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Abstract

Automatic metrics are commonly used as the
exclusive tool for declaring the superiority of
one machine translation system’s quality over
another. The community choice of automatic
metric guides research directions and indus-
trial developments by deciding which models
are deemed better. Evaluating metrics correla-
tions with sets of human judgements has been
limited by the size of these sets. In this pa-
per, we corroborate how reliable metrics are
in contrast to human judgements on – to the
best of our knowledge – the largest collection
of judgements reported in the literature. Ar-
guably, pairwise rankings of two systems are
the most common evaluation tasks in research
or deployment scenarios. Taking human judge-
ment as a gold standard, we investigate which
metrics have the highest accuracy in predict-
ing translation quality rankings for such sys-
tem pairs. Furthermore, we evaluate the per-
formance of various metrics across different
language pairs and domains. Lastly, we show
that the sole use of BLEU impeded the devel-
opment of improved models leading to bad de-
ployment decisions. We release the collection
of 2.3 M sentence-level human judgements for
4380 systems for further analysis and replica-
tion of our work.

1 Introduction

Automatic evaluation metrics are commonly used
as the main tool for comparing the translation qual-
ity of a pair of machine translation (MT) systems
(Marie et al., 2021). The decision of which of the
two systems is better is often done without the help
of human quality evaluation which can be expen-
sive and time-consuming. However, as we confirm
in this paper, metrics badly approximate human
judgement (Mathur et al., 2020b), can be affected
by specific phenomena (Zhang and Toral, 2019;
Graham et al., 2020; Mathur et al., 2020a; Freitag
et al., 2021) or ignore the severity of translation

errors (Freitag et al., 2021), and thus may mis-
lead system development by incorrect judgements.
Therefore, it is important to study the reliability of
automatic metrics and follow best practices for the
automatic evaluation of systems.

Significant research effort has been applied to
evaluate automatic metrics in the past decade, in-
cluding annual metrics evaluation at the WMT con-
ference and other studies (Callison-Burch et al.,
2007; Przybocki et al., 2009; Stanojević et al.,
2015; Mathur et al., 2020b). Most research has fo-
cused on comparing sentence-level (also known as
segment-level) correlations between metric scores
and human judgements; or system-level (e.g., scor-
ing an entire test set) correlations of individual
system scores with human judgement. Mathur et al.
(2020a) emphasize that this scenario is not identi-
cal to the common use of metrics, where instead,
researchers and practitioners use automatic scores
to compare a pair of systems, for example when
claiming a new state-of-the-art, evaluating different
model architectures, deciding whether to publish
results or to deploy new production systems.

The main objective of this study is to find an
automatic metric that is best suited for making
a pairwise ranking of systems and measure how
much we can rely on the metric’s binary verdicts
that one MT system is better than the other. We
design a new methodology for pairwise system-
level evaluation of metrics and use it on – to the
best of our knowledge – the largest collection of
human judgement of machine translation outputs
which we release publicly with this research. We
investigate the reliability of metrics across differ-
ent language pairs, text domains and how statistical
tests over automatic metrics can help to increase
decision confidence. We examine how the com-
mon use of BLEU over the past years has possibly
negatively affected research decisions. Lastly, we
re-evaluate past findings and put them in perspec-
tive with our work. This research evaluates not
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only the utility of MT metrics in making pairwise
comparisons specifically – it also contributes to the
general assessment of MT metrics.

Based on our findings, we suggest the following
best practices for the use of automatic metrics:

1. Use a pretrained metric as the main automatic
metric; we recommend COMET. Use a string-
based metric for unsupported languages and
as a secondary metric, for instance ChrF. Do
not use BLEU, it is inferior to other metrics,
and it has been overused.

