic importance scores is presented in
(Veyseh et al., 2019a):

x′i = tanh(W sem
1 xi)

asemi,j = σ(W sem
2 [x′i, x

′
j ])

(2)

where W sem
1 and W sem

2 are the weight matrices
and the biases are omitted for brevity.

Similar to the simple syntactic structure Asyn,
a problem for this version of f is that the seman-
tic scores asemi,j are not dependent on the trigger
word wk, potentially causing the lack of neces-
sary context (i.e., the trigger word) to obtain the
sentence structures for EFP. To this end, we pro-
pose to improve the semantic score function f in
(Veyseh et al., 2019a) by additionally including the
embedding vector xk of the trigger word wk into
the computation of the semantic structure Asem for
EFP. In particular, we first employ the embedding
vector xk of the trigger word wk to generate a task-
specific control vector csyn. This control vector
would then be used to filter the information in the
embedding vectors xi of the words in W so only
the relevant information for the trigger word wk

in EFP is preserved. This trigger-based filtering

will serve as the main mechanism to customize the
semantic structures for the trigger words for EFP
in this work. Finally, to obtain the task-specific
semantic structures, the filtered vectors would be
sent to the same function in (Veyseh et al., 2019a)
to compute the importance scores asemi,j :

csyn = tanh(W sem
3 xk)

x′i = tanh(W sem
4 xi), x

′′
i = csyn � x′i

asemi,j = σ(W sem
5 [x′′i , x

′′
j ])

(3)

where � is the element-wise multiplication.

3.2 Structure Combination
In this work, we consider the customized sentence
structures Asyn and Asem as two different types of
relations between the pairs of words in W (called
the relation word types). For these structures, the
importance score in the cell (i, j) is intended to
capture the degree of connection between wi and
wj based on their direct interaction/edge (i.e., the
one-hop path (wi, wj)) and the corresponding re-
lation type (i.e., syntactic relations for Asyn and
semantic relations for Asem). Given this interpreta-
tion for the structures, this component aims to com-
bine Asyn and Asem to generate richer sentence
structures for EFP. In particular, instead of only
relying on the direct interactions between a pair of
word (wi, wj) to compute the importance scores,
the combined structures should be able to model
the multi-hop interactions between wi and wj that
possibly involve the other words in W (i.e., the
multi-hop reasoning paths between wi and wj). In
addition, the multi-hop reasoning paths between wi

and wj are also expected to enable the appearance
of the direct edges/connections between the words
that belong to different relation types in the ini-
tial structures (i.e., heterogeneous edge types with
syntactic and semantic relations). As illustrated
in the introduction, both the multi-hop reasoning
paths and the heterogeneous edge types are neces-
sary for factuality score prediction in our problem.
Consequently, in this work, we propose to further
feed Asyn and Asem into the Graph Transformer
Networks (GTN) (Yun et al., 2019) that are able
to generate rich sentence structures with multi-hop
reasoning paths and heterogeneous edge types, thus
fitting well with our intuition for EFP.

In particular, to learn the multi-hop paths at dif-
ferent lengths, following (Yun et al., 2019), we
first include the identity matrix I (of size N ×N )
into the set A of the initial structures for EFP, i.e.,
A = [Asyn, Asem, I] = [A1,A2,A3]. The GTN
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model in this work would then process these initial
structures via C channels to learn richer structures
for EFP. At the i-th channel of GTNs (1 ≤ i ≤ C),
M intermediate structuresQi

1, Q
i
2, . . . , Q

i
M of size

N ×N (i.e., amounting to M − 1 layers in GTNs)
are computed via the weighted sums of the ini-
tial structures in A: Qi

j =
∑

v=1..3 α
i
j,vAv for all

1 ≤ j ≤M (αi
j,v are the learnable weights). Note

that similar to (Veyseh et al., 2019a), the weighted
sums help to combineAsyn andAsem, enabling the
intermediate structures Qi

j to reason with any of
the two relation types (i.e., syntactically with Asyn

or semantically with Asem) for EFP. Afterward,
to capture the multi-hop paths for the importance
scores, the intermediate structures at the i-th chan-
nel are multiplied to obtain a single sentence struc-
tureQi for this channel: Qi = Qi

1×Qi
2×. . .×Qi

M .
The resulting structures Qi at the GTN channels
serve as the final structures that can model any
multi-hop reasoning paths with lengths up to M
and edges of heterogeneous relation types (i.e., syn-
tactic or semantic) for the importance scores (as
demonstrated in (Yun et al., 2019)).

