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Abstract
This paper presents Imperial College London’s
submissions to the WMT21 Quality Estima-
tion (QE) Shared Task 3: Critical Error De-
tection. Our approach builds on cross-lingual
pre-trained representations in a sequence clas-
sification model. We improve the base classi-
fier by (i) adding a weighted sampler to deal
with imbalanced data and (ii) introducing fea-
ture engineering, where features related to tox-
icity, named-entities and sentiment, which are
potentially indicative of critical errors, are ex-
tracted using existing tools and integrated to
the model in different ways. We train models
with one type of feature at a time and ensem-
ble those models that improve over the base
classifier on the development set. Our official
submissions achieve very competitive results,
ranking second for three out of four language
pairs.

1 Introduction

Critical Error Detection (CED) is a new task which
has been introduced in the WMT21 Quality Estima-
tion (QE) Shared Task.1 The purpose of CED is to
address a challenging problem in Machine Transla-
tion (MT): translations produced by state-of-the-art
MT systems can be grammatical and fluent but
do not always retain the meaning of the source
text. More importantly, incorrect translations can
be misleading and even have catastrophic conse-
quences such as health, safety, legal, or financial
implications. However, these can be hard errors to
capture by general QE architectures, which have
been shown to be prone towards relying mainly on
the translated sentence (Sun et al., 2020).

According to the Shared Task definition, a crit-
ical translation error is a type of error that occurs
when the meaning of the translation deviates from
source sentence in a critical way. The task data
(Section 2.1) includes five categories of such er-
rors: deviation in toxicity (TOX), in named entities

1http://statmt.org/wmt21/quality-estimation-task.html

(NAM), in sentiment polarity or negation (SEN),
or in numbers (NUM), or introduction of health or
safety risks (SAF).

The baseline model for this task utilises the
XLM-RoBERTa (Conneau et al., 2020) for se-
quence classification model, following the Mono-
TransQuest architecture proposed by Ranasinghe
et al. (2020). Inspired by the fact that these five
critical error types refer to specific linguistic phe-
nomena, we aim to bring additional information
to the models on the presence of such phenomena.
The intuition is that sentences containing certain
types of linguistic features, such as named entities
or dates, are more likely to lead to errors. There-
fore, we first process the dataset to extract features
reflecting the sentences’ toxicity, sentiment and
named entities, using off-the-shelf toolkits or APIs
(Section 2.2). We then enhance the baseline archi-
tecture with this additional information.2

We experiment with two approaches to take the
additional features into account, at token and hid-
den state levels. We build multiple models taking
one type of feature at a time and finally ensemble
“promising” models. Promising models are those
that lead to improvements over the baseline on the
dev set (Section 2.3).

Our results comparing different features show
that some of the features are indeed useful, but
there is no general pattern that applies to all lan-
guage pairs (Section 3.1). The official submission,
which uses an ensemble of the models that lead to
improvements over the baseline on the dev set for
each language shows that ensembling only mod-
els with promising features are better than ensem-
bling models with all kinds of features (Section
3.2). Upon manual inspection, we observed that
additional features indeed help the model to make
predictions but this is subject to the accuracy of
features (Section 3.3).

2Our code and data are available from https://github.com/
conanjgz/critical-error-detection-for-MT

http://statmt.org/wmt21/quality-estimation-task.html
https://github.com/conanjgz/critical-error-detection-for-MT
https://github.com/conanjgz/critical-error-detection-for-MT
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2 Experiment Settings

2.1 Dataset

According to the description of WMT21 CED
Shared Task, the dataset for this task was col-
lected from Wikipedia comments (Wulczyn et al.,
2017) in English with translations generated by
the ML50 multilingual translation model (Tang
et al., 2020), consisting of four language pairs:
English-Czech (En-Cs), English-German (En-De),
English-Japanese (En-Ja) and English-Chinese (En-
Zh). The number of data samples in the training
set differs for the four language pairs but is around
6500-8000. Each language pair has 1000 data sam-
ples in the dev set and 1000 data samples in the
test set. For each sentence pair in the dataset, there
are three labels given by three human annotators.
The three labels are aggregated to the final label
of the dataset using majority strategy. The final
label is either ERR or NOT, where ERR means the
translation has at least one critical error and NOT
means the translation does not have a critical error.

