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Abstract

This paper describes Papago’s submission
to the WMT 2021 Quality Estimation
Task 1: Sentence-level Direct
Assessment. Our multilingual Quality
Estimation system explores the combination
of Pretrained Language Models and Multi-
task Learning architectures. We propose an
iterative training pipeline based on pretraining
with large amounts of in-domain synthetic
data and finetuning with gold (labeled) data.
We then compress our system via knowledge
distillation in order to reduce parameters yet
maintain strong performance. Our submitted
multilingual systems perform competitively
in multilingual and all 11 individual language
pair settings including zero-shot.

1 Introduction

Quality Estimation (QE) evaluates the quality of
machine translated output without human refer-
ence translation (Blatz et al., 2004). QE has a
variety of applications in the Machine Translation
(MT) pipeline and is particularly useful in indus-
try settings by informing translation quality to end-
users. High performance in sentence-level QE (Spe-
cia et al., 2020) is achieved by building a model
on top of Pretrained Language Model (PLM);
XLM-RoBERTa-large (Conneau et al., 2020) per-
forms particularly well as shown in previous WMT
sentence-level QE Shared Task. However, such
PLMs contain extremely large number of param-
eters. This year’s task is different from the pre-
vious years’ task as submitted systems are ranked
based on both model size1 and model performance2.
For concurrent work Gajbhiye et al. (2021) applies
knowledge distillation (Hinton et al., 2015) from
a PLM-based QE architecture to a much lighter

1Disk space without compression and number of parame-
ters.

2Pearson’s correlation coefficient, root mean square error
(RMSE), mean absolute error (MAE).

BiRNN-based architecture, reducing memory re-
quirements. Data scarcity is another issue relevant
to QE tasks where there are often limited amount
of gold training data. Previous WMT systems in-
corporate data augmentation techniques and show
improvements in model performance when training
with additional sources of data (Baek et al., 2020;
Ranasinghe et al., 2020a).

Our system builds a model on top of PLM and
trains with Multi-task Learning (MTL) (Caruana,
1997). Similar to Hoang et al. (2018); Zhang
et al. (2018) where back-translation is iteratively
applied to the same monolingual corpus to succes-
sively generate higher quality synthetic training
data in the context of Neural Machine Translation
(NMT), our proposed approach consists of an it-
erative knowledge transfer procedure which aims
to repeatedly produce better quality pseudo labels
for large amounts of synthetic training data. Dur-
ing the final stage of our training pipeline, knowl-
edge distillation is applied from teacher to student
model in order to reduce model size while main-
taining competitive performance. We participate
in WMT 2021 Quality Estimation (Specia et al.,
2021) Task 1 for multilingual and all individual
language pair settings. Our system is a single mul-
tilingual sentence-level QE model that performs
very strongly in both multilingual and individual
language pair settings.

2 Data

In this year’s task, participants are provided
with 7K train set (Train), 1K development set
(Dev), and 1K test set (Test20) for 7 language
pairs: high-resource English-German (En-De)
and English-Chinese (En-Zh), medium-resource
Romanian-English (Ro-En) and Estonian-English
(Et-En), and low-resource Sinhalese-English (Si-
En) and Nepalese-English (Ne-En), as well as
Russian-English (Ru-En). The source side sen-
tences of language pairs excluding Ru-En are col-
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lected from Wikipedia data; the source side sen-
tences of Ru-En is collected from a combination
of Wikipedia articles and Reddit articles. Target
side sentences are collected by translating source
side sentences using NMT models and each sen-
tence pair is annotated by at least three professional
translators with a score between 0-100 according
to the perceived translation quality. Systems are
required to inference z-standardized direct assess-
ment (DA) scores for 1K blind test set for each lan-
guage pair. This year’s task also include zero-shot
scenario for 4 new language pairs: English-Czech
(En-Cs), English-Japanese (En-Ja), Pashto-English
(Ps-En), and Khmer-English (Km-En). As addi-
tional resource, participants are also provided with
parallel data used to train NMT models (except
for Ru-En and zero-shot language pairs) and NMT
models used to generate target side sentences of
the dataset.

3 Approach

Figure 1 summarizes our approach. Below we
describe relevant components to our sentence-level
QE model.

3.1 Base Model Architecture

Our QE model stacks feed-forward layers on top of
feature vector extracted from Pretrained Language
Models (PLM). Our choices of PLM are XLM-
RoBERTa-base (L = 12) and XLM-RoBERTa-
large (L = 24). Given source sentence srcX in
language X and target sentence tgtY in language
Y , the concatenation of srcX and tgtY are fed as
input to the PLM and feature vector CLScat is
produced by taking the concatenation of [CLS] rep-
resentations from all layers of the PLM; our feature
vector is based on using [CLS] token representation
due to its superior performance over other pooling
strategies (Ranasinghe et al., 2020b; Fomicheva
et al., 2020). QE model f predicts direct assess-
ment scores as follows:

f(srcX , tgtY ) = Wscore · LeakyReLU(

W2 · LeakyReLU(

W1 · CLScat + b1) + b2)

(1)

where Wscore ∈ R1×512, W2 ∈ R512×2048, b2 ∈
R, W1 ∈ R2048×N , b1 ∈ R, and N is XLM-
RoBERTa’s hidden dimension size (1024) times
number of layers (L).