In the next step, the final structures
Q1, Q2, . . . , QC of GTN would be used as
the adjacency matrices in a Graph Convolutional
Network (GCN) model (Kipf and Welling, 2017;
Nguyen and Grishman, 2018) over the input vector
sequence X to induce more abstract representation
vectors for the words in W for EFP. In particular,
the GCN model in this work involves G layers to
compute the representation vectors at different
abstract levels for the words. For the j-th final
structure Qj , the representation vector hj,ti for the
word wi in the t-th GCN layer is computed via:

hj,t
i = ReLU(U t

∑
v=1..N

Qj
i,vh

j,t−1
v∑

u=1..N Qj
i,u

) (4)

where U t is the weight matrix for the t-th GCN
layer and the input vectors hj,0i for the GCN model
are obtained from BERT-generated vectors xi (i.e.,
hj,0i = hi for all 1 ≤ j ≤ C, 1 ≤ i ≤ N ).

Afterward, the hidden vectors in the last GCN
layer for wi for all the final structures (i.e.,
h1,Gi , h2,Gi , . . . , hC,G

i ) are concatenated to form the
final representation vector h′i for wi in the pro-
posed model: h′i = [h1,Gi , h2,Gi , . . . , hC,G

i ]. Finally,
in order to predict the factuality score for wk in
W , we create an overall representation vector R
based on the hidden vectors from the GCN model
via: R = [h′k,MaxPool(h′1, h

′
2, . . . , h

′
N )]. This

vector is then fed into a two-layer feed-forward
network to produce the factuality score for the re-
gression model. Following (Rudinger et al., 2018;
Veyseh et al., 2019a), we use the Huber loss Lpred

with δ = 1 to train the models in this work.

3.3 Representation Regularization

Due to the high learning capacity with rich syn-
tactic and semantic structures, the proposed GTN
model might overfit to the training data by mem-
orizing the irrelevant information from the input
sentences in the induced representation vectors for
EFP (as described in the introduction). In order
to improve the generalization of the GTN model,
we propose to regularize the representation vec-
tors obtained by the GTN model so only the effec-
tive information for EFP is preserved in the rep-
resentation vectors for factuality prediction. To
this end, we introduce the Information Bottleneck
(IB) framework (Tishby et al., 2000) into the GTN
model so the GTN-produced representation vec-
torsH ′ = h′1, h

′
2, . . . , h

′
N would be simultaneously

trained for two objectives: (1) retain the effective
information to predict the factuality score for EFP
(i.e., the high prediction capacity), and (2) achieve
a small Mutual Information (MI)1 with the rep-
resentation vectors from the earlier layers of the
model (i.e., the minimality of the representations)
(Belghazi et al., 2018). In this work, on the one
hand, we follow the common practice to accom-
plish the high prediction capacity by training the
GTN representation vectors to directly perform the
prediction task of interest (i.e., the factuality score
prediction in our case of EFP). On the other hand,
we propose to achieve the minimality of the repre-
sentations for the GTN model by explicitly mini-
mizing the MI between the GTN-produced vectors
H ′ = h′1, h

′
2, . . . , h

′
N and the BERT-produced hid-

den vectors X = x1, x2, . . . , xN from sentence
encoding. By enforcing a small MI between X and
H ′, we expect that only the relevant information
for EFP inX is passed through the GTN bottleneck
to be recorded in H ′ for better generalization.

In order to facilitate the MI estimation between
X and H ′, we first aggregate them into a single
summarization vector via the max-pooling func-
tion: x = MaxPool(x1, x2, . . . , xN ) and h′ =
MaxPool(h′1, h

′
2, . . . , h

′
N ). We would then evalu-

ate the MI between x and h′ and include it in the
1In information theory, MI measures the information we

know about one random variable if the value of another vari-
able is revealed.
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overall loss function for minimization. Note that
the MI between x and h′ is the KL divergence be-
tween the joint and marginal distributions of these
variables. Unfortunately, the direct computation
for the MI between x and h′ is prohibitively expen-
sive due to their high dimensions. Consequently,
in this work, we propose to apply the mutual infor-
mation neural estimation (MINE) method in (Bel-
ghazi et al., 2018) to approximate the MI with its
lower bound. In particular, motivated by (Hjelm
et al., 2019), we further approximate the lower
bound of the MI between two the vectors/variables
x and h′ via the adversarial approach using the loss
function of a variable discriminator. The goal of
the discriminator is to differentiate the vectors that
are sampled from the joint distribution and those
from the product of the marginal distributions of
the variables. In our case, we sample from the
joint distribution for x and h′ by directly concate-
nating the two vectors (i.e., [h′, x]) and treat it as
the positive example. To obtain the sample from
the product of the marginal distributions, we first
obtain another sentence Ŵ from the same batch
with the current sentence W during training. After-
ward, we compute the aggregated vector x̂ (i.e., via
max-pooling) of the BERT-produced vectors for
the words in Ŵ . The concatenation vector [h′, x̂]
would then be used as the sampled vector for the
product of the marginal distributions (the negative
example). These positive and negative examples
are then fed into a two-layer feed-forward network
D (i.e., the discriminator) to produce a scalar score,
serving as the probability to perform a binary clas-
sification for the variables. Afterward, we use the
logistic loss for the discriminator Ldisc as an es-
timation for the MI between x and h′ and add
it into the overall loss function for minimization:
Ldisc = log(1+e(1−D([h′,x])))+log(1+eD([h′,x̂])).

