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Abstract

This paper presents the submission of Huawei
Translation Services Center (HW-TSC) to
WMT 2021 Efficiency Shared Task. We ex-
plore the sentence-level teacher-student distil-
lation technique and train several small-size
models that find a balance between efficiency
and quality. Our models feature deep en-
coder, shallow decoder and light-weight RNN
with SSRU layer. We use Huawei Noah’s
Bolt1, an efficient and light-weight library for
on-device inference. Leveraging INT8 quan-
tization, self-defined General Matrix Multi-
plication (GEMM) operator, shortlist, greedy
search and caching, we submit four small-
size and efficient translation models with high
translation quality for the one CPU core la-
tency track.

1 Introduction

Transformer and its variants (Vaswani et al., 2017;
Shaw et al., 2018; So et al., 2019; Dehghani et al.,
2019) have become benchmark models in the do-
main of machine translation. A lot of innovations
and engineering optimizations (Tay et al., 2020)
in this area are based on Transformer. In general,
to train a high-quality translation model, a large
amount of data is required. Expensive training and
deployment costs pose great challenges to scenar-
ios where hardware are limited or the deployment
environment is complex. This task aims to explore
a solution that balances efficient decoding and high-
quality translation. We focus on the one CPU la-
tency track, which can better demonstrate the capa-
bility of our model and inference framework. We
explore a balance between speed and quality, and
ensure efficient memory usage and light-weight in-
ference framework capability at the same time. We
finally submit four models of different sizes.

We use knowledge distillation (Hinton et al.,
2015) to train small models. The teacher mod-

1https://github.com/huawei-noah/bolt

els come from our WMT 2021 News Shared Task.
For the sake of efficient decoding, our models have
only 1-layer decoder. However, the number of en-
coding layers vary. Such settings lead to a great
increase of inference efficiency while ensuring the
translation quality (Wang et al., 2019).

All of our experiments are conducted based on
fariseq (Ott et al., 2019), including the training of
teacher and student models, as well as the genera-
tion of distillation data.

We use Huawei Noah’s Bolt as the inference
library. Bolt is a universal deep learning library
featuring light weight and high speed. For the CPU
task, we realize INT8 quantization inference and
efficient GEMM operator, which is faster than Intel
oneDNN2. With other engineering optimization
strategies, we achieve a significant improvement in
terms of inference efficiency.

Section 2 describes the teacher-student knowl-
edge distillation process. Section 3 introduces how
we optimize inference for this task. Section 4
presents the final result of our submissions.

2 Teacher to Student Knowledge
Distillation

Sentence-level distillation (Kim and Rush, 2016;
Freitag et al., 2017) have been demonstrated effec-
tive for machine translation tasks. First of all, we
train a large teacher model that emphasizes transla-
tion quality. Then, we translate the source side of
the training data and generate a synthetic parallel
corpus, as synthetic data is easier for model fitting
than real parallel data. Finally, we train student
models using the synthetic data, hoping to mini-
mize model sizes while ensuring equal translation
quality as the teacher model. We use KD refer to
knowledge distillation.

2https://github.com/oneapi-src/oneDNN



782

2.1 Teacher Model

As suggested in the task description, we select four
iteration models for the third round and also the
models before the final round of fine-tuning. All
the models adopt back translation (Edunov et al.,
2018) and forward translation (Wu et al., 2019)
techniques. Our final ensembled model gained 39.7
BLEU on the WMT 2020 test set. The settings of
the four models vary. We make sure that the model
sizes are similar by adjusting hyperparameters such
size of embedding, encoder layers, decoder layers,
ffn size, etc. For more details about our teacher
model, please refer to our system report for WMT
2021 News Shared Task.

2.2 Traning data

We comply with the constrained condition and use
only data from the WMT 2021 En-De News Task.
The size of parallel data after filtering is around
80M. In terms of monolingual data, we only use the
news-crawl corpus with 230M sentences. So the
size of English data we obtained is around 310M.
In our teacher-student distillation experiment, we
translate all English sentences from the parallel
corpus and only 80M sentences sampled from the
English monolingual data. Thus, the ratio of real
parallel data to synthetic parallel data is 1:2.

When translating English sentences from the par-
allel corpus, we generate four candidates using the
teacher model. Then we calculate the TER scores
between those candidates and the corresponding
German reference from the parallel corpus and se-
lect the candidate with the lowest TER score as the
translation result. When translating monolingual
data, the beam size is set to 4. For all translation
results, we conduct data filtering with language
identification using FastText (Joulin et al., 2017).
We also delete sentences of which the source side
has less than 5 tokens and those with repeated trans-
lated segments. The final sizes of our training data
are as follow: 79M real parallel data, 73M synthetic
data generated from the source side of parallel data,
and 76M synthetic data generated from monolin-
gual sentences. Table 1 summarizes the details of
data we use.

2.3 Vocabulary

We build a joint subword segmentation model from
the synthesized parallel data using SentencePiece
(Kudo and Richardson, 2018). The vocabulary size
is set to 25,000 tokens. We employ SentencePiece

Type Corpora Size
Europarl v10 1.8M
News Commentary v16 0.4M
Tilde Rapid corpus 1.6M

Parallel Wiki Titles v3 1.4M
Common Crawl 2.4M
ParaCrawl v7.1 82.6M
WikiMatrix 6.2M
Totle 96.5M
Filtered 79.4M

Mono news-crawl 230M
For KD Translate 80M
Parallel 79.4M

KD Parallel En Translated 73.8M
Mono En Translated 76.8M
Total 230M

Table 1: Our training data details. The training data
consists of three parts: filtered Parallel corpus, Parallel
En translated then filtered and part of news-crawl En
translated then filtered.

regularization (Kudo, 2018) during data process-
ing. We integrate SentencePiece into the training
code and perform subword segmentation on the
source side via sampling. Such strategy can im-
prove model quality and robustness.

2.4 Student Model

The standard Transformer with self-attention in
decoder has a drawback: decoding complexity in-
crease as the decoding length increases. To address
this issue, we refer to some light-weight RNNs,
such as SRU (Lei et al., 2018) and SSRU (Kim
et al., 2019). Based on our previous experiments
and experience, we find that under the teacher-
student distillation setting, SSRU models cam basi-
cally satisfies the translation quality requirements.
As a result, all our student models replace the self-
attention layer with SSRU layer on the decoder
side. The encoder is still the standard Transformer
architecture (Vaswani et al., 2017). We train three
sizes of model during our experiment: base, small,
and tiny, with different hidden sizes and filter sizes.
They all have deep encoders/shallow decoders an
architecture capable of increasing speed and main-
tain quality (Kasai et al., 2021; Wang et al., 2019).
All models share the source and target word em-
beddings and softmax weights.
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2.5 Traning

Our distillation experiments are based on fairseq.
We also integrate SentencePiece into training. The
sampling size is set to 64 and smoothing parameter
to 0.1 for subword regularization. All our models
are trained using 8 Nvidia Tesla V100 for two days
with a batch size of 4096. Because the student mod-
els have relatively small capacities, regularization
techniques such as dropout and label smoothing
are not used. The other parameters use the default
fairseq parameters. We save models every 1000
steps and average the last 10 checkpoints to pro-
duce the final models.

2.6 Evaluation

We use WMT 2019 and 2020 News Task test sets to
measure our models with SacreBLEU (Post, 2018).
We use the 12-1 base configuration model as our
baseline model, which achieves 38.02 BLEU on
2020 test set, 1.7 BLEU lower than our teacher
model. In general, more parameters means better
translation quality. The BLEU score of the small.12
model is about 2-2.5 lower than that of the base.12
model, and the BLEU score of the tiny.2 model
is also about 2-2.5 lower than that of the small.6
model. For details about parameter settings and
BLEU results, see Table 2.

3 Inference Optimizations

For CPU optimization, we use Bolt v1.3.0. Bolt is a
standalone open-source deep learning acceleration
library. v1.3.0 will be available in September 2021.

3.1 Bolt technical overview

As a universal deployment tool for neural networks,
Bolt aims to be faster and lighter. Key features of
Bolt include extremely high performance, low-bit
inference, widely compatible model converter and
low memory usage. Bolt has a standalone C++
runtime, therefore Bolt can perform fast inference
without any third-party dependencies. Bolt sup-
ports most of the NLP and CV models inference on
x86 and ARM CPU as well as MALI GPU. We ap-
ply assembly-level optimizations to ensure comput-
ing performance and memory accessing efficiency.
The operators of Bolt are capable of achieving high
throughput near the peak of hardware.

3.2 8-bit Quantization

To accelerate translation tasks on Intel CPU and
reduce the model size, Bolt uses linear symmetric
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Figure 1: single thread u8s8s32 gemm performance
of Bolt v1.3.0 and oneDNN-v2.3 tested on Intel Xeon
Gold 6266C CPU, the reported sizes are frequently
used in translation task.

quantization (Bhandare et al., 2019) to quantize the
weights and part of the activations to 8-bit signed
integers. Then Bolt converts the activations to 8-
bit unsigned integers by adding 128 because of the
limitation of Intel SIMD instructions. To ensure the
correctness of matrix multiplication, Bolt applies
extra integer offsets which can be obtained offline
to the results.

The most time-consuming operation of trans-
lation tasks is GEMM, Bolt has implemented
u8s8s32 gemm kernel, which is faster than Intel
oneDNN (MKL-DNN). The u8s8s32 gemm perfor-
mance of Bolt and oneDNN are shown in Figure 1.
We present two key-points of the implementation:

Weights Offline Packing. Assuming the lay-
out of GEMM weights is [N, K], Bolt chunks the
weights in the K direction first, and then rearranges
the data as NKNxK4 layout, where x is the chunk-
size of N direction, x is in {8, 16, 32, 48}. The one
that can divide N will be selected.

Highly Efficient Computation. Bolt quantizes
bias to 32-bit signed integers, and then adds the
offset value obtained offline to bias as the new bias,
which is used to initialize the accumulation regis-
ter of computation for saving addition operations.
Bolt uses AVX512 VNNI instructions to perform
u8s8s32 matrix multiplication. We have highly
optimized the assembly to well utilize the regis-
ter sources and ensure the instruction efficiency,
and we also use memory optimization techniques
such as cache-blocking, prefetching and memory
alignment. All elements of the product of matrices
are 32-bit signed integers. These intermediate data
could be efficiently quantized to 8-bit unsigned in-
tegers or de-quantized to floating point numbers in
registers for the next layer.
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Model Emb. FFN Head Depth Params(M) Size(MB) wmt19 wmt20
Teacher*4 1024 4096 16 25/6 514 2000 46.71 39.70
Base.12 512 2048 8 12/1 53 210 44.65 38.02
Small.12 384 1536 6 12/1 33 132 42.56 35.77
Small.9 384 1536 6 9/1 28 112 42.17 35.73
Small.6 384 1536 6 6/1 22 88 41.15 34.49
Tiny.2 256 1024 4 6/2 13 52 38.92 31.93
Tiny 256 1024 4 6/1 12 48 37.22 30.54

Table 2: Results of Distillation Training. The translation quality deteriorates as the model size decreases: the
BLEU score of small model is 2-2.5 lower than that of the base model, and the BLEU score of the tiny model is
also about 2-2.5 lower than that of the small model.

3.3 Greedy decoding and Caching

To maximize speed and reduce memory usage, we
use greedy search instead of beam search. During
decoding, we also skip the final softmax layer and
simply get the maximum from the output logits.

Due to the autoregressive model, we also cache
the linear transformations for keys and values be-
fore the self-attention and cross attention layers.

3.4 Shortlist and Online Quantification

When decoding, we also use the mapping rela-
tionship between source and target tokens, a.k.a
shortlist, which finds the best matched target to-
ken via the source input. Such strategy decreases
the dimensions of softmax_weight, which can sig-
nificantly improve the decoding efficiency while
ensuring that the quality is only slightly influenced.

We use fastalign3 (Dyer et al., 2013) to construct
the mapping relationship. During inference, a small
target token set is obtained via querying the map-
ping dynamically, which conflicts with our offline
quantization matrix technique. As a result, we try
two schemes: a) abandon shortlist and use offline
quantification instead; b) keep shortlist and quan-
tify the reduced matrix online. In our experiments,
we find that the efficiency of the two versions de-
pends on the size of the target tokens. Because
the larger the matrix, the greater the cost of on-
line quantization, and the multiplicative benefits of
dimension reduction are offset. For example, on
a model we tested, when the input is fixed to 47
tokens, the time cost of a) is 46 ms; the time cost
of b) is 68 ms when the size is set to 25000; and
the time cost is 48 ms when the size is set to 2000.

Since we focus on the one CPU core latency
track, the model processes only one input at a time,

3http://github.com/clab/fast align

and the maximum size of target tokens is less than
2000, so we choose b).

3.5 Submitted Docker images

We choose the base image of ubuntu:18.04. Fol-
lowing the task requirements, our startup script is
/run.sh. We use C++ to encapsulate our calls to Bolt
and models, SentencePiece, as well as our simple
pre- and post-processing. Our model is stored in
the /model directory, which contains the converted
Bolt model, vocabulary, and shortlist files. The
compressed file is provided. Due to the simple run-
time environment of Bolt, the final SO package is
about 2 MB without any third-party dependency.
After quantization, the maximum size of our model
is less than 60 MB and the minimum size is about
13 MB. Therefore, the final submitted image is
about 100 MB.

4 Optimization results

The latency track we participated in is defined as
providing one sentence on standard input and flush-
ing then waiting for your system to provide a trans-
lation on its standard output (and flush) before pro-
viding the next sentence. So we don’t use tech-
niques such as batch. We believe such strategy can
better demonstrate the capability our model and
inference framework.

After the preceding optimizations, the inference
speed is significantly improved. Table 3 lists the re-
sults. In general, INT8 inference greatly improves
performance. Especially, when the model is rela-
tively large, INT8 improves performance by about
three times when comparing with FP32. As the
model size becomes smaller, the speed improve-
ment becomes less obvious. But our smallest model
also has at least a 2x or above speed improvement.
Comparing with that of FP32, the average transla-
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Model Precious Size WPS BLEU
Base.12 FP32 212 237 38.26

INT8 53 815 38.02
Small.12 FP32 133 411 36.15

INT8 33 1158 35.77
Small.9 FP32 112 473 35.90

INT8 28 1295 35.73
Small.6 FP32 88 550 34.53

INT8 22 1467 34.49
Tiny.2 FP32 52 759 32.06

INT8 13 1515 31.93
Tiny FP32 48 1000 31.01

INT8 12 2096 30.54

Table 3: Optimization results. The test set is WMT
2020 News Task. The unit of size is MB. WPS refers
to the source side. The test environment is Intel(R)
Xeon(R) Gold 6278C CPU @ 2.60GH. We submit four
models: Base.12, Small.9, Small.6 and Tiny.

tion quality of INT8 models decreases less than 0.1
BLEU.

In our small model setting, the translation quality
of the 12-1 model is not significantly improved
compared with the 9-1 model, but the inference
speed decreases by about 25%. Perhaps under the
small model setting, the addition of three encoding
layers does not bring significant changes to the
model quality. Compared with the Tiny.2 model,
the size of our Small.6 model doubles, resulting in
an increase of 2.5 BLEU. However, the inference
speed are almost the same. In addition, the speed
of our Tiny model is 30% faster than our Tiny.2
model by dropping a decoder layer. Our result
demonstrates that the number of decoding layers
has greater impacts on decoding efficiency. As a
result, we submit four models: Base.12, Small.9,
Small.6 and Tiny.

The above tests on inference speed are per-
formed with Intel(R) Xeon(R) Gold 6278C CPU
@ 2.60GHz.

5 Conclusion

In order to produce a translation system with high
inference efficiency, we explore sentence-level dis-
tillation techniques and train student models with
a trade-off between speed and quality by lever-
aging Deep-Encoder and Shallow-Decoder mod-
els. In terms of inference, we use Huawei Noah’s
Bolt library. Using a series of optimization tech-
niques, such as INT8 inference and custom efficient

GEMM operators, we accelerate inference speed
by 2 to 3 times. By using shortlist, greedy search
and caching, we submit four models with different
settings to the efficiency one CPU core latency task,
realizing efficiency improvement under different
circumstances.
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