Figure 2: The network architecture for Multi-task
Learning (§3.2) with XLM-RoBERTa as PLM. Con-
catenation of source and target sentences (with special
tokens) are tokenized and fed as input to the PLM.
Numbers in parenthesis denote the output dimension
size of each network block.

3.2 Multi-task Learning (MTL)
We train our QE model in multi-task fashion by
adding a classification objective to the base model
architecture (§3.1). As shown in Figure 2, a clas-
sification layer Wclass, where Wclass ∈ R10×512,
is stacked next to Wscore in equation (1). Given
the nth train set sample’s z-standardized DA score
scoren, we scale scoren by applying min-max nor-
malization and assign bin (class) labels to each
sample. For our experiments, the number of bins is
set to 10. Note that min-max scaling is applied to
each language pair data set in order to account for
different scales of scoren per data set. The model
is trained with a combined loss of mean squared
error and cross entropy loss as shown in equation
(2), with λ set to 0.6. Our intuition is that QE is
inherently a complex task even for humans such
that human-labeled DA scores may contain noise.
We expect that training with an auxiliary classifica-
tion loss, where bin labels are less susceptible to
noise, can make training more robust and produce
a model that is more generalizable.

L = λ · Lmse + (1− λ) · Lce (2)

3.3 Data Augmentation
We create large amounts of synthetic direct assess-
ment samples for 7 language pairs (non zero-shot)
using parallel data and NMT models which both
are provided as additional resource. For data aug-
mentation, we utilize source side sentences from
parallel data. We sub-sample from parallel data
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Figure 1: Pipeline of our proposed approach. Gold refers to Train set provided by task organizers (§2). Pseudo
refers to synthetic sentence pairs generated as described in §3.3, while labels for Pseudo are created as described
in §3.4. Phase 2 and Phase 3 each refer to §3.4 and §3.5 respectively. Model A and Model B each refer to
large and small models in terms of model size. In our experiments, the architecture for Model A is a base model
architecture (§3.1) with MTL (§3.2) using XLM-RoBERTa-large as PLM, which we denote as Baselarge + MTL;
Model B instead uses XLM-RoBERTa-base as its PLM and we denote it as Basesmall + MTL.

Language # parallel data # sampled
En-De 19,298,476 400,000
En-Zh 15,178,232 400,000
Ro-En 3,901,626 400,000
Et-En 879,922 400,000
Ne-En 498,272 73,207
Si-En 646,781 400,000
Ru-En 12,061,155 400,000

Table 1: Number of parallel data provided in
WMT2021 Task 1 and number of synthetic sentence
pairs sampled as augmented data. For Ru-En, we col-
lect parallel data from the Commoncrawl dataset.

for each language pair such that the distribution of
sampled source sentences follows the distribution
of source side sentences of gold data (§2) in terms
of sentence length; this is to reduce the discrepancy
between actual data and synthetic data. We then
forward-translate source side sentences to target
using provided NMT models to collect approxi-
mately 2.4M pseudo sentence pair data which are
used as additional training resource. Table 1 shows
the total amount of parallel data provided and the
amount of synthetic sentence pairs generated. We
describe how pseudo labels for synthetic data are
created in the next section (§3.4).

3.4 Iterative Knowledge Transfer (IKT)

Given a QE model that is initially trained only on
gold data (refer to Phase 1 in Figure 1), iterative
knowledge transfer aims to produce higher qual-
ity training signals or pseudo labels for synthetic
data by iteratively performing pretraining and fine-
tuning as shown in Phase 2 in Figure 1. For

pretraining, the model is always initialized with
random weights (PLM weights are loaded from
HuggingFace3) and is trained using synthetic di-
rect assessment sentence pair data collected from
§3.3. Pseudo labels for synthetic data in the current
iteration are created with score predictions from
model trained in the prior phase or iterative step.
The aim of pretraining is to expose our model to
large amounts of in-domain synthetic training data
with sub-optimal labels. Similar to Sellam et al.
(2020), the key aspect of the pretraining technique
is to "warm up" the model before finetuning on
gold data. At the start of finetuning, the model is
initialized with parameter weights from the pretrain
stage and is trained only with gold data. Because
psuedo labels for synthetic data are newly gener-
ated for each iterative step in Phase 2, we expect
the quality of "warm up" during pretraining to in-
crease in each successive iteration. We stop the
iterative process when the model’s Pearson’s corre-
lation performance does not improve on Test20;
we empirically find that performance does not im-
prove after the second iteration.