Finally, the overall loss function L to train the
model in this work would be: L = Lpred +
αdiscLdisc where αdisc is a trade-off parameter.

4 Experiments

Datasets & Parameters: Following the previous
work (Stanovsky et al., 2017; Rudinger et al., 2018;
Veyseh et al., 2019a), we evaluate the proposed
model on four datasets for EFP: FactBank (Saurí
and Pustejovsky, 2009), UW (Lee et al., 2015),
Meantime (Minard et al., 2016) and UDS-IH2
(Rudinger et al., 2018). The factuality scores for the
first three datasets (i.e., FactBack, UW, and Mean-

time) are unified and scaled to the values in [-3, +3]
based on their original annotations by (Stanovsky
et al., 2017). The scaling of the factuality scores
for UDS-IH2, on the other hand, is done with the
procedure described in (Rudinger et al., 2018) (i.e.,
the scores are also between -3 and +3 in this case).
In order to achieve a fair comparison, we obtain
the same scaled and preprocessed versions of these
datasets (i.e., with dependency trees) from (Veyseh
et al., 2019a) where the training/development/test
data is provided for each dataset.

We use the development datasets to tune the
hyper-parameters for the models in this work. The
values suggested by this tuning process include:
300 dimensions for the hidden vectors in the lay-
ers of the GCN model and all the feed-forward
networks (i.e., to compute asyni,j for the customized
syntactic structures, and to consume the overall rep-
resentation vector R), G = 2 layers for the GCN
model, C = 2 channels for the GTN model with
M = 3 intermediate structures in each layer, and a
learning rate of 1e-5 for the Adam optimizer. For
the trade-off parameter αdisc in the loss function L,
the best values based on the development data is
0.1 for the FactBank, UW, and UDS-IH2 datasets,
and 0.5 for Meantime.

Comparing with the State of the Art: This
part compares the proposed model (called “SynSem-
Customization+MultiHop+GCN+IB+BERT”)
with the previous models for EFP. In particular, we
consider both the traditional feature-based models
(Lee et al., 2015; Stanovsky et al., 2017) and the
recent deep learning methods (Rudinger et al.,
2018; Veyseh et al., 2019a) as the baselines for
EFP. Note that the model in (Veyseh et al., 2019a)
(called “SynSemLinearCombine+GCN+BERT”)
currently has the best reported performance on the
datasets. Table 1 reports the test set performance
of the models, using Mean Absolute Error (i.e.,
MAE) and Pearson Correlation (i.e., r) as the
performance measures.

Similar to the prior work (Rudinger et al., 2018;
Veyseh et al., 2019a), we consider two methods to
train the models in this work: (i) training and evalu-
ating the models on separate datasets (i.e., the rows
with * in the table), and (ii) training the models on
the union of FactBank, UW and Meantime, leading
to a single model to be evaluated on the test data
of the individual datasets (i.e., the rows with ** in
the table). As we can see from the table, for both
training methods, the proposed model significantly
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FactBank UW Meantime UDS-IH2
Models MAE r MAE r MAE r MAE r