Pair Dataset Count Label Count
Train set 7476 NOT 6188

ERR 1288
En-Cs Dev set 1000 NOT 840

ERR 160
Test set 1000 – –
Train set 7878 NOT 5674

ERR 2204
En-De Dev set 1000 NOT 719

ERR 281
Test set 1000 – –
Train set 7658 NOT 6939

ERR 719
En-Ja Dev set 1000 NOT 904

ERR 96
Test set 1000 – –
Train set 6859 NOT 5749

ERR 1110
En-Zh Dev set 1000 NOT 859

ERR 141
Test set 1000 – –

Table 1: Statistics of datasets for four language pairs.
The distribution of labels for the test set is unknown as
this is a blind evaluation task.

The dataset information for each language pair
can be found in Table 1. As can be seen, the data is
very imbalanced, with the En-Ja dataset suffering
the most: the ERR label only accounts for 9.4%
in the training set. The En-De dataset is the least
imbalanced compared to other three language pairs,
where the proportion of ERR label in En-De train-
ing set reaches 27.9%.

2.2 Features

We extract features reflecting sentences’ toxicity
score, sentiment and named entities. The expecta-
tion is that these features could be helpful in de-
tecting critical errors since these errors stem from
issues with the translation/introduction of these and
other linguistic phenomena. Ideally we would have
wanted to extract this information for both source
and translated sentences to be able to perform some
sort of comparison between the two, for example,
presence of toxicity in the translation but not in the
source sentence. However, we are limited by the
availability of tools in the four language pairs, as
we explain below.

For all features, our goal is to have a discrete
representation which will allow us to easily incor-
porate them to the architecture, as will be explained
in Section 2.3.2. Therefore, we need to threshold
some of these features.

The toxicity score is produced by Perspective
API,3 which supports only English and German
amongst our five languages. Based on some manual
inspection of the predictions by Perspective, we
consider that if the toxicity score of a sentence
is greater than 0.5, the sentence will be regarded
as toxic. We leave for future work experiments
varying this threshold. Since this API does not
support Czech, Japanese and Chinese, we were
only able to extract a toxicity feature in the source
sentences for En-Cs, En-Ja and En-Zh.

The sentiment score is produced by Google
Cloud Natural Language API,4 which supports En-
glish, German, Japanese and Chinese. Therefore,
we can get the sentiment feature of both source sen-
tence and translation for En-De, En-Ja and En-Zh.
The score returned by this API is a float number
ranged from -1 to 1. Empirically, we consider a
sentence to be negative if the score is smaller than
-0.2, and positive if the score is greater than 0.2,
otherwise the sentence’s sentiment is neutral. In
our experiments, the sentiment feature is not ap-
plied to En-Cs because Czech is not supported by
this API.

The information of named entities (NE) is ex-
tracted using spaCy,5 which can recognise over 15
NE types. We count the number of named entities
for each NE type and finally choose seven NE types
with the highest counts as features. The description

3https://www.perspectiveapi.com/
4https://cloud.google.com/natural-language
5https://spacy.io/

https://www.perspectiveapi.com/
https://cloud.google.com/natural-language
https://spacy.io/
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of the seven NE types can be found in Table 2. We
extract named entities in both source sentence and
translation for En-De, En-Ja and En-Zh. However,
Czech is not supported by spaCy, therefore we do
not use NE features for En-Cs.

Type Description Abbr.
ORG Organisation name ORG
PERSON Person name PER
DATE Year, month or day DAT
CARDINAL Numerals CRD
ORDINAL Ordinal numerals ORD
NORP Religious group, etc NRP
GPE Geographical name GPE

Table 2: Descriptions of seven types of NE features and
their abbreviations.