3.5 Knowledge Distillation (KD)
Phase 3 in Figure 1 demonstrates knowledge dis-
tillation from a large to smaller model. Akin to
Phase 2 (§3.4), a 2 stage pretrain-to-finetune
training procedure is conducted and pseudo la-
bels for synthetic data is generated using a teacher
model which is the model produced from the last
iteration of Phase 2. As our results will show,
the compressed model performs on par with our
baseline large model with approximately less than
half the number of model parameters.

3https://huggingface.co/
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Model Data En-De En-Zh Ro-En Et-En Ne-En Si-En Ru-En Avg # params

Basesmall (§3.1)
Dev 0.447 0.475 0.841 0.722 0.715 0.631 0.685 0.645

297M
Test20 0.428 0.437 0.843 0.742 0.706 0.611 0.720 0.641

+ MTL (§3.2)
Dev 0.452 0.496 0.847 0.737 0.730 0.639 0.683 0.655

297M
Test20 0.473 0.449 0.854 0.740 0.729 0.625 0.732 0.657

Baselarge
Dev 0.488 0.496 0.891 0.788 0.794 0.703 0.715 0.696

611M
Test20 0.481 0.473 0.882 0.803 0.762 0.664 0.764 0.690

+ MTL
Dev 0.530 0.489 0.901 0.796 0.788 0.706 0.737 0.707

611M
Test20 0.563 0.486 0.892 0.812 0.795 0.667 0.786 0.715

+ IKTiter=1 (§3.4)
Dev 0.550 0.527 0.906 0.809 0.798 0.716 0.751 0.722

611M
Test20 0.543 0.502 0.903 0.814 0.806 0.676 0.791 0.719

+ IKTiter=2
Dev 0.576 0.535 0.910 0.807 0.801 0.714 0.742 0.726

611M
Test20 0.583 0.497 0.901 0.817 0.792 0.678 0.803 0.724

+ KD (§3.5)
Dev 0.523 0.522 0.880 0.773 0.758 0.680 0.712 0.692

297M
Test20 0.544 0.488 0.883 0.770 0.764 0.662 0.756 0.695

Table 2: Pearson’s correlation with human judgments on the Dev and Test20 set. Model names starting with +
sign indicates approaches that are cumulative.

4 Settings

For all training phases and experiments, we train
our model in data parallelism on multiple NVIDIA
Tesla V100 GPUs for 3 epochs with batch size of
8 and is optimized with Adam (Kingma and Ba,
2015) with a learning rate of 7e−6. Dropout (Srivas-
tava et al., 2014) with 0.15 is applied to activation
function outputs in equation 1. Each model vari-
ant is trained 3 times with different random seeds,
and for each model variant the best performing sys-
tem in terms of Pearson’s correlation coefficient is
reported.

All models trained within the scope of this paper
are multilingual QE models. We concatenate the
Train set of each individual language pair to cre-
ate a single multilingual train set for training. We
apply the same for Dev and Test20 set such that
validation, model selection and evaluation can be
performed at a multilingual level.

5 Results

In this section, we present results of our architec-
tures described in §3. Pearson’s correlation co-
efficient between predictions and gold standard
scores is the main evaluation metric to measure
performance; this year’s task also considers model
size to rank systems. Table 2 shows the Pearson’s
correlation with human judgments on the devel-
opment and test set (Dev and Test20). Each
row in Table 2 corresponds to model variants de-
rived from certain phases of the training pipeline
as described in Figure 1. We first observe that in-

corporating MTL (§3.2) improves over both our
small baseline model Basesmall and large base-
line model Baselarge with respect to all language
pair settings. We observe further improvements
in performance using Iterative Knowledge Trans-
fer (§3.4) where the average performance of sec-
ond iterative model Baselarge+MTL+IKTiter=2 is
better than the first iterative model. Comparing
Baselarge+MTL+IKTiter=2 to our large baseline
model Baselarge, the average performance gain is
3.4 percentage point but gain with respect to indi-
vidual language pairs varies, with 10.2 percentage
point increase for En-De being the greatest.

Our final compressed model
Baselarge+MTL+IKTiter=2+KD not only out-
performs Basesmall+MTL in all language pairs
but also outperforms our large baseline model
Baselarge in 4 out of 7 language pair settings with
less than half the number of model parameters.

Table 3 compares performance between
the organizer’s baseline model and two
of our submitted systems. We submit
two systems: Baselarge+MTL+IKT and
Baselarge+MTL+IKT+KD. Systems can be
evaluated on two ranking schemes: R1 indicates
overall ranking4 which considers both model
performance and size, while R25 ranks systems
based only on model performance. As shown

4Overall ranking is computed by taking the average of in-
dividual ranks of the following metrics: Pearson’s correlation
coefficient, root mean square error, mean absolute error, disk
space without compression and number of parameters.