(Lee et al., 2015)* - - 0.511 0.708 - - - -
(Stanovsky et al., 2017)* 0.590 0.710 0.420 0.660 0.340 0.470 - -
Models reported in (Rudinger et al., 2018)
L-biLSTM(2)-S* 0.427 0.826 0.508 0.719 0.427 0.335 0.960 0.768
L-biLSTM(2)-MultiBal** 0.391 0.821 0.496 0.724 0.278 0.613 - -
L-biLSTM(1)-MultiFoc** 0.314 0.846 0.502 0.710 0.305 0.377 - -
L-biLSTM(2)-MultiSimp w/UDS-IH2** 0.377 0.828 0.508 0.722 0.367 0.469 0.965 0.771
H-biLSTM(1)-MultiSimp** 0.313 0.857 0.528 0.704 0.314 0.545 - -
H-biLSTM(2)-MultiSimp w/UDS-IH2** 0.393 0.820 0.481 0.749 0.374 0.495 0.969 0.760
Models reported in (Veyseh et al., 2019a)
L-biLSTM(2)-S+BERT* 0.381 0.850 0.475 0.752 0.389 0.394 0.895 0.804
L-biLSTM(2)-MultiSimp w/UDS-IH2+BERT** 0.343 0.855 0.476 0.749 0.358 0.499 0.841 0.841
H-biLSTM(1)-MultiSimp+BERT** 0.310 0.821 0.495 0.771 0.281 0.639 0.822 0.812
H-biLSTM(2)-MultiSimp w/UDS-IH2+BERT** 0.330 0.871 0.460 0.798 0.339 0.571 0.835 0.802
SynSemLinearCombine+GCN+BERT* 0.315 0.890 0.451 0.828 0.350 0.452 0.730 0.905
SynSemLinearCombine+GCN+BERT** 0.310 0.903 0.438 0.830 0.204 0.702 0.726 0.909
Models proposed in this work
SynSemCustomization+MultiHop+GCN+IB+BERT* 0.257 0.914 0.392 0.850 0.197 0.619 0.511 0.915
SynSemCustomization+MultiHop+GCN+IB+BERT** 0.239 0.920 0.389 0.852 0.190 0.685 0.482 0.918

Table 1: Test set performance. * denotes the models trained on separate datasets while ** indicates those trained on multiple
datasets. The smaller values are better for MAE while the correlation r prefers the larger values.

UW UDS-IH2
Models MAE r MAE r

The proposed model 0.389 0.852 0.482 0.918
- Asyn 0.448 0.842 0.590 0.909
- Asem 0.449 0.839 0.580 0.904

Table 2: The contribution of the initial structures.

outperforms the baseline models across different
performance measures and datasets (except for r
on Meantime). In fact, the separate dataset perfor-
mance of the proposed model is also significantly
better than the performance of the other models
with the union of the datasets for training. The
proposed model achieves the state-of-the-art per-
formance when trained on multiple datasets, clearly
demonstrating the benefits of the model in this work
for EFP. As UW and UDS-IH2 are the two largest
datasets among the four considering datasets, we
will focus on them in the following model analysis.

Structure Analysis: The proposed model for
EFP has two major sentence structures in the initial
set A = [Asyn, Asem] based on the syntactic and
semantic information (i.e., Asyn and Asem). This
part investigates the effectiveness of the individual
structures by evaluating the performance of the
remaining models when each of these structures is
eliminated from the overall proposed model. Table
2 presents the performance of the models2. It is

2Note that we train the models in analysis experiments

clear from the table that the model performance
is significantly worse when we remove any of the
initial structures inA, thus testifying to the benefits
of the initial structures for the proposed model.

Ablation Study: There are three major compo-
nents in the proposed models for EFP, i.e., the struc-
ture customization, the structure combination with
GTN, and the representation regularization with
information bottleneck. In order to analyze the
contribution of these components, this part seeks
to remove each of them from the overall model
and evaluate performance of the remaining mod-
els. In particular, we consider two ablated models
for the structure customization: (i) avoiding the
trigger-based customization for the syntactic struc-
ture Asyn (i.e., instead of using Equation 1, the
adjacency matrix of the dependency tree T is di-
rectly used for Asyn as in (Veyseh et al., 2019a))
(called “- SyntaxCustom”), and (ii) avoiding the
trigger-based customization for the semantic struc-
ture Asem (i.e., instead of using Equation 3, the
function in Equation 2 is employed to compute
the syntactic structure Asem as in (Veyseh et al.,
2019a)) (called “- SemanticCustom”).

The main benefit of the GTN models in the sec-
ond component for structure combination is to com-
bine the initial syntactic and semantic structures

with the multiple dataset setting (i.e., FactBank, UW and
Meantime); however, the same trends for the models also hold
for the setting with separate dataset training.
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UW UDS-IH2
Models MAE r MAE r

The proposed model 0.389 0.852 0.482 0.918
- SyntaxCustom 0.429 0.838 0.578 0.901
- SemanticCustom 0.409 0.844 0.565 0.909
- GTN 0.461 0.828 0.610 0.894
- Multi-Hop 0.402 0.836 0.587 0.905
- IB 0.450 0.842 0.602 0.907
- IB + BERT in R 0.419 0.830 0.564 0.910

Table 3: The ablation study.

to generate richer structures with multi-hop path
reasoning. Consequently, we examine two ablated
versions for this component: (i) completely remov-
ing the GTN model for structure combination and
directly running the GCN model on the initial struc-
tures in A (so the intermediate and final structures
are not computed) (called “- GTN”), and (ii) only
generating the intermediate structures and avoid-
ing the intermediate structure multiplications for
multi-hop path reasoning in each channel of GTN.
The final structures are thus not computed and the
GCN model is applied directly over the intermedi-
ate structures in this case (called “- Multi-Hop”)3.