XLM-RoBERTa

... ...[CLS] Token 1 [SEP]Token N Token 1 Token N

T1 TN T[SEP] T'1 T'N
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Classifier

Tokenizer

Source sentence Translation

Figure 1: Architecture of baseline model. This is a
MonoTransQuest model where we pass the output of
the [CLS] token to a classifier.

2.3 Models

2.3.1 Baseline Model
The baseline model employs the MonoTransQuest
framework (Ranasinghe et al., 2020), which is pro-
posed for general quality estimation (QE) tasks and
is shown in Figure 1. Essentially this is used to pro-
duce the baseline score of CED Shared Task. The
model is based on a pre-trained XLM-RoBERTa
transformer model (Conneau et al., 2020) and is
used to perform sentence-level classification tasks.
The model takes a sequence of tokens as input
which starts with <s>, denoting [CLS] token,
followed by tokens for source sentence and trans-
lation and ended with </s> token. The source
sentence and its translation, separated by[SEP]
token, are fed into one single transformer encoder
at the same time. Then the output of the trans-
former encoder is fed into a classification head

where cross-entropy is adopted as the loss func-
tion. We use pre-trained XLM-RoBERTa models
released by HuggingFace’s model repository (Wolf
et al., 2020) for the implementation.

To alleviate the influence of imbalanced training
data, a weighted sampler can be applied to the data
loader during training. The weighted sampler is to
make the label distribution in the training batch as
balanced as possible. The weight of the sampler is
computed as reciprocals of label proportions.

2.3.2 Model with Features
To utilise the features mentioned in Section 2.2, we
proposed two different approaches.

XLM-RoBERTa

... ...[CLS] Token 1 [SEP]Token N Token 1 Token N

T1 TN T[SEP] T'1 T'N

E[CLS] E1 EN E[SEP] E'1 E'N

C

Classifier

Tokenizer

Source sentence Translation

TOX/SEN/NE API

Src sentence with special tokens Translation with special tokens

Figure 2: Architecture of the first approach (adding spe-
cial tokens). We insert TOX/SEN/NE information to
the source sentence and its translation as special tokens,
and then feed sentences with special tokens to the base-
line architecture.

The first approach (shown in Figure 2) is to
add special tokens. Here the features (toxicity,
sentiment, named entities) are directly inserted as
special tokens to the input source sentence and,
where available, its translation before getting to-
kenised. To correctly tokenise sentences with fea-
tures, these special tokens are also added to the
XLM-RoBERTa tokeniser. The remaining architec-
ture is the same as the baseline model except for
the dimension of model’s word embeddings as the
model’s token embeddings should be resized when
adding new tokens.

For the toxicity feature, a special token [TOX]
is added to the beginning of the input token se-
quence if and only if the sentence is toxic. If the
sentence is not toxic, the [TOX] token will not be
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added. For En-De, the [TOX] token is applied to
both source sentence and translation. But for other
three language pairs it is only applied to the source
sentence (English), because the Perspective API
does not support Czech, Japanese and Chinese.

For the sentiment feature, there are three
special tokens, [SEN_POS], [SEN_NEG],
[SEN_NEU], representing positive, negative
and neutral sentiment respectively. Each time
only one token denoting sentence’s sentiment is
added to the beginning of that sentence. All the
sentences should have one sentiment token at the
beginning. The sentiment token is applied to both
source sentence and translation for En-De, En-Ja
and En-Zh. We do not perform experiments on
sentiment feature for En-Cs due to lack of support
on Czech from sentiment analysis API.

For named-entities feature, there are seven spe-
cial token pairs corresponding to seven types
of named entities generated by SpaCy API, e.g.
[ORG] and [/ORG], [DAT] and [/DAT], etc.
We use special token pairs to encase the named en-
tities with relevant type in sentences at word level.
Similarly to sentiment feature, the tokens of named-
entities feature are also applied to both source and
translation for En-De, En-Ja and En-Zh. Czech is
not supported by spaCy, hence we do not apply this
feature to En-Cs.