5Ranking scheme based on Pearson’s correlation coeffi-
cient
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+ IKT (§3.4) + KD (§3.5) Organizer’s
Pearson R2 Pearson R1 Pearson

Multi 0.6577 4th 0.6132 3rd 0.5411
En-De 0.5677 3rd 0.5511 2nd 0.4025
En-Zh 0.5668 4th 0.5534 3rd 0.5248
Ro-En 0.9008 2nd 0.8786 3rd 0.8175
Et-En 0.7941 4th 0.7588 3rd 0.6601
Ne-En 0.8530 4th 0.8233 3rd 0.7376
Si-En 0.5947 3rd 0.5819 1st 0.5127
Ru-En 0.7927 2nd 0.7436 4th 0.6766
En-Cs 0.5722 4th 0.4969 5th 0.3518
En-Ja 0.3315 4th 0.2755 5th 0.2301
Ps-En 0.6368 2nd 0.5816 3rd 0.4760

Km-En 0.6616 2nd 0.6251 6th 0.5623
# params 611M 297M 281M

Disk space 2,503MB 1,249MB 1,142MB

Table 3: Submission results on the Test21 blind set. +IKT refers to model from either row 5 or 6 of Table 2;
+KD refers to model from row 7 of Table 2.

Supervised Zero-shot
En-De En-Zh Ro-En Et-En Ne-En Si-En Ru-En En-Cs En-Ja Ps-En Km-En

∆ Pearson -0.016 -0.013 -0.022 -0.035 -0.029 -0.012 -0.049 -0.075 -0.056 -0.055 -0.036
∆ RMSE +0.007 +0.019 +0.034 +0.039 +0.040 +0.022 +0.043 +0.017 +0.011 +0.032 +0.064
∆ MAE +0.007 +0.020 +0.034 +0.040 +0.040 +0.023 +0.043 +0.017 +0.012 +0.033 +0.064
% ∆ Pearson -2.8 -2.3 -2.4 -4.4 -3.4 -2.1 -6.1 -13.1 -16.9 -8.6 -5.5
% ∆ RMSE +1.2 +3.0 +8.6 +7.6 +7.6 +2.9 +7.5 +2.2 +1.2 +4.3 +7.3
% ∆ MAE +1.2 +3.2 +8.6 + 7.8 +7.6 +3.0 +7.5 +2.2 +1.4 +4.4 +7.8

Table 4: Changes in performance on the Test21 blind set when transitioning from +IKT (before compression) to
+KD (after compression). Supervised indicates 7 language pairs that are provided in Train, Dev and Test20;
Zero-shot indicates 4 zero-shot language pairs that are only evaluated with Test21 blind set. ∆ metric (row
1 to 3) measures the change in performance; % ∆ metric (row 4 to 6) measures the percentage change.

in Table 3, when ranking systems based purely
on performance (R2), Baselarge+MTL+IKT
performs strongly. However, when systems are
ranked based on both performance and size (R1),
our compressed model Baselarge+MTL+IKT+KD
ranks very competitively. Moreover, our com-
pressed model outperforms the organizer’s baseline
in all language pair settings with a great margin
using approximately 5.7% more parameters.

We observe in Table 3 that our compressed
model is relatively less competitive under zero-
shot than in supervised settings when ranked based
on R1. As demonstrated in Table 4, model com-
pression causes performance degradation in all lan-
guage pairs with respect to all three performance
metrics. In particular, the amount of degradation in
terms of Pearson’s correlation coefficient is greater
under zero-shot than in supervised settings. Inter-

estingly, this trend does not apply to other perfor-
mance metrics (RMSE, MAE) where the amount
of degradation under zero-shot and supervised set-
tings is not significantly different. This indicates
that model compression degrades the strength of
correlation particularly more under zero-shot than
in supervised settings, while degradation in per-
formance measured by magnitude of error is not
significantly different between two settings.

6 Conclusions

In this paper, we describe our submission to
the WMT 2021 Quality Estimation Task 1:
Sentence-level Direct Assessment.
We introduce a QE model architecture trained with
multi-task objective and show improvements in
performance. We show that iterative knowledge
transfer techniques applied in QE tasks can further
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improve model’s performance and demonstrate
that knowledge distillation is effective for building
a competitive lighter-weight QE model, making
it more suitable for practical use. Although our
submitted systems show strong performance in
general, we observe that our compressed model be-
comes relatively less competitive under zero-shot
settings. Further analysis of this phenomenon and
improvements on zero-shot are challenges that we
need to overcome in future work.
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