2. Run a paired significance test to reduce metric
misjudgement by random sampling variation.

3. Publish your system outputs on public test
sets to allow comparison and recalculation of
different metric scores.

2 Data

In this section, we describe test sets, the process
for collecting human assessments, and MT systems
used in our analysis. We publish all human
judgements, metadata, calculated metrics scores,
and the code with replication of our findings and
promoting further research. We cannot release the
proprietary test sets and so system outputs for legal
reasons. The collection is available at https:
//github.com/MicrosoftTranslator/
ToShipOrNotToShip. Moreover, we plan to
evaluate new metrics emerging in the future.

2.1 Test sets
When evaluating our models, we use internal test
sets where references are translated by professional
translators from monolingual data. Freitag et al.
(2020) have demonstrated that the quality of test
set references plays an important role in automatic
metric quality and correlation with human judge-
ment. To maintain a high quality of our test sets,
we create them by a two-step translation process:
the first professional translator translates the text
manually without post-editing followed by a sec-
ond independent translator confirming the quality
of the translations. The human translators are asked
to translate sentences in isolation; however, they
see context from other sentences.

The test sets are created from authentic source
sentences, mostly drawn from news articles (news
domain) or cleaned transcripts of parliamentary dis-
cussions (discussion domain). The news domain
test sets are used in both directions, where the au-
thentic side is mostly English, Chinese, French, or

German. The discussion domain test sets are used
in the direction from authentic source to transla-
tionese reference, e.g., we have two distinct test
sets, one for English to Polish and second for Pol-
ish to English. Furthermore, some systems are
evaluated using various other test sets.

We evaluate 101 different languages within 232
translation directions.1 The size of the test sets can
vary, and more than one test set or its subsets can be
used for a single language direction. The average
size of our test sets is 1017 sentences. The distri-
bution of evaluated systems is not uniform, some
language pairs are evaluated only a few times and
while others repeatedly with different systems. The
majority of the language pairs are English-centric,
however, we evaluate a small set of French, Ger-
man, and Chinese-centric systems (together only
90 system pairs). Details about the system counts
of evaluated language pairs and average test set
sizes can be found in the Appendix in Table 7.

2.2 Manual quality assessment

Our human evaluation is run periodically to con-
firm translation quality improvements by human
judgements. For this analysis, we use human an-
notations performed from the middle of 2018 until
early 2021. All human judgements were collected
with identical settings with the same pool of human
annotators. Thus, the human annotations should
have similar distributions and characteristics.

The base unit of our human evaluation is called
a campaign, in which we commonly compare two
to four systems in equal conditions: We randomly
draw around 500 sentences from a test set, translate
them with each system and send them to human as-
sessment. Each human annotator on average anno-
tates 200 sentences, thus a system pair is evaluated
by five different annotators (each annotating dis-
tinct set of sentences translated by both systems).

We use source-based Direct Assessment (DA,
Graham et al., 2013) for collecting human judge-
ments, where bilingual annotators are asked to rate
all translated sentences on a continuous scale be-
tween 0 to 100 against source sentence without
access to reference translations. This eliminates
reference bias from human judgement by design.

We use the implementation of DA in the Ap-
praise evaluation framework (Federmann, 2018),

1We compare metrics only over the intersection of lan-
guages supported by all evaluated metrics, which means that
we use only 39 different target languages when Prism is part
of the evaluation.

https://github.com/MicrosoftTranslator/ToShipOrNotToShip
https://github.com/MicrosoftTranslator/ToShipOrNotToShip
https://github.com/MicrosoftTranslator/ToShipOrNotToShip
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the same as is used in WMT since 2016 for out-of-
English human evaluation (Bojar et al., 2016a).

We do not use crowd workers as human annota-
tors. Instead, we use paid bi-lingual speakers that
are familiar with the topic and well-qualified in
the annotation process. Moreover, we track their
performance, and those who fail quality control
(Graham et al., 2013) are permanently removed
from the pool of annotators, so are their latest an-
notations. This increases the overall quality of our
human quality assessment.

We have two additional constraints in contrast to
the original DA. Firstly, each system is compared
on the same set of sentences which removes the
problem of a system potentially benefitting from
an easier set of randomly selected sentences. More-
over, it allows us to use a stronger paired test that
compares differences in scoring of equal