By adding extra features to the texts, we ex-
pect to guide the model with the toxicity/named-
entities/sentiment information on the source sen-
tence or the discrepancy of such information be-
tween the source sentence and the translation,
which might indicate the existence of critical trans-
lation errors.

The second approach (shown in Figure 3) is to
modify hidden states, where the extracted features
are presented as numerals and appended to the hid-
den states of [CLS] token. Due to limited time, we
only experimented with NE features using this ap-
proach. Since some named entity types are similar,
they can be grouped as one type. In this approach,
except for DAT, which is an independent category,
we group ORG and PER as a category, CRD and
ORD as a category, NRP and GPE as a category so
that finally we have four categories. The feature
that is used here is the count of the four NE types in
source and target sentences. It is presented as a vec-
tor of length 8, where the first 4 numbers represent
the counts of these NE categories for the source
sentence, and the last 4 numbers are for the trans-

XLM-RoBERTa

... ...[CLS] Token 1 [SEP]Token N Token 1 Token N

T1 TN T[SEP] T'1 T'N

E[CLS] E1 EN E[SEP] E'1 E'N

C

Classifier

Hidden states NE vector

Tokenizer

Source sentence Translation

spaCy

NE Counter

Figure 3: Architecture of the second approach (modify-
ing hidden states). The sentence pair is fed into the
XLM-RoBERTa encoder and into spaCy to generate
NEs, resulting in the NE vector with the count of name
entities of different types. We concatenate the output
of [CLS] with the NE vector and send the modified
hidden states to the classifier.

lation. First we feed the source sentence and its
translation into the XLM-RoBERTa encoder, then
we append the vector of counts to the output of the
[CLS] token. The modified hidden states is then
fed to the classification head.

Our expectation is that the additional informa-
tion (vector of counts) could guide the classifier to
give more accurate predictions, because a deviation
in named entity counts may be indicative of critical
errors. For example, if the source sentence contains
3 named entities and the translation contains only 1
named entity, the translation may be missing some
named entities.

2.3.3 Ensemble
To boost the performance, we ensemble several
models to produce the final predictions. We exper-
iment with two ensemble strategies. One strategy
is label-level (late) ensemble. We first obtain the
label predictions generated by different models us-
ing different features, then combine these predicted
labels by performing majority vote to get a final
label. The other strategy is logit-level ensemble,
where we average the logits produced by different
models and then produce the final label using the
averaged logits.

3 Results

This section presents the evaluation results of the
proposed methods. Except for the baseline score on
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Method En-Cs En-De En-Ja En-Zh
Baseline 0.393 0.413 0.217 0.255
Baseline best 0.397 0.422 0.231 0.276
(with sampler) average 0.396 0.418 0.224 0.262
Adding TOX token best 0.391 0.448 0.254 0.284

average 0.385 0.435 0.220 0.261
Adding SEN token best – 0.429 0.228 0.296

average – 0.416 0.226 0.276
Adding NE (ORG) token best – 0.430 0.237 0.248

average – 0.422 0.211 0.239
Adding NE (PER) token best – 0.446 0.229 0.265

average – 0.415 0.224 0.225
Adding NE (DAT) token best – 0.439 0.220 0.259

average – 0.427 0.212 0.232
Adding NE (CRD) token best – 0.438 0.248 0.222

average – 0.426 0.195 0.217
Adding NE (ORD) token best – 0.442 0.236 0.262

average – 0.430 0.214 0.239
Adding NE (NRP) token best – 0.440 0.247 0.252

average – 0.420 0.193 0.247
Adding NE (GPE) token best – 0.429 0.220 0.251

average – 0.418 0.186 0.247
Modifying hidden states best – 0.455 0.257 0.280

average – 0.435 0.238 0.253

Table 3: Matthews’s Correlation Coefficient (MCC) between predictions and gold labels using different methods
on development set, trained on XLM-RoBERTa-base model. “Best” and “average” stand for the highest score and
average score of three runs respectively. The bold numbers are the best result for the average of three runs in that
language pair. For En-Cs, we only experiment on two cases due to lack of feature availability for Czech.

test set in Section 3.2 which is produced by Mono-
TransQuest using pretrained XLM-RoBERTa-base
model with batch size of 128, learning rate of 2e-5,
and a linear learning rate warm-up ratio of 10%, all
the other scores (including baseline score on dev
set in Section 3.1) are produced using following hy-
perparameters: 64 for batch size, 2e-5 for learning
rate, 30% for the warm-up ratio.

3.1 Results on Dev Set

As described in Section 2.2, we explore nine fea-
ture types: source and target toxicity, source and
target sentiment and 7 types of source and target
named entities. We trained our model using the
first approach (adding special token) for each of
the nine feature types and the second approach
(modifying hidden states) for named entities only.
For each method or feature, we run the model for
three times with different seeds and report average
performance, as well as the performance of the best
of the three models. The results on the development
set are shown in Table 3.

The results follow our expectation that En-De
could achieve the highest MCC score among the
four language pairs as the training set of En-De is
more balanced, compared to other three language
pairs. Meanwhile, En-Ja has the lowest MCC score,
as the dataset is the most imbalanced. The results

also show that adding a weighted sampler to deal
with imbalanced data improves the models’ perfor-
mance in most cases. As for the additional features,
some of them are useful, but it depends on the lan-
guage pair. For example, the toxicity feature can
improve the score in En-De but cannot improve per-
formance in En-Ja and En-Zh, while the sentiment
token is helpful in En-Ja and En-Zh but not boost
the score in En-De.

We note that the results may be affected by fluc-
tuations because of different random seeds. Some-
times multiple runs of the same case will produce
fairly different results. This is a general problem
of neural models for QE as well as other tasks and
requires further investigation. For example, the re-
sults of three runs of adding NE (NRP) feature in
En-Ja vary a lot. The best score from the three runs
is 0.247 which is over the baseline score, but the
average score is 0.193 which is largely below the
baseline.

3.2 Results on Test Set

We use ensembling to produce final results. The dif-
ferent models to ensemble are trained using differ-
ent features, and hence focus on difference types of
errors, thus potentially leading to different predic-
tions. Not all these models lead to improvements
over the base (no features) model; in fact, adding
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some features decreases the performance for some
languages. Therefore, we tested ensembles of mod-
els with all feature and ensembles of only models
with features which achieve higher score on the
development set in our ablation experiments (Table
3). We found that ensembling all models leads to a
lower score than ensembling the best few models.

In our experiments, ensembling models with bet-

ter performance than the base model improves the
results of all languages except En-De. For that
language pair, the best result is achieved by only
adding NE (DAT) token to the XLM-RoBERTa-
large base architecture. The final results of submis-
sion for CED shared task and ranks are shown in
Table 4.

Method En-Cs En-De En-Ja En-Zh
Baseline 0.388 0.397 0.214 0.187
Ours 0.473 (2nd) 0.498 (2nd) 0.314 (2nd) 0.305 (4th)
(gjiang) reached by ensembling following: reached by single model: reached by ensembling following: reached by ensembling following:

• 4 × baseline models (base) • 1 × NE (DAT) model (large) • 1 × baseline models (base) • 1 × baseline models (base)
• 1 × baseline model (large) • 1 × NE (CRD) model (base) • 2 × SEN models (base)

• 1 × TOX model (large) • 1 × TOX model (base)
• 1 × baseline model (large)
• 1 × NE (DAT) model (large)
• 1 × TOX model (large)

Table 4: Final results and ranks of CED shared task in WMT 2021. These results can also be found on CodaLab
result page where the name of our team is gjiang. The metric in the table is Matthews’s Correlation Coefficient
(MCC) between predictions and gold labels. Below our score for each language pair is the model(s) that we
used to achieve this score. “(base)” and “(large)” denotes this model is trained using XLM-RoBERTa-base and
XLM-RoBERTa-large respectively.

Source YOU SUCK IT!!! AS YOU’RE USED TO SUCK PHALLUS, NAZI HINDUIST LIKE HITLER!!!
Translation 你吸了它,就像你以前吸过帕卢斯一样,纳西迷人就像希特勒一样!
Baseline label NOT
Our label ERR
True label ERR
Analysis The source sentence is toxic and has negative sentiment. But the sentiment of translation is positive.

Therefore, there is a deviation in sentiment between source and translation and this is a critical error.
Source Upon further research I have found irrefutable proof that he got the nickname for the masterful way he

cleaves beavers with his massive member.
Translation 经过进一步的研究,我发现了不可否认的证据,那就是他用他巨大的成员把贝弗切开的巧妙方

法获得了绰号。
Baseline label NOT
Our label ERR
True label ERR
Analysis The source sentence is not toxic and the sentiments of both sentences are neutral. However, the machine

translator mistakenly regards “beavers” as a name and produce a name in Chinese, which is detected by
spaCy. The translation introduces one named entity which does not exist in source sentence. Therefore,
this is a critical error.

Source REDIRECT Talk:Historical Archive of the City of Cologne
Translation 主题演讲: 科隆市历史档案
Baseline label NOT
Our label ERR
True label NOT
Analysis In this case, spaCy does not report “Cologne” as a named entity in source sentence, but in translation it

reports the city name in Chinese as a named entity (GPE). Therefore, our model regards the translation
introduces a new named entity. There is a deviation in named entities between source and translation
and this is mistakenly classified as a critical error.

Source Goanikontes is an oasis is hidden within the Goanikontes Region.
Translation 戈亚尼科恩特是戈亚尼科恩特地区内的一个绿洲。
Baseline label NOT
Our label ERR
True label NOT
Analysis Similarly to previous case, spaCy correctly detects “Goanikontes” as a location name, but in translation

spaCy mistakenly reports the corresponding location name in Chinese as person’s name. Hence, our
model thinks there is a deviation in named entities and predicts this case to a critical error. The mistakes
from APIs are likely to lead the model to give wrong predictions.

Table 5: Case study: comparison of baseline predictions and our ensembled predictions in En-Zh

https://competitions.codalab.org/competitions/33414#results
https://competitions.codalab.org/competitions/33414#results
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3.3 Qualitative Analysis

We conducted manual inspection on En-Zh in an
attempt to understand whether the additional fea-
tures actually contribute to better performance. The
choice of the language pair that we analysed was
determined by the availability of understanding
languages in both sides. We compared our final
submitted predictions on test set with the baseline
predictions. We found that, compared to the base-
line result, our final model predicts more ERR la-
bels. 82 out of 1000 samples’ label in test set
are flipped from NOT to ERR, among which 35
samples are correct change (from false negative to
true positive), 47 are incorrect (from true negative
to false positive). We give some examples in Ta-
ble 5 to compare our predictions with the baseline
results. These examples show that feature engi-
neering actually pushes the model to predict more
ERRs. Overall this improves the performance to
some extent, but is subjected to the correctness of
the feature extractor. Inaccurate results from APIs
will give the model wrong information and limit
the improvement of performance of our models.

4 Conclusions

This paper describes our submission to sentence-
level CED task in WMT21. Our work extends the
baseline MonoTransQuest architecture by explor-
ing feature engineering and model ensembling, as
well as weighted sampling to deal with imbalanced
datasets. Potentially due to the skewed distribu-
tion of labels in the dataset, the model performance
varies substantially over different runs. However,
our results averaged over multiple random seeds
show that our feature engineering and ensembling
lead to large improvements over the baseline. Our
official submission achieves the 2nd position in En-
Cs, En-De, En-Ja, and the 4th postion in En-Zh.
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