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Abstract

Adapter layers are lightweight, learnable units
inserted between transformer layers. Recent
work explores using such layers for neural ma-
chine translation (NMT), to adapt pre-trained
models to new domains or language pairs,
training only a small set of parameters for
each new setting (language pair or domain).
In this work we study the compositionality
of language and domain adapters in the con-
text of Machine Translation. We aim to study,
1) parameter-efficient adaptation to multiple
domains and languages simultaneously (full-
resource scenario) and 2) cross-lingual transfer
in domains where parallel data is unavailable
for certain language pairs (partial-resource sce-
nario). We find that in the partial resource sce-
nario a naive combination of domain-specific
and language-specific adapters often results
in ‘catastrophic forgetting’ of the missing lan-
guages. We study other ways to combine the
adapters to alleviate this issue and maximize
cross-lingual transfer. With our best adapter
combinations, we obtain improvements of 3-
4 BLEU on average for source languages that
do not have in-domain data. For target lan-
guages without in-domain data, we achieve a
similar improvement by combining adapters
with back-translation. Supplementary material
is available at https://tinyurl.com/
r66stbxj.

1 Introduction

Multilingual Neural Machine Translation (NMT)
has made a lot of progress recently (Johnson et al.,
2017; Bapna and Firat, 2019; Aharoni et al., 2019;
Zhang et al., 2020; Fan et al., 2020a) and is now
widely adopted by the community and MT service
providers. Multilingual NMT models handle multi-
ple language directions at once and allow for knowl-
edge transfer to low-resource languages. Machine
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translation systems often need to be adapted to spe-
cific domains like legal or medical text. However,
when adapting multilingual systems, in-domain
data for most language pairs might not exist. We
would like to be able to leverage data in a subset
of language pairs to transfer domain knowledge to
other languages.

Straightforward methods of domain adaptation
include fine-tuning (Freitag and Al-Onaizan, 2016)
or usage of domain tags (Kobus et al., 2017; Britz
et al., 2017) for different domains. For these meth-
ods each new domain request would require re-
training the whole model, which is a costly proce-
dure. And naive training on a subset of languages
typically reduces performance on all other lan-
guages (Garcia et al., 2021), a phenomenon known
as ‘catastrophic forgetting’ (McCloskey and Cohen,
1989).

An alternative technique for adapting such mod-
els to new language-pairs or domains are ‘adapter
layers’ (Bapna and Firat, 2019), lightweight, learn-
able units inserted between transformer layers. A
previously trained large multilingual model can
be adapted to each language-pair by learning only
these small units, and keeping the rest of the model
frozen. This procedure also allows for the incre-
mental adding of new language pairs and/or do-
mains to the pre-trained model, reducing the cost
of adaptation. Previous studies have shown it is
possible to combine language-specific (as opposed
to language-pair specific) adapters (Philip et al.,
2020), or language and task adapters (Pfeiffer et al.,
2020) trained independently, enabling zero-shot
compositions of adapters. Our ultimate goal is, for
ease of deployment and storage, a single model that
can handle all languages and domains. In this work
we analyse how to combine language adapters with
domain adapters in multilingual NMT, and study
to what extent the domain knowledge can be trans-
ferred across languages.

First, we show it is hard to decouple language
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knowledge from domain knowledge when fine-
tuning multilingual MT systems on new domains.
In Section 5.2 we demonstrate that adapters learnt
on a subset of language pairs fail to generate into
languages not in that subset. Such generation into
the wrong language is referred to as ‘off-target’
translation. We additionally find combinations of
domain and language adapters not seen at training
time lead to bad performance. We examine how
adapter placement and other techniques can im-
prove the compositionality of language and domain
adapters when dealing with source or target lan-
guages that do not have in-domain data (which we
refer to throughout this work as “out-of-domain
languages”). Our key contributions are:

• We examine domain adaptation capacity in
the multi-lingual, multi-domain setting. We
find that encoder-only adapters can be just as
effective as default adapters added in every
layer, and that composing domain adapters
with language adapters outperforms language
adapters alone, although fine-tuning with do-
main tags performs better for most domains.

• We improve the cross-lingual transfer of do-
main knowledge for adapters. We analyse
different language and domain adapter com-
binations that improve performance and re-
duce off-target translations. Our best results
for translation into out-of-domain languages
use decoder-only domain adapters, regular-
isation with domain adapter dropout, and
data augmentation with English-centric back-
translation.

2 Related Work

Cross-lingual transfer Many works have
demonstrated that large pre-trained multilingual
models (Devlin et al., 2019; Conneau et al., 2020;
Liu et al., 2020) fine-tuned on high-resource
languages (or language pairs) can transfer to
lower-resource languages in various tasks: Natural
Language Inference (Conneau et al., 2018),
Question Answering (Clark et al., 2020), Named
Entity Recognition (Pires et al., 2019; K et al.,
2020), Neural Machine Translation (Liu et al.,
2020) and others (Hu et al., 2020).

Domain adaptation in NMT Domain adapta-
tion has been discussed extensively for bilingual
NMT models. A typical approach is to fine-tune a
model trained on a large corpus of ‘generic’ data on

a smaller in-domain corpus (Luong and Manning,
2015; Neubig and Hu, 2018). A common technique
to make use of monolingual in-domain data is to
do back-translation (Sennrich et al., 2016a; Berard
et al., 2019a; Jin et al., 2020). Although effective,
it is expensive to create back-translated data, espe-
cially when one needs to cover multiple language
pairs. Multi-domain models can be trained with
domain tags (Kobus et al., 2017; Britz et al., 2017;
Berard et al., 2019a; Stergiadis et al., 2021) that
can encode domain-specific information. However,
domain tags do not allow incrementally adding new
domains to a model: each new domain adaptation
requires retraining the full model (as opposed to
adapter layers that can be trained independently
for each language/domain). There are a number of
works (Jiang et al., 2020; Britz et al., 2017; Dabre
et al., 2020) trying to explicitly decouple domain-
specific representations from domain independent
representations in bilingual settings. In our work
we try to decouple language and domain specific
representations through adapter layers.

Adapter layers Bapna and Firat (2019) intro-
duce adapter layers for NMT as a lightweight al-
ternative to fine-tuning. They study both adding
language-pair specific adapters to multilingual
NMT models to match the performance of a bilin-
gual version, and domain-specific adapters for
parameter-efficient domain adaptation. Philip et al.
(2020) train adapters for each language instead
of language-pair and show that composing such
adapters improves zero-shot translation in English-
centric settings, and can adapt a model to all lan-
guage directions in a scalable way. Pfeiffer et al.
(2020, 2021) study adapter layers for pre-trained
language models evaluated on NLU tasks. They
show it is possible to compose language and task
adapters. Combining language adapters trained
with a masked language modelling objective for
language x and task adapters trained on a classifica-
tion task in language y can transfer to classification
in language x. We have a similar objective to Pfeif-
fer et al. (2020), but for NMT where in addition
to encoding sentences we need to generate text for
new language and domain combinations.