Finally, for third component with representation
regularization, the introduction of the information
bottleneck (IB) leads to the inclusion of the loss
term Ldisc in the overall loss function L. The
removal of this regularization loss Ldisc from L
amounts to the ablated model “- IB” for this com-
ponent. In addition, as this component relies on the
MI between the hidden vectors computed by the
BERT and GTN models for the words, we further
evaluate another version for the overall model in
which the regularization loss Ldisc is also removed
from L, but the hidden vectors from the BERT
model X = x1, x2, . . . , xN are incorporated into
the final representation vectorR for prediction (i.e.,
R = [xk, x, h

′
k, h
′]) (called “- IB + BERT in R”).

The performance of the models for this ablation
study is shown in Table 3.

The most important observation from the table
is that all the components are important for the
proposed model to ensure the highest performance.
In particular, the customization for the syntactic
and semantic structures are necessary as eliminat-
ing any of them would reduce the performance

3Note that for the ablated models in this component, we
also re-tune the numbers of intermediate structures and chan-
nels for the GTN model (i.e., M and C), and the number of
layers for the GCN model (i.e., G) on the the development
sets, leading to M = 3, C = 2, and G = 2.

significantly. The removal of the GTN model or
its multi-hop path reasoning for the structures also
makes the performance worse, thus highlighting
the benefits of the structure combination with multi-
hop paths for the structures for EFP in this work.
Finally, the better performance of the proposed
model over “- IB” and “-IB + BERT in R” clearly
demonstrates the ability of the IB-based regulariza-
tion technique to improve the generalization of the
proposed model in this work.

Error Analysis: In order to better understand
the errors made the proposed model for EFP, we
analyze the outputs of the model on the test set
of the UDS-IH2 dataset (i.e., the largest dataset in
our case). In particular, we examine the examples
for which the absolute values of the differences be-
tween the predicted factuality scores and the golden
ones are greater than 1 (i.e., focusing on the exam-
ples with the largest prediction errors). A notable
insight from our analysis is that among 118 exam-
ples selected in this way, 71.4% of the examples in-
volves the same signs for the predicted and golden
factuality scores. This suggests that although the
proposed model has large prediction error on these
examples, it can still capture the correct factuality
polarity (i.e., positive or negative) for a great por-
tion of the examples (i.e., 71.4%). In other words,
a main source of errors for the proposed model has
to do with the difficulty to identify the degrees of
factuality (i.e., the fine-grained distinction with the
real-valued factuality scores) for the events, not
with the factuality polarity.

In addition, among the 28.6% of the examples
with both large prediction errors and different signs
for the predicted and golden scores, we find that
a major portion of the examples (i.e., 62.5%) in-
volves important context words that are not present
in the training data (i.e., unknown word issue).
Some examples of this type are shown below where
the unknown and important context words are high-
lighted (the trigger words are in bold):

Israel-Syrian talks have been cut off for two
years. (Predicted score: 2.78, Golden Score: -3).

A man who was accused of faking his death last
summer pleaded guilty to a conspiracy charge ...
(Predicted score: 2.45, Golden Score: -3).

Based on this observation, we hypothesize that
even with the contextualized word embeddings
(e.g., BERT) and the wordpiece tokenization to
encode the input sentences, unknown words still
constitute a challenging problem for EFP. In par-



54

ticular, as the unknown words do not appear in the
training data, the model does not have sufficient
training signals to adapt the initial language models
(i.e., BERT) to appropriately encode the unknown
words for EFP. Future research can focus on these
directions to improve the performance for EFP.

5 Conclusion

We present a novel deep learning model for EFP
that combines the customized sentence structures
(i.e., based on both syntactic and semantic infor-
mation) to learn effective representation vectors.
Our model features GTNs to infer rich sentence
structures with multi-hop reasoning paths for the
importance scores and information bottleneck to
improve the generalization. We perform extensive
experiments to demonstrate the effectiveness of the
proposed model. In the future, we plan to extend
the proposed model to the related tasks of EFP.
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