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orcid.org/0000-0002-2293-2031

bicici.github.io

Abstract

We obtain new results using referential transla-
tion machines (RTMs) with predictions mixed
to obtain a better mixture of experts prediction.
Our super learner results improve the results
and provide a robust combination model.

1 Introduction

Quality estimation task in WMT21 (Specia et al.,
2021) (QET21) address machine translation (MT)
performance prediction (MTPP), where transla-
tion quality is predicted without using reference
translations, at the sentence-level (Tasks 1, 2, and
3) and with classification of sentences into con-
taining a critical error or not (Task 3). Task 1 pre-
dicts the sentence-level direct assessment (DA) in
11 language pairs categorized according to the MT
resources available:

• high-resource, English–German (en-de),
English–Chinese (en-zh), and Russian-
English (en-ru),

• medium-resource, Romanian–English (ro-
en) and Estonian–English (et-en),

• low-resource, Sinhalese–English (si-en) and
Nepalese–English (ne-en), and

• no-resource, English–Czech (en-cs),
English–Japanese (en-ja), Pashto–English
(ps-en), and Khmer–English (km-en) for
zero-shot prediction.

en-ru contains sentences from both Wikipedia and
Reddit articles while others use only Wikipedia
sentences with 7000 sentences for training, 1000
for development, 1000 for test QET in 2020, and
1000 for testing at QET21. The target to pre-
dict in Task 1 is z-standardised DA scores, which
changes the range from [0, 100] for DA scores to
[3.178,−7.542] in z-standardized DA scores.

RTM interpretants
Task Train Test setting Training LM

Ta
sk

1
an

d
Ta

sk
2

en-de 9000 1000 bilingual 0.3 M 3.5 M
en-zh 9000 1000 bilingual 0.2 M 3.5 M
et-en 9000 1000 bilingual 0.2 M 3.5 M
ne-en 9000 1000 bilingual 0.2 M 3.5 M
ro-en 9000 1000 bilingual 0.2 M 3.5 M
ru-en 9000 1000 bilingual 0.2 M 3.5 M
si-en 9000 1000 bilingual 0.2 M 3.5 M
en-cs 63000 1000 bilingual 0.2 M 3.5 M
en-ja 63000 1000 bilingual 0.2 M 3.5 M
km-en 63000 1000 bilingual 0.2 M 3.5 M
ps-en 63000 1000 bilingual 0.2 M 3.5 M

Ta
sk

3 en-cs 9000 1000 bilingual 0.2 M 3.5 M
en-de 9000 1000 bilingual 0.2 M 3.5 M
en-ja 9000 1000 bilingual 0.2 M 3.5 M
en-zh 9000 1000 bilingual 0.2 M 3.5 M

Table 1: Number of instances in the tasks and the size
of the interpretants used.

The target to predict in Task 2 is sen-
tence HTER (human-targeted translation edit rate)
scores (Snover et al., 2006). We participated in
sentence-level subtasks. Table 1 lists the num-
ber of sentences in the training and test sets
for each task and the number of instances used
as interpretants in the referential translation ma-
chine (RTM) (Biçici and Way, 2015; Biçici, 2020)
models (M for million). In zero-shot predic-
tion, we use all of the training instances made
available to the task in all 7 translation direc-
tions. We tokenize and truecase all of the cor-
pora using Moses’ (Koehn et al., 2007) process-
ing tools.1 Language models (LMs) are built using
kenlm (Heafield et al., 2013).

2 RTM for MTPP

We use RTM models for building our predic-
tion models. RTMs predict data translation be-
tween the instances in the training set and the test
set using interpretants, text data selected close to
the task instances in bilingual training settings or

1https://github.com/moses-smt/
mosesdecoder/tree/master/scripts

orcid.org/0000-0002-2293-2031
bicici.github.io
https://github.com/moses-smt/mosesdecoder/tree/master/scripts
https://github.com/moses-smt/mosesdecoder/tree/master/scripts


886

Figure 1: RTM: parfwd selects interpretants close to the training and test data using parallel corpus in bilingual set-
tings and monolingual corpus in the target language or just the monolingual target corpus in monolingual settings;
an MTPPS use interpretants and training data to generate training features and another use interpretants and test
data to generate test features in the same feature space (largest sphere); learning and prediction use these features
as input.

monolingual LM settings. Interpretants are text
data that provide context for the prediction task
and are used during the derivation of the fea-
tures measuring the closeness of the test sentences
to the training data, the difficulty of translating
them, and to identify translation acts between
any two data sets for building prediction models.
With the enlarging parallel and monolingual cor-
pora made available by WMT2, the capability of
the interpretant datasets selected to provide con-
text for the training and test sets improve with
parallel feature weight decay (parfwd) instance
selection (Biçici, 2019). RTMs use parfwd
for instance selection and for machine translation
performance prediction system (MTPPS) (Biçici
et al., 2013; Biçici and Way, 2015) to obtain
the features, where additional features from word
alignment are added. Figure 1 depicts RTMs and
explains the model building process.

We treated all of Tasks 1, 2, and 3 as bilin-
gual tasks where parallel corpora are obtained
from WMT translation task.3 The related mono-
lingual or bilingual datasets are used during fea-
ture extraction. The machine learning mod-
els we use include ridge regression (RR), sup-
port vector regression (SVR) (Boser et al., 1992),
gradient tree boosting, extremely randomized
trees (Geurts et al., 2006), and multi-layer per-
ceptron (Bishop, 2006) in combination with fea-
ture selection (FS) (Guyon et al., 2002) and
partial least squares (PLS) (Wold et al., 1984)
where most of these models can be found in

2http://statmt.org/wmt21/
3http://statmt.org/wmt21/

translation-task.html

scikit-learn.4 We use RR to estimate the
noise level for SVR, which obtains accuracy with
5% error compared with estimates obtained with
known noise level (Cherkassky and Ma, 2004) and
set ε = σ/2. We use Pearson’s correlation (r),
mean absolute error (MAE), root mean squared
error (RMSE), relative absolute error (RAE), rel-
ative MAE (MAER), and mean RAE relative
(MRAER) as evaluation metrics (Biçici and Way,
2015). Our best non-mixed results are in Table 2.
Official evaluation metric is rP .

3 Mixture of Experts Models

We use prediction averaging (Biçici, 2018) to ob-
tain a combined prediction from various predic-
tion outputs better than the components, where the
performance on the training set is used to obtain
weighted average of the top k predictions, ŷ with
evaluation metrics indexed by j ∈ J and weights
with w:

wj,i =
wj,i

1−wj,i

ŷ̂ŷyµk = 1
k

∑k
i=1 ŷ̂ŷyi MEAN

ŷ̂ŷy
j,wj

k
= 1∑k

i=1 wj,i

∑k
i=1wj,i ŷ̂ŷyi

ŷ̂ŷyk = 1
|J |

∑
j∈J ŷ̂ŷyj,wj

k
MIX

(1)
MEAN is the averaged results and MIX is the
weighted average. We assume independent pre-
dictions and use pi/(1 − pi) for weights where pi
represents the accuracy of the independent classi-
fier i in a weighted majority ensemble (Kuncheva
and Rodrı́guez, 2014). We use the MIX prediction
only when we obtain better results on the training
set. We select the best model using r and mix the

4http://scikit-learn.org/

http://statmt.org/wmt21/
http://statmt.org/wmt21/translation-task.html
http://statmt.org/wmt21/translation-task.html


887

rP MAE RMSE

Ta
sk

1

en-de 0.212 0.4752 0.6809
en-zh 0.223 3.8003 3.9333
et-en 0.143 2.3699 2.5863
ne-en 0.088 5.06 5.291
ro-en 0.59 1.3623 1.5143
ru-en 0.475 0.6301 0.8149
si-en 0.21 0.8208 1.0258
en-cs 0 7.6367 7.6871
en-ja 0 7.5808 7.6215
km-en 0.0209 7.4564 7.5266
ps-en -0.028 7.5792 7.638

Ta
sk

2

en-de 0.195 0.1605 0.2389
en-zh 0.04 0.7707 0.8145
et-en 0.148 0.1885 0.2271
ne-en 0.075 0.1629 0.2058
ro-en 0.716 0.1644 0.1927
ru-en 0.356 0.1843 0.2383
si-en 0.218 0.1946 0.2457
en-cs 0.031 0.745 0.7876
en-ja 0.031 0.3114 0.3872
km-en -0.094 0.3618 0.4379
ps-en 0 0.5278 0.6322

Table 2: RTM test results in sentence-level MTPP in
tasks 1 and 2 using the best non-mix result. rP is Pear-
son’s correlation.

results using r, RAE, MRAER, and MAER. We
filter out those results with higher than 0.95 rela-
tive evaluation metric scores.

We also use generalized ensemble method
(GEM) as an alternative to MIX to combine using
weights and correlation of the errors, Ci,j , where
GEM achieves smaller error than the best com-
bined model (Perrone and Cooper, 1992):

ŷGEM =
∑L

i=1wiψi(x) = y +
∑L

i=1wiεi
Ci,j = E[εi, εj ] = (ψi(x)− y)T (ψi(x)− y)

wi =
∑L

j=1 Ci,j∑L
k=1

∑L
j=1 Ck,j

Super learner (Polley and van der Laan, 2010) is
a stacking model on a library of L learning mod-
els that are V -fold cross-validated on the training
set and constructs an V ×L level 1 dataset. Theo-
retical results show that as the number of differ-
ent predictors in the ensemble increase, the en-
semble result gets closer to the oracle result (Du-
doit and van der Laan, 2005). The function that
minimize the empirical risk on the validation set
will achieve lower error than the function that

Figure 2: Model combination.

minimize the overall risk: 1
m

∑m
i=1 L(ψ∗, yi) −

1
m

∑m
i=1 L(ψ̂, yi) ≥ 0 (Vapnik, 1998).

Model combination (Figure 2) selects top k
combined predictions and adds them to the set of
predictions where the next layer can use another
model combination step or just pick the best model
according to the results on the training set. We use
a two layer combination where the second layer is
a combination of all of the predictions obtained.
The last layer is an argmax.

Our test set results using super learner are in Ta-
ble 3. Before model combination, we further filter
prediction results from different machine learning
models based on the results on the training set to
decrease the number of models combined and im-
prove the results. A criteria that we use is MREAR
≥ 0.95 since MRAER computes the mean relative
RAE score, which we want to be less than 1. In
general, the combined model is better than the best
model in the set. Super learner improve the results
(Table 3).

The baseline deepQuest (Ive et al., 2018) use
bidirectional gated recurrent unit type recurrent
neural networks to model QET. RTM + deepQuest
combination results in Task 2 use linear interpola-
tion of RTM and deepQuest results with weights
0 ≤ λ ≤ 1 and 1 − λ respectively as well as
polynomial function fits to find the best combi-
nation model optimized on the development set.
The most common function fit found is f(x) =
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rP MAE RMSE

Ta
sk

1

en-de 0.246 0.5312 0.7699
en-zh 0.228 4.4588 4.559
et-en 0.13 2.9666 3.0942
ne-en 0.087 3.6449 3.8997
ro-en 0.376 3.1361 3.2656
ru-en 0.347 0.9238 1.2276
si-en 0.066 2.0869 2.3426
en-cs 0.053 7.0391 7.1159
en-ja -0.01 6.9076 6.9553
km-en 0.032 5.6718 5.7694
ps-en -0.159 7.1563 7.27

Ta
sk

2

en-de 0.125 0.1614 0.237
en-zh -0.052 0.516 0.5648
et-en 0.24 0.2147 0.276
ne-en 0.299 0.1797 0.2293
ro-en 0.276 0.5562 0.603
ru-en 0.143 0.2186 0.3197
si-en 0.171 0.307 0.3713
en-cs -0.108 0.7076 0.7535
en-ja 0.013 0.4636 0.5456
km-en 0.008 0.5161 0.5928
ps-en -0.064 0.4854 0.5671

Table 3: RTM test results in sentence-level MTPP in
tasks 1 and 2 using super learner. Improved results are
shown in bold.

ax + bx3 + cx2 + dx+ e (Table 4).
Task 3 results are in Table 5.

4 Conclusion

Referential translation machines pioneer a lan-
guage independent approach and remove the need
to access any task or domain specific information
or resource and can achieve good results in auto-
matic, accurate, and language independent predic-
tion of translation scores. We present RTM ensem-
ble results with super learner.
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Ergun Biçici and Andy Way. 2015. Referential trans-
lation machines for predicting semantic similarity.
Language Resources and Evaluation, pages 1–27.

Christopher M. Bishop. 2006. Pattern Recognition and
Machine Learning (Information Science and Statis-
tics). Springer-Verlag, Berlin, Heidelberg.

Bernhard E. Boser, Isabelle M. Guyon, and
Vladimir N. Vapnik. 1992. A training algo-
rithm for optimal margin classifiers. In Proc. of the
Fifth Annual Workshop on Computational Learning
Theory, COLT ’92, page 144–152, New York, NY,
USA. Association for Computing Machinery.

Vladimir Cherkassky and Yunqian Ma. 2004. Practical
selection of svm parameters and noise estimation for
svm regression. Neural Networks, 17(1):113–126.

Sandrine Dudoit and Mark J. van der Laan. 2005.
Asymptotics of cross-validated risk estimation in es-
timator selection and performance assessment. Sta-
tistical Methodology, 2(2):131–154.

https://aclweb.org/anthology/papers/W/W18/W18-6458/
https://aclweb.org/anthology/papers/W/W18/W18-6458/
https://doi.org/10.18653/v1/W19-5306
https://doi.org/10.18653/v1/W19-5306
https://doi.org/10.1007/s10590-013-9138-4
https://doi.org/10.1007/s10590-013-9138-4
https://doi.org/10.1007/s10579-015-9322-7
https://doi.org/10.1007/s10579-015-9322-7
https://doi.org/10.1145/130385.130401
https://doi.org/10.1145/130385.130401
https://doi.org/10.1016/S0893-6080(03)00169-2
https://doi.org/10.1016/S0893-6080(03)00169-2
https://doi.org/10.1016/S0893-6080(03)00169-2
https://doi.org/https://doi.org/10.1016/j.stamet.2005.02.003
https://doi.org/https://doi.org/10.1016/j.stamet.2005.02.003


889

Pierre Geurts, Damien Ernst, and Louis Wehenkel.
2006. Extremely randomized trees. Machine Learn-
ing, 63(1):3–42.

Isabelle Guyon, Jason Weston, Stephen Barnhill, and
Vladimir Vapnik. 2002. Gene selection for cancer
classification using support vector machines. Ma-
chine Learning, 46(1-3):389–422.

Kenneth Heafield, Ivan Pouzyrevsky, Jonathan H.
Clark, and Philipp Koehn. 2013. Scalable modified
Kneser-Ney language model estimation. In 51st An-
nual Meeting of the Assoc. for Comp. Ling., pages
690–696, Sofia, Bulgaria.

Julia Ive, Frédéric Blain, and Lucia Specia. 2018.
deepQuest: A framework for neural-based quality
estimation. In Proc. of the 27th Intl. Conf. on Com-
putational Linguistics, pages 3146–3157, Santa Fe,
New Mexico, USA.

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris
Callison-Burch, Marcello Federico, Nicola Bertoldi,
Brooke Cowan, Wade Shen, Christine Moran,
Richard Zens, Chris Dyer, Ondrej Bojar, Alexandra
Constantin, and Evan Herbst. 2007. Moses: Open
source toolkit for statistical machine translation. In
45th Annual Meeting of the Assoc. for Comp. Ling.,
pages 177–180, Prague, Czech Republic.

Ludmila I. Kuncheva and Juan J. Rodrı́guez. 2014.
A weighted voting framework for classifiers en-
sembles. Knowledge and Information Systems,
38(2):259–275.

Michael Perrone and Leon Cooper. 1992. When net-
works disagree: Ensemble methods for hybrid neu-
ral networks. Technical report, Brown Univ. Provi-
dence RI Inst. for Brain and Neural Systems.

Eric C. Polley and Mark J. van der Laan. 2010. Super
learner in prediction. Technical report, U.C. Berke-
ley Division of Biostatistics.

Matthew Snover, Bonnie Dorr, Richard Schwartz, Lin-
nea Micciulla, and John Makhoul. 2006. A Study
of Translation Edit Rate with Targeted Human An-
notation. In Assoc. for Machine Translation in the
Americas.

Lucia Specia, Frédéric Blain, Marina Fomicheva,
Chrysoula Zerva, Zhenhao Li, Vishrav Chaudhary,
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