To the best of our knowledge none of the works
above study composing language and domain
adapters for generation tasks (such as translation)
which is the goal of this work.
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3 Composing Adapter Modules

Adapter modules (Rebuffi et al., 2017; Houlsby
et al., 2019) are randomly initialised modules in-
serted between the layers of a pre-trained net-
work and fine-tuned on new data. An adapter
layer is typically a down projection to a bottle-
neck dimension followed by an up projection to
the initial dimension, which we write as FFN(h) =
Wupf(Wdownh), with f(·) a non-linearity. The bot-
tleneck controls the parameter count of the mod-
ule; typically NMT requires slightly larger parame-
ter counts than classification to match fine-tuning
(Bapna and Firat, 2019; Cooper Stickland et al.,
2021). With a residual connection and a near-
identity initialization the original model is (ap-
proximately) retained at the beginning of optimiza-
tion, keeping at least the performance of the parent
model.

3.1 Stacking Domain and Language
Adapters

In this work we study ‘stacking’ adapter modules,
i.e. each language and domain has a unique adapter
module associated with it. When passing a batch
with source language x, target language y, and do-
main z, we only ‘activate’ the adapters for {x, y, z}.
The encoder adapters for x and decoder adapters
for y are activated.

We mostly follow the architecture of Bapna and
Firat (2019). Language adapters LA are defined as:

LA(hl) = FFNlg(LNlg(hl)) + hl (1)

where hl is the Transformer hidden state at layer
l and LNlg is a newly initialised layer-norm. Let
z = LA(hl); when stacking domain and language
adapters, the layer output hl,out is given by:

hl,out = FFNdom(LNdom(z)) + z (2)

For all models without any stacking we obtain layer
output as in Eq. 2 but replace LA(·) with the iden-
tity operation.

Pfeiffer et al. (2020) use a different formulation
that empirically performed well for them, but that
in initial experiments produced worse results in our
setting. We list the corresponding equations and
results in Appendix B and Appendix D.

3.2 Improving the Compositionality of
Adapters

In our initial experiments (Section 5.2) we found
that (unlike Pfeiffer et al., 2020) naive stacking of

language and domain adapters does not work very
well for unseen combinations of language and do-
mains, and often results in off-target translation (i.e.
translations into the wrong language). Therefore,
we study several strategies to improve the compo-
sitionality of adapters in the context of NMT:

1) Using decoder-only domain adapters when
translating from an out-of-domain source language
into an in-domain1 target language, and encoder-
only domain adapters when translating from an in-
domain source language into an out-of-domain tar-
get language. This means we never stack together
a combination of language and domain adapter that
was not seen at training time. We also find empir-
ically that decoder-only adapters work well with
back-translation, perhaps because they can ‘ignore’
the noisy synthetic source-side data.

2) Domain adapter dropout (DADrop). Simi-
lar to layer-drop (Fan et al., 2020b) but specialised
to adapter layers, or AdapterDrop (Rücklé et al.,
2020) but without targeting specific layers, we ran-
domly ‘drop’ (i.e. skip) the domain adapter2 and
only pass the hidden state through the language
adapter. This means the adapter stack in the layer
above can more easily adapt to unfamiliar input,
and encourages domain and language adapters to
be more independent of each other.

3) Data augmentation. We often have access
to monolingual data in a domain even when no
parallel data is available. In this work we leverage
English-centric back-translation (BT), i.e. trans-
lating monolingual data in some languages into
English (thus avoiding the more expensive step of
translating from each language into every other
language). We examine the ability of such data
to help cross-lingual transfer to unseen combina-
tions of source and target language (BT means we
have artificial data for every language in combina-
tion with English). We briefly explore ‘denoising
auto-encoder’ style objectives as in unsupervised
MT (Lample et al., 2018) or sequence-to-sequence
pre-training (Lewis et al., 2020).

1Reminder we refer to the subset of languages we have
parallel data for in a particular domain as ‘in-domain’, and all
other languages as ‘out-of-domain’.

2We could additionally drop the language adapter, but
since this was frozen in many experiments we limit ourselves
to domain adapters for simplicity
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4 Experimental Settings

4.1 Data

For studying the domain transfer across languages
we select four diverse domains that have data avail-
able in most language directions: translations of
the Koran (Koran); medical text from the Euro-
pean Medicines Agency (Medical); translation of
TED Talks transcriptions (TED); various technical
IT text, e.g. the Ubuntu manual (IT). All data was
obtained from the OPUS repository (Tiedemann,
2012). We create validation and test sets of around
2000 sentences each, and avoid overlap with train-
ing data (including parallel sentences in any lan-
guage) with a procedure described in Appendix A.
Note that Medical, Koran and IT are from the same
source as those of Aharoni and Goldberg (2020),
although the train/test splits are different due to
expanding the number of languages and wanting a
consistent pipeline for obtaining the data.

Domain Langs. Avg size (lines)

ParaCrawl 12 125M
Koran 10† 52k

Medical 11‡ 500k
IT 12 196k

TED 12 138k

Table 1: Basic statistics for the datasets we use; number
of languages covered, and average number of training
examples across all language directions. †: missing nb
& da, ‡: missing nb.

4.2 Models

In multilingual settings we concentrate on 12
high-resource European languages3 due to the
availability of domain-specific parallel data for
most language pairs. Our baseline model is a
Transformer Base (Vaswani et al., 2017) trained on
English-centric ParaCrawl v7.1 data (Bañón et al.,
2020) with all 12 languages (803M line pairs in
total). It is trained with fairseq (Ott et al., 2019) for
800k updates, with a batch size of maximum 4000
tokens and accumulated gradients over 64 steps
(Ott et al., 2018).4 The source/target embeddings
are shared and tied with the output layer. We to-
kenize the data with a shared BPE model of size
64k with inline casing (Berard et al., 2019b) Both

3{cs, da, de, en, es, fr, it, nb, nl, pl, pt, sv}
4This corresponds to an effective batch size of ≈207k

tokens and training length of 7 epochs.

the multilingual models and BPE model are trained
with temperature-based sampling with T = 5 (Ari-
vazhagan et al., 2019). We calculate all BLEU
scores with Sacrebleu5 (Post, 2018). On the recom-
mendation of Marie et al. (2021) we additionally
report chrF (Popović, 2015) calculated using Sacre-
bleu6 for most models in the Appendix. We use
adapter bottleneck size of 1024 unless stated other-
wise, and when using DADrop (Section 3.2) use a
20% chance of skipping the domain adapter.

We additionally train monolingual language
adapters (Philip et al., 2020) for all 12 languages on
multi-parallel ParaCrawl data, which we obtain by
aligning all languages through their English side,
like Freitag and Firat (2020). The adapters are
trained for another 1M steps, without accumulated
gradients. We report the results of models fine-
tuned on both all the domains simultaneously, or
each domain separately, with access to in-domain
data available for all the languages. Both serve as
a potential upper bound for cross-lingual transfer.

We train the same model (i.e. with access to all
languages) with domain tags: one special token per
domain prepended to each source sequence (Kobus
et al., 2017). We also measure the cross-lingual
transfer ability of domain tags, by training a model
with domain tags on all 4 domains but with in-
domain data in only 4 languages (fr, de, cs and
en). Because the latter model exhibits catastrophic
forgetting issues in the other languages, we also
train the same model with ParaCrawl data in all lan-
guage directions (with a “paracrawl” domain tag).
ParaCrawl line pairs are sampled with probability
0.5. More training hyper-parameters are given in
Appendix A.

4.3 Our model pipelines

We perform two series of experiments.
Multilingual multi-domain models. Firstly,

we experiment with different ways of multi-domain
adaptation of multilingual models. We adapt the
English-centric ParaCrawl pre-trained model to
four domains (Koran, Medical, IT and TED) and
every language direction simultaneously. We test
models with language adapters, language + do-
main adapters, and domain tags. There is no cross-
lingual domain transfer needed7 since all language

5Signature: BLEU+case.mixed+lang.m2m-
en+numrefs.1+smooth.exp+tok.13a+version.1.5.0.

6Signature: chrF2+numchars.6+space.false+version.1.5.1
7There is obviously cross-lingual domain transfer that may

take place when all the domains are trained jointly, but we do
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{Paracrawl en-fr, en-de,
fr-en, de-en}

{Paracrawl en-fr, en-de,
fr-de, de-fr, fr-en, de-en}

{Koran en-fr, fr-en}

Encoder

Decoder

Src LA

Tgt LA

Enc. DA

Finetuned

Frozen

1) 2) 3)

Figure 1: Toy diagram showing one of our proposed pipelines for training language and domain adapters, on a
example subset of languages: {en,fr,de}, with ‘domain-agnostic’ data from ParaCrawl and specialised data from
the Koran. Red indicates a fine-tuned model component, blue indicates a frozen component. LA = language
adapter, DA = domain adapter. From left to right we show: 1) Training an encoder-decoder model with English-
centric ParaCrawl. 2) Training mononlingual language adapters with multiparallel Paracrawl data. 3) Training
domain adapters stacked on language adapters in the encoder, on a subset (here {en, fr}) of languages for the
domain of interest (e.g. Koran). Here we show domain adapters added only to the encoder, but we consider various
other configurations in this work.

directions are included in the training data. Results
for this scenario are reported in Section 5.1.

Cross-lingual domain transfer. In the second
experiment we try to decouple the notion of domain
from language via analysing the zero-shot compo-
sition of domain and language adapters. This is
described in a toy diagram in Figure 1. We first
extend the baseline multilingual English-centric
model with 12 (one for each language) monolin-
gual language adapters (Philip et al., 2020) trained
on multi-parallel ParaCrawl. We then test the cross-
lingual domain transfer ability of our proposed
combinations of adapters by training on data in
a particular domain with a subset of four languages
(referred to as ‘in-domain’; in Figure 1 en and fr
would be in-domain). We test our model on all
language directions from the set of all twelve lan-
guages. This will include cases where we don’t
have in-domain data for either the source or target
language, which we refer to as ‘out-of-domain’
(in Figure 1 de would be out-of-domain).

Finally, we extend the above mentioned scenario
with back-translated (BT) data from out-of-domain
languages into English. To create the BT data, we
use the model with language adapters trained on
ParaCrawl (11) (which has not seen any in-domain
data) on the English-aligned training data for each

not explicitly study this in the first experiment.

language and domain, and use beam search with
a beam size of 5. Results for this scenario are
reported in Section 5.2.

To train language and domain adapters, we
freeze all model parameters except for adapter pa-
rameters, and use a fixed learning rate schedule
with learning rate 5 × 10−5. Following Philip
et al. (2020), when training language adapters
without domain adapters we build homogeneous
batches (i.e. only containing sentences for one lan-
guage direction) and activate only the correspond-
ing adapters. When training language and domain
adapters together, we build homogeneous batches
that only contain sentences for the same combina-
tion of language direction and domain.

5 Results and Discussion

First, in Section 5.1 we discuss the results of ex-
periments testing the domain adaptation capacity
of various models, assuming access to data for
all language pairs. In Section 5.2 we analyse do-
main transfer across languages with adapters and
other methods. We first demonstrate problems
with cross-lingual generalisation during domain
adaption for ‘naive’ methods, and then propose
potential solutions. Note we concentrate on the
medical domain and a particular language sub-
set for convenience. Appendix D has results in
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ID Model IT Koran Medical TED Params (M)

(1) Base (En-centric) 23.2 7.0 25.7 19.0 N/A

(2) Finetuned 40.8 16.0 42.7 26.6 79
(3) Finetuned + domain tags 43.6 20.3 46.0 27.2 79

(4) Single adapter per layer (d = 1024) 39.6 14.7 41.8 26.2 12.6
(5) LA (d = 1365) 42.0 17.6 43.7 26.8 202
(6) LA (d = 2048) 42.2 18.1 43.8 26.9 303
(7) LA + dec. DA (d = 1024) 42.1 18.5 43.6 27.1 177
(8) LA + enc. DA (d = 1024) 42.3 19.3 43.8 27.5 177
(9) LA + enc & dec. DA (d = 1024) 42.7 20.1 44.0 27.7 202

Table 2: BLEU scores averaged across all the language-directions for various multilingual multi-domain adap-
tation strategies, i.e. training on all language directions from the 12 languages and all domains. LA = language
adapters, DA = domain adapters. ‘Params (M)’ refers to the number of trainable parameters in millions. Note that
unlike in Table 3 the LA here are not pre-trained on ParaCrawl; they are trained jointly with domain adapters.

ID Model All In→in Out→in In→out Out→out

Oracles
(10) Finetune (all langs) 44.3 43.9 44.8 44.2 44.2
(3) FT (all langs & domains) + dom. tags 46.0 45.3 46.3 45.9 46.0

Baselines
(1) Base (En-centric) 25.7 27.0 27.2 25.9 24.3
(11) (1) + ParaCrawl LA 30.2 29.6 30.8 30.0 30.0

Straightforward Methods
(12) (1) + Domain adapters only 23.0 44.7 37.8 13.4 (7%) 13.4 (11%)
(13) Freeze LA + enc. & dec. DA 26.9 44.0 36.7 20.1 (71%) 19.9 (76%)
(14) Freeze LA + enc. DA 29.6 42.6 34.0 27.0 (89%) 24.6 (88%)
(15) Freeze LA + dec. DA 29.0 41.7 40.7 22.5 (77%) 22.0 (77%)
(16) FT (all domains) + dom. tags 15.6 46.8 13.2 (55%) 12.0 (1%) 10.7 (2%)

Improving Off-target Translation
(17) (16) + ParaCrawl 34.7 42.2 39.6 32.4 31.0
(18) (13) + BT 33.9 43.2 36.8 35.9 28.0 (85%)
(19) (14) + BT 32.5 41.8 35.0 34.7 26.8 (83%)
(20) (15) + BT 36.9 40.9 38.2 36.4 35.1

(21) (13) + DADrop 28.0 42.6 36.7 22.9 (82%) 21.5 (82%)
(22) (13) + BT + DADrop 34.8 42.2 37.0 36.5 30.2

(23) Unfreeze LA + dec. DA 14.3 45.8 36.6 0.0 (1%) 0.0 (2%)
(24) (23) + DADrop 31.1 45.5 36.9 23.9 (82%) 27.8
(25) (23) + DADrop + BT 35.2 44.5 33.4 38.2 31.8

Table 3: BLEU score of various models trained on the {en, fr, de, cs} subset of the Medical domain, except
‘Oracle’ models trained on all language pairs. LA = language adapters, DA = domain adapters. ‘Out→in’ is the
average score when translating from an out-of-domain source language into {en, fr, de, cs}. ‘In→out’ corresponds
to when the out-of-domain language is the target language. ‘In→in’ refers to average score when source and target
are in the set {en, fr, de, cs}. ‘Out→out’ is the average score when both the source and target language are unseen
during domain adaptation. We note percentage of on-target (correct language) translations in brackets, when it is
less than 90% only.
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other domains and language subsets, and also chrF
(Popović, 2015) scores; we find similar trends to
those reported in Section 5.2.

5.1 Multilingual multi-domain models

Table 2 reports the results from the challenging task
of adapting a multilingual NMT model to multiple
domains and language directions simultaneously.
In this scenario, we assume access to in-domain
data in all the language directions, and so we are
testing the capacity of various models for domain
adaptation, rather than cross-lingual transfer. Mod-
els are compared against a baseline (1) not trained
on in-domain data.

We report the results for naive fine-tuning on
the concatenation of in-domain parallel datasets
for all the languages and all the domains (2). On
all domains we improve on these results by fine-
tuning with domain tags (3) (a similar result to
Jiang et al. (2020) in the bilingual setting). Fine-
tuning with domain tags (3) outperforms the model
with stacked adapters (9). A fine-grained compari-
son of these models is in Figure 5 in the Appendix.
For the IT and Medical domains the model with
tags (3) is clearly better for all language directions.
For the lowest resource domains, Koran and TED,
most of the differences are not statistically signifi-
cant, except for English-centric language pairs for
TED, where the adapter model (9) is better. Explor-
ing the combination of domain tags and adapters
could be an interesting future research direction.

Stacking domain and language adapters (9) re-
sults in better performance than a model with
the same parameter budget devoted to language
adapters only (5). We believe this is because it
allows the model to (partially) decouple domain
from language-specific information, and better ex-
ploit the allocated parameter budget. Even a higher
capacity language adapter model (6) does not per-
form as well.

We also note that usage of encoder-only domain
adapters (8) outperforms the decoder-only domain
adapter model (7). This is perhaps because the en-
coder representations influence the whole model
(it is directly connected to the decoder at all layers
with encoder-decoder attention) as opposed to the
the decoder adapters that only impact decoder rep-
resentations. We find a similar trend in bilingual
domain adaptation, see Appendix C.

The strong performance of encoder-only
adapters has interesting implications for inference

speed. With an auto-regressive decoder, the com-
putational bottleneck is on the decoder side. The
encoder output is computed all at once, while com-
puting the decoder output requires L steps, where
L is the output length. This implies devoting more
capacity to encoder adapters would achieve similar
performance and faster inference (more details in
Appendix C).

5.2 Cross-lingual Domain Transfer

To study the capacity of our models to transfer
domain knowledge across languages, we perform
domain adaptation using parallel datasets for a sub-
set of language pairs, and evaluate on the test sets
available for all language pairs. In this section we
report the results for adaptation to the medical do-
main using the subset of all the language directions
including {en, fr, de, cs} languages (Table 3). We
refer to these languages as in-domain languages,
and out-of-domain languages would include all the
other languages, {de, nl, sv, es, it, pt, pl } (referred
to as In and Out respectively in Table 3).

We report BLEU scores averaged across test
sets of different categories of language-directions
depending on whether the source/target language
was observed during the domain adaptation train-
ing: In→in for language pairs observed during DA,
Out→out for fully zero-shot DA performance, and
In→out, Out→in for translation directions combin-
ing in-domain and out-of-domain languages.

First, we report the results for Oracle models pro-
viding an upper bound for the scores models could
achieve with access to in-domain data for all the
languages: model (10) was fine-tuned on medical
data for all the language directions8, and a model
with domain tags (3) discussed in section 5.1.

Baseline models include the default multilingual
English-centric model (1), as well as model (11)
with language adapters trained on multi-parallel
ParaCrawl data. Comparing against this base-
line shows us improvements from domain-specific
(rather than language-specific) information.

Straightforward Methods We train several
‘straightforward’ adapter models for the subset of
in-domain languages on the top of the baseline
model, one with no language adapters, model (12),
and model (13) with domain and language adapters
(where language adapters are frozen), stacking
them in the encoder and decoder.

8This is different from the model (3) which was fine-tuned
on all the domains and all the language directions.
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Both of these models achieve good scores when
translating into in-domain languages (the In→in
and Out→in categories), on par or better than Ora-
cle scores and much higher than the baselines. On
the other hand they suffer from significant drops in
performance when translating into out-of-domain
languages (the In→out and Out→out categories).

The model (16) trained with tags on a subset of
in-domain languages suffers from the same low per-
formance translating into out-of-domain languages
and additionally has low performance with out-of-
domain source languages.

Looking closer at the translations of the above
models, we see that many translations are either
generated in English, copy the source language,
or mix words between English and the true target
language; see Table 4 in the Appendix for illus-
trative examples. We refer to this phenomenon
as "off-target" translation. We report the percent-
age of translations generated in the correct target
language in Table 3 when it is lower than 90% 9.

We believe this phenomenon is partly due to de-
coder domain adapters having never been exposed
to out-of-domain language generation. Encoder
domain adapters seem to be less sensitive to com-
position with new language adapters (as observed
by Pfeiffer et al. (2020) for NLU tasks, and Table 3
in the Out→In column).

To investigate this, we train models (14) and
(15) with encoder-only and decoder-only adapters.
Figure 2 compares the performances of these mod-
els as well as model (13) trained with encoder
and decoder domain adapters, (14), (15) against
the baseline model (11). The decoder-only model
(15) can better translate from out-of-domain lan-
guages and the encoder-only model (14) slightly
improves for translations into out-of-domain lan-
guages. However the problem of off-target transla-
tion persists for both models and neither improves
over ParaCrawl LA (11). Therefore, we conclude
that a straightforward combination of domain and
language adapters leads to catastrophic forgetting
both in the encoder and the decoder, but the encoder
is less important for this effect.

Effect of data augmentation We train models
(17),(18) (19), (20) with additional data (either a

9This percentage is computed against the ref-
erence translations that were correctly tagged
by ‘langdetect’, a Python language identifier
(https://pypi.org/project/langdetect/).
This is to exclude very short and numerical examples which
can be quite frequent in some domains.

portion of ParaCrawl data, or back-translation of
in-domain data) to alleviate potential forgetting of
representations for out-of-domain languages. All
of these models improve the translation quality into
out-of-domain languages. The model with tags (17)
reaches competitive results and can be considered
as a strong baseline.

For models with back-translation data, the
decoder-only adapter (20) model outperforms the
encoder-only adapter (19) model on out-of-domain
target languages (as opposed to the case without
BT) and has the strongest results overall on trans-
lating into out-of-domain languages. While the
BT models are trained on exactly the same data,
this effect is possibly due the encoder adapters
being more influenced by potentially noisy syn-
thetic source-side data, whereas decoder adapters
are more influenced by clean reference translations.
The decoder-only BT model (20) improves over
the baseline for all the language directions except
for translation into English; see Figure 3.

We report results for the other data augmentation
methods (see Section 3.2) in Appendix D; these
only improve over the ParaCrawl LA baseline in
limited settings.

Domain adapter dropout Models (21) and (22)
trained with dropping domain adapters (DADrop;
see Section 3.2) also allow to reduce catastrophic
forgetting, although only combining DADrop with
Data Augmentation (model (22)) allows to solve
the problem of off-target translation. We also
note slight decreases in in-domain performance
for those models, perhaps due to underfitting.

Increasing adaptation capacity When naively
increasing model capacity by unfreezing LA
stacked with decoder DA (23), the model seems
to mostly devote this capacity to In→in category,
and suffers on other language pair groups. This
trend seems to be similar to the un-augmented
model with tags (16). However, once regular-
ized with DADrop (24), and augmented with back-
translation (25) it reaches very competitive results.

Figure 4 shows fine-grained results for differ-
ent models with DADrop, back-translation and un-
frozen LA. Back-translation improves performance
on the Out→out and In→out groups, but decreases
performance on the Out→in group. Finally, un-
freezing language adapters decreases the perfor-
mance on Out→in but improves on the Out→out
group.
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Freeze LA + dec. DA

en fr de cs da nl sv es it pt pl

en
fr

de
cs

da
nl

sv
es

it
pt

plra
tio

 o
f w

ro
ng

 tg
t l

ng

0 0 0 0 0.2 0.2 0.2 0.1 0.1 0.2 0.3
0 0 0 0 0.2 0.2 0.2 0.2 0.2 0.6 0.3
0 0 0 0 0.3 0.2 0.3 0.2 0.2 0.4 0.3
0 0 0 0 0.6 0.2 0.3 0.2 0.2 0.7 0.3

0.1 0 0.1 0.1 0 0.2 0.2 0.2 0.2 0.3 0.3
0 0 0 0 0.2 0 0.2 0.2 0.2 0.3 0.2
0 0 0 0 0.2 0.2 0 0.2 0.2 0.3 0.3
0 0 0 0 0.2 0.2 0.2 0 0.1 0.2 0.3
0 0 0 0 0.2 0.2 0.2 0.1 0 0.2 0.3
0 0 0 0 0.2 0.2 0.2 0.1 0.2 0 0.3
0 0 0 0 0.3 0.2 0.2 0.1 0.1 0.3 0

en fr de cs da nl sv es it pt pl

en
fr

de
cs

da
nl

sv
es

it
pt

pl

0 0 0 0 0 0.1 0 0 0.1 0.1 0.1
0 0 0 0 0.1 0 0 0 0.1 0.1 0.1
0 0 0 0 0.1 0 0 0.1 0.1 0.1 0.1
0 0 0 0 0.3 0 0.1 0.1 0.1 0.2 0.1
0 0 0.1 0 0 0.1 0.1 0.1 0.1 0.1 0.1
0 0 0 0 0 0 0 0.1 0.1 0.1 0.1
0 0 0.1 0 0 0.1 0 0.1 0.1 0.1 0.1
0 0 0 0 0.1 0.1 0 0 0.1 0.1 0.1
0 0.1 0 0 0.1 0.1 0.1 0.1 0 0.1 0.1
0 0 0 0 0.1 0.1 0.1 0 0.1 0 0.1
0 0 0 0 0 0 0 0 0.1 0.1 0

en fr de cs da nl sv es it pt pl

en
fr

de
cs

da
nl

sv
es

it
pt

pl

0 0 0 0 0.2 0.2 0.2 0.1 0.2 0.1 0.3
0 0 0 0 0.2 0.2 0.2 0.1 0.2 0.2 0.3
0 0 0 0 0.2 0.2 0.2 0.2 0.2 0.2 0.3
0 0 0 0 0.2 0.2 0.2 0.2 0.2 0.2 0.3
0 0 0 0 0 0.2 0.2 0.2 0.2 0.2 0.3
0 0 0 0 0.2 0 0.2 0.2 0.2 0.2 0.3
0 0 0 0 0.2 0.2 0 0.1 0.2 0.2 0.3
0 0 0 0 0.2 0.2 0.2 0 0.2 0.1 0.3
0 0 0 0 0.2 0.1 0.2 0.2 0 0.2 0.3
0 0 0 0 0.2 0.2 0.2 0.1 0.2 0 0.3
0 0 0 0 0.2 0.2 0.3 0.2 0.2 0.2 0

0.0

0.2

0.4

0.6

0.8

1.0

10

0

10

20

Figure 2: Comparing models with encoder-decoder adapters, encoder-only adapters and decoder-only adapters.
x-axis shows the target language and y-axis shows the source language. Languages are grouped so the in-domain
languages are in the top left corner. Top: Difference in BLEU compared to the baseline (11) (negative scores
indicate a decrease w.r.t. the baseline, "*" indicates not statistically significant). Bottom: proportion translating
into the wrong target language. Best viewed in .pdf form.
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Figure 3: Comparing adapter models trained with back-translation. Top: Difference in BLEU compared to the
baseline (11) ("*" indicates not statistically significant). Bottom: proportion translating into the wrong target
language. See Figure 2 for more details.

Adapters vs. tags As mentioned previously,
model (17) with tags augmenteed with ParaCrawl
reaches competitive scores overall. Note that this
model was trained on a concatenation of all the
domains, unlike the models with adapters which
were trained only on the medical domain. There-
fore it has been exposed to more data overall. On
the other hand, several of our models fine-tune only
a single adapter per-layer and use frozen LA. Thus,
encoder-only or decoder-only models only require
6.3 million tunable parameters, compared to 79
million for tag-based models. Additionally adapter
models can easily be ‘mixed-and-matched’ by acti-
vating a particular adapter for a particular language
pair. For example we could activate model (15) on
‘Out→in’ (out-of-domain source, in-domain target)
data, model (18) on in-domain data and model (20)
otherwise. Such models could easily be extended to

new domains by training more adapters, in contrast
to tag-based models which update all parameters
for each domain adaptation request.

6 Conclusion

In this work we studied multilingual domain adap-
tation both in the full resource setting where in-
domain parallel data is available for all the lan-
guage pairs, as well as the partial resource setting,
where in-domain data is only available for a small
set of languages.

In particular, we study how to better compose
language and domain adapter modules in the con-
text of NMT. We find that while adapters for en-
coder architectures like BERT can be safely com-
posed, this is not true for NMT adapters: domain
adapters learnt in the partial resource scenario strug-
gle to generate into languages they were not trained
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Figure 4: Comparing models with DADrop, back-translation and unfrozen language adapters. Difference in BLEU
compared to the baseline (11) ("*" indicates not statistically significant). See Figure 2 for more details.

on, even though the original model they are inserted
in was trained on those languages. We found that
randomly dropping the domain adapter and back-
translation can regularize the training and lead to
less catastrophic forgetting for when generating
into out-of-domain languages, although they do not
fully solve the problem of off-target translation.

We experimented with different adapter place-
ment and found that devoting additional capacity
to encoder adapters can lead to better results com-
pared to when the same capacity is shared between
the encoder and the decoder. Similarly, in the par-
tial resource scenario, models with encoder-only
domain adapters suffer less from catastrophic for-
getting when translating into out-of-domain lan-
guages. In contrast, decoder-only domain adapters
perform well when translating from out-of-domain
into in-domain languages, and combine well with
back-translation, perhaps due to their ability to ig-
nore noisy synthetic source data.

Finally we note that a model fine-tuned with do-
main tags serves as a very competitive baseline
for multilingual domain adaptation. On the other
hand, domain adaptation with adapters offers mod-
ularity, and allows incrementally adapting to new
domains without retraining the full model. Future
research directions could explore multi-task train-
ing combining parallel and monolingual in-domain
data in other ways to alleviate the need for back-
translation.

Our work is the first attempt to combine domain

adapters and language adapters for a generation
task (NMT). Although such combinations have
shown to be successful for NLU tasks, obtaining
good representations for generating unseen target
languages proves to be a difficult problem. We be-
lieve a fine-grained study of where to use language
or domain-specific capacity could lead to better
cross-lingual domain transfer in future. Finally, we
provide supplementary material to facilitate repro-
ducibility.10
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A Data and Hyper-parameters

For bilingual domain adaptation we use a Trans-
former Base (Vaswani et al., 2017) model trained
for 12 epochs on German to English WMT20 data
(47M parallel lines), with a joint BPE (Sennrich
et al., 2016b) vocabulary of size 24k with inline
casing (Berard et al., 2019b) (i.e. wordpieces are
put in lowercase with a special token indicating
their case.). For bilingual domain adaption we use
the same datasets as Aharoni and Goldberg (2020),
namely parallel text in German and English from
five diverse domains: Koran, Medical, IT, Law and
Subtitles.

For multilingual settings we use the following
hyper-parameters. We share embeddings between
encoder and decoder. We use the Adam optimizer
(Kingma and Ba, 2014) with an inverse square root
learning rate schedule for pre-training, and a fixed
learning rate schedule for training adapters. We
speed up training with 16 bit floating point arith-
metic. We use label smoothing 0.1 and dropout 0.1.
We train for either 20 epochs or 1 million updates,
whichever corresponds to the smallest number of
training updates. We use early stopping, check-
ing performance after each epoch or every 100,000
training steps, and use average validation negative-
log-likelihood on all of the training data (but not
out-of-domain language data) as our criteria for
choosing the best model. We otherwise use default
Fairseq (Ott et al., 2019) parameters. We train all
models on a single Nvidia V100 GPU, and training
takes between 8 and 36 hours depending on dataset
size.

In order to create validation and test splits that
had no overlap with training data in any language,
we first set aside a number of English sentences.
Then we aligned all language pairs to these sen-
tences, i.e. the German to French test set is com-
posed of German and French sentences that share
the same English sentence. Finally we remove all
sentences in any language from the train splits of
all parallel data if those sentences are aligned with
any English sentences in the subset we set aside
for validation/test splits. Both validation sets and
test sets contain around 2000 examples for every
domain and language-pair.

B MAD-X Style Stacking

Pfeiffer et al. (2020) use the following stacking

formulation,

LA(hl, rl) = FFNlg(hl) + rl. (3)

The residual connection rl is the output of the
Transformer’s feed-forward layer whereas hl is
the output of the subsequent layer normalisation.
When stacking domain and language adapters the
layer output is given by applying the model’s pre-
trained layer norm LNpre,

hl,out = LNpre(FFNdom(LA(hl, rl)) + rl) (4)

and using the output of the Transformer’s feed-
forward layer as a residual instead of the language
adapter output. We refer to this as ‘MAD-X’ style
after Pfeiffer et al. (2020). This leaves the layer
output ‘closer’ to the pre-trained model, with the
same layer-norm and residual connection, contrary
to Eq. 2 which has a newly initialised layer-norm
and a residual connection. For all models without
any stacking we obtain layer output as in Eq. 4 but
replace LA(·) with the identity operation.

C Additional Results for Bilingual
Domain Adaptation

Before studying multilingual domain adaptation,
we validate some of our ideas on a simpler, bilin-
gual German → English domain adaptation set-
ting. Table 11 reports the results of this experiment.
First, we note that encoder-only adapters perform
similarly to encoder & decoder adapters, while
decoder-only adapters perform worse.

Moreover, adding adapters to only the last three
layers of the encoder almost matches the per-
formance of adapting every layer, while adding
adapters to the first three layers decreases perfor-
mance. We believe this is because the last encoder
layer directly influences every layer of the decoder
through cross-attention.

Table 12 presents results of bilingual domain
adaption with smaller adapter bottleneck dimen-
sion. The same trends emerge: encoder-only
adapters perform better, and the last three layers
of the encoder are better than the first three. The
last three encoder layers also perform better than
the first three for a multilingual model, see Table 7
models (38) and (39). Interestingly the multilin-
gual last three encoder layer DA model is roughly
halfway between encoder-only and decoder-only
on Out→in and In→out performance, suggesting
it might be a useful compromise between the two.
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Figure 5: Difference in BLEU score for each domain between the model trained with adapters (9) and model
trained with domain tags (3), for the multilingual multi-domain models. A positive number corresponds to the
case where model (3) has higher score than the model (9). The "*" indicates the cases when the difference is not
statistically significant.

D Additional Results for Cross-lingual
Transfer

Does language diversity increase transfer? Ta-
ble 5 compares models trained on a mix of language
families (fr, de, cs, en) and mostly romance lan-
guages (fr, it, es, en) to test whether diversity of
languages in our in-domain training set improved
transfer. Positive numbers in this table indicate di-
versity of training languages improves performance.
Diversity helps for translating out-of-domain lan-
guages into in-domain. We have unclear results for
when both source and target are out-of-domain; it
seems when using back-translation (BT), i.e. when
all languages have been seen (albeit with artificial
English parallel data) diversity helps, but without
BT it mostly hurts performance. We speculate that
training on mostly romance languages means the
domain adapter encodes less ‘language informa-
tion’, but leave further exploration to future work.

Additional results and metrics We present ad-
ditional results for the setting discussed in Sec-
tion 5.2 of the main paper in Table 9 (Koran do-
main), Table 10 (Koran results for the romance
language subset), and Table 7 (additional Medi-
cal results). We use the chrF metric as discussed
in the main paper, and find the conclusions based
on BLEU score are unchanged. For the Koran
domain, we see similar trends with decoder-only
domain adapters (DA) performing best on out-of-
domain source to in-domain target languages, and
vice versa for encoder-only DA. Additionally we
see as before that combining BT with decoder-only
DA works the best, and achieves the highest over-
all performance. We report on-target (correct lan-
guage) percentage for all medical domain models
in Table 8.

We briefly experiment with denoising objectives,
where we simply copy target data in out-of-domain
languages to the source side (and optionally add
‘noise’ to the source side, e.g. swap tokens or mask
tokens (Lewis et al., 2020)). Although we got rea-
sonable improvements (models (42) and (41)) for
out-of-domain target languages, we were mostly
unable to improve over the pre-trained ParaCrawl
LA, and so concentrate on back-translation.

We experiment with a setting where we jointly
train on all language directions for IT, Koran and
TED Talks domains and a subset of languages for
Medical, and similarly with only a subset of Ko-
ran (models (43), (44) etc.). These models stack
language and domain adapters. Such models don’t
require any pre-trained LA, and improve out-of-
domain performance and decrease off-target trans-
lation compared to freezing ParaCrawl LA and
training DA. However these scores are still worse
than simply using pre-trained ‘domain-agnostic’
ParaCrawl LA (11).
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source (fr) ref (pt) (12) (13)
La durée du traitement
dépend de la nature et de la
sévérité de l’ infection et de
la réponse observée.

A duração do tratamento de-
pende da natureza e da gravi-
dade da infecção e da re-
sposta verificada.

The duration of treatment
depends on the nature and
severity of the infection and
on the response observed.

A duração do tratamento de-
pende da nature e severidade
da infecção e da resposta ob-
served.

Insuman Comb 50 40 UI/ ml
suspension injectable en fla-
con

Insuman Comb 50 40 UI/
ml, Suspensão injectável
num frasco para injectáveis

Insuman Comb 50 40 IU/ ml
suspension injectable en fla-
con

Insuman Comb 50 40 IU/ ml
suspension for injection in
vial

A quoi ressemble TAX-
OTERE et contenu de l’
emballage extérieur TAX-
OTERE 80 mg, solution à
diluer pour perfusion est une
solution visqueuse, limpide,
jaune à jaune marron.

Qual o aspecto de TAX-
OTERE e contéudo da
embalagem TAXOTERE
80 - mg concentrado para
solução para perfusão
é uma solução viscosa
transparente amarela ou
amarela- acastanhada.

What TAXOTERE looks
like and contents of the pack
TAXOTERE 80 mg concen-
trate para solution for infu-
sion is a solution visqueuse,
limpida, de jaune à marron.

TAXOTERE 80 mg, Diluted
for Solution for Infusion é
uma solution viscous, limpa,
yellow to marrom.

Table 4: Some examples of translations generated by straight-forward adapter training settings, in this case from a
known source language, fr into a target language unseen during domain adaptation, pt, and for the medical domain.

Model Out→ {en,fr} Out→Out

Koran
LA + Dec. DA 0.6 -0.9
LA + Dec. DA 0.3 -0.3

Unfr. LA + Dec. DA 0.1 -0.4
LA + Enc & Dec. DA 1.3 -1.3

Koran + BT
LA + Dec. DA 0.4 0.2
LA + Dec. DA 1.9 0.9

Unfr. LA + Dec. DA 0.3 0
LA + Enc & Dec. DA 0.7 0.3

Medical
LA + Dec. DA 0.8 -2.4
LA + Dec. DA 3.2 0.2

Unfr. LA + Dec. DA 0.2 0.1
LA + Enc & Dec. DA 3.2 -1.1

Medical + BT
LA + Dec. DA 0.4 2.9
LA + Dec. DA 1.3 1.6

Unfr. LA + Dec. DA 0.5 3.1
LA + Enc & Dec. DA 0.5 1.5

Table 5: Difference in average BLEU score between
models trained on a diverse subset of languages and
models trained on mostly romance languages. Data
source is noted in bold. Refer to the main paper
for model definitions. Out→ {en,fr} corresponds to
translation from an out-of-domain source language into
{en,fr}. ‘Out→Out’ is the average score when both the
source and target language are unseen during domain
adaptation (choosing languages unseen by either sub-
set).
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ID Model IT Koran Medical TED Params (M)

(1) Base (En-centric) .456 .300 .488 .456 N/A

(2) Finetuned .623 .394 .625 .513 79
(3) Finetuned + domain tags .645 .433 .646 .517 79

(4) Single adapter per layer (d = 1024) .612 .382 .619 .512 12.6
(5) LA (d = 1365) .632 .408 .630 .517 202
(6) LA (d = 2048) .634 .411 .631 .517 303
(7) LA + dec. DA (d = 1024) .633 .412 .629 .518 177
(8) LA + enc. DA (d = 1024) .634 .426 .631 .522 177
(9) LA + enc & dec. DA (d = 1024) .636 .429 .632 .523 202

Table 6: chrF scores of various multilingual multi-domain adaptation strategies, i.e. training on all language
directions from the 12 languages and all domains.
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ID Model All In→in Out→in In→out Out→out

Oracles

(10) Finetune (all langs) .635 .631 .638 .635 .635
(3) FT (all langs & domains) + domain tags .646 .641 .648 .646 .646

Baselines

(1) Base (En-centric) .488 .500 .497 .493 .475
(11) (1) + ParaCrawl LA .537 .532 .540 .538 .535

Straightforward Methods

(12) (1) + Domain adapters only .400 .635 .575 .295 .287
(13) Freeze LA + enc. & dec. DA .468 .631 .566 .401 .400
(16) FT (all domains) + dom. tags .277 .650 .236 .283 .193

Improving Off-target Translation

(17) (16) + ParaCrawl .570 .622 .601 .556 .544
(26) Unfreeze LA .551 .639 .574 .514 .535
(27) (34) + BT .571 .636 .556 .594 .548

(15) Freeze LA + dec. DA .492 .613 .605 .432 .421
(20) (15) + BT .586 .608 .590 .584 .577
(28) (15) + BT + DADrop .584 .604 .587 .583 .576
(14) Freeze LA + enc. DA .518 .623 .548 .506 .477
(19) (14) + BT .548 .620 .567 .574 .498
(29) (14) + BT + DADrop .561 .614 .570 .579 .527
(30) Freeze LA + enc. first 3 layers DA .440 .618 .525 .379 .373
(31) Freeze LA + enc. last 3 layers DA .512 .622 .576 .472 .465

(21) (13) + DADrop .490 .621 .567 .447 .429
(32) (13) + BT .559 .626 .581 .582 .511
(22) (13) + BT + DADrop .569 .619 .583 .587 .534
(33) (13) + BT + MAD-X style .540 .625 .575 .561 .477

(23) Unfreeze LA + dec. DA .221 .641 .573 .010 .007
(24) (23) + DADrop .528 .639 .577 .452 .514
(25) (23) + DADrop + BT .573 .636 .559 .595 .550

Table 7: chrF score of various models trained on the {en, fr, de, cs} subset of the Medical domain. Some models
are also included in the main paper.
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ID Model All In→in Out→in In→out Out→out

Oracles

(10) Finetune (all langs) 95% 95% 95% 95% 95%
(3) FT (all langs & domains) + domain tags 95% 95% 96% 95% 95%

Baselines

(1) Base (En-centric) 91% 93% 92% 91% 89%
(11) (1) + ParaCrawl LA 95% 96% 96% 95% 95%

Straightforward Methods

(12) (1) + Domain adapters only 40% 95% 93% 7% 11%
(13) Freeze LA + enc. & dec. DA 81% 95% 93% 71% 76%
(16) FT (all domains) + dom. tags 25% 96% 55% 1% 2%

Improving Off-target Translation

(17) (16) + ParaCrawl 93% 95% 93% 93% 92%
(34) Unfreeze LA 94% 95% 95% 93% 95%
(35) (34) + BT 94% 96% 95% 95% 94%

(15) Freeze LA + dec. DA 84% 95% 95% 77% 77%
(20) (15) + BT 94% 95% 95% 94% 94%
(36) (15) + BT + DADrop 94% 95% 95% 94% 94%
(14) Freeze LA + enc. DA 90% 95% 93% 89% 88%
(19) (14) + BT 90% 96% 94% 94% 83%
(37) (14) + BT + DADrop 93% 95% 95% 94% 91%
(38) Freeze LA + enc. first 3 layers DA 59% 95% 93% 35% 43%
(39) Freeze LA + enc. last 3 layers DA 88% 95% 94% 83% 86%

(21) (13) + DADrop 86% 95% 93% 82% 82%
(18) (13) + BT 91% 95% 95% 94% 85%
(22) (13) + BT + DADrop 93% 95% 95% 94% 91%
(40) (13) + BT + MAD-X style 89% 95% 95% 92% 80%

(23) Unfreeze LA + dec. DA 36% 96% 95% 1% 2%
(24) (23) + DADrop 90% 95% 95% 82% 92%
(25) (23) + DADrop + BT 94% 95% 95% 94% 94%

Table 8: On-target translation percentages of various models trained on the {en, fr, de, cs} subset of the Medical
domain.
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ID Model All In→in Out→in In→out Out→out

Oracles

(10) Finetune (all langs) .461 .437 .427 .487 .477
(3) FT (all langs & domains) + domain tags .433 .423 .409 .455 .438

Baselines

(1) Base (En-centric) .300 .307 .299 .306 .294
(11) (1) + ParaCrawl LA .334 .330 .328 .340 .335

Straightforward Methods

(12) (1) + Domain adapters only .246 .451 .349 .163 .150
(13) Freeze LA + enc. & dec. DA .165 .449 .137 .144 .089

Improving Off-target Translation

(16) FT (all dom.) + dom. tags .166 .436 .162 .143 .081
(17) FT (all dom. + ParaCrawl) + dom. tags .359 .410 .375 .351 .332
(34) Unfreeze LA .352 .454 .351 .322 .335

(15) Freeze LA + dec. DA .304 .404 .385 .249 .244
(41) (15) + Mono data .355 .390 .373 .342 .336
(20) (15) + BT .381 .399 .371 .387 .375
(36) (15) + BT + DADrop .382 .402 .373 .388 .376
(14) Freeze LA + enc. DA .319 .438 .328 .315 .266
(42) (14) + Mono data .347 .410 .338 .353 .324
(19) (14) + BT .365 .432 .353 .385 .330
(37) (14) + BT + DADrop .368 .425 .354 .394 .336

(18) (13) + BT .374 .434 .366 .394 .341
(22) (13) + BT + DADrop .381 .436 .369 .406 .349

(23) Unfreeze LA + dec. DA .224 .457 .351 .088 .138
(24) (23) + DADrop .339 .458 .354 .288 .320

(43) Multi-domain dec. DA .326 .403 .360 .304 .285
(44) Multi-domain enc. DA .337 .412 .360 .327 .297
(45) Multi-domain enc. & dec. DA .327 .417 .369 .302 .279

Table 9: chrF score of various models trained on the {en, fr, de, cs} subset of the Koran domain. LA = language
adapters, DA = domain adapters. ‘Out→in’ is the average score when translating from an out-of-domain source
language into {en, fr, de, cs}. ‘In→out’ corresponds to when the out-of-domain language is the target language.
‘In→in’ refers to average score when source and target are in the set {en, fr, de, cs}. ‘Out→Out’ is the average
score when both the source and target language are unseen during domain adaptation. ‘Mono data’ refers to
adding copied monolingual data for out-of-domain languages, and additionally multiparallel ParaCrawl data in
small amounts.
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ID Model All In→in Out→in In→out Out→out

(13) Freeze LA + enc. & dec. DA .309 .491 .362 .267 .229
(21) (13) + DADrop .311 .490 .360 .270 .233
(34) Unfreeze LA .357 .515 .395 .303 .307
(35) (34) + BT .372 .529 .364 .370 .319

(15) Freeze LA + dec. DA .332 .463 .418 .268 .262
(20) (15) + BT .382 .460 .408 .362 .345
(14) Freeze LA + enc. DA .320 .491 .345 .296 .249
(19) (14) + BT .359 .492 .374 .354 .298

(23) Unfreeze LA + dec. DA .322 .519 .399 .216 .267
(24) (23) + DADrop .353 .515 .399 .291 .303
(25) (23) + DADrop + BT .377 .522 .372 .373 .327
(18) (13) + BT .368 .490 .388 .363 .308
(22) (18) + DADrop .373 .494 .389 .369 .314

Table 10: chrF score of various models trained on the mostly romance language {en, fr, it, es} subset of the Koran
domain. LA = language adapters, DA = domain adapters. ‘Out→in’ is the average score when translating from an
out-of-domain source language into {en, fr, it, es}. ‘In→out’ corresponds to when the out-of-domain language is
the target language. ‘In→in’ refers to average score when source and target are in the set {en, fr, it, es}. ‘Out→Out’
is the average score when both the source and target language are unseen during domain adaptation.

ID Model IT Koran Medical Subtitles Law

(46) No fine-tuning 35.3 14.8 38.1 26.8 42.4
(47) Fine-tuned 43.8 22.7 53 30.9 57.9

(48) Enc. + dec. adapters (d = 1024) 42.9 21.8 51.7 30.5 56
(49) (48) + MAD-X style 40.6 19.3 48.8 29.8 54.3
(50) Dec. adapters (d = 2048) 42.1 19.8 50.5 29.7 55.1
(51) Enc. adapters (d = 2048) 42.4 21.5 51.9 30.1 56.1
(52) Last 3 encoder layers only (d = 4096) 42.9 21.1 52.1 30.1 56
(53) First 3 encoder layers only (d = 4096) 42.2 20 50.1 28.5 54.9

Table 11: BLEU scores of various domain adaptation strategies for a German→ English bilingual model. (d = N)
refers to adapters with a bottleneck dimension of size N .

ID Model IT Medical Koran Subtitles Law

(54) No fine-tuning 35.3 14.8 38.1 26.8 42.4
(55) Finetuned 43.8 22.7 53 30.9 57.9
(56) Enc. + dec. adapters (d=64) 40 18.7 47.3 29.4 51.5
(57) Dec. adapters (d=128) 39 17.5 46 28.8 50.6
(58) Enc. adapters (d=128) 40 18.9 47.3 29.2 51.5
(59) Last 3 encoder layers only (d=256) 40 19 47.3 29 51.1
(60) First 3 encoder layers only (d=256) 39.5 18 46 28.8 49.5

Table 12: BLEU scores of various domain adaptation strategies for a German→ English bilingual model. (d = N)
refers to adapters with a bottleneck dimension of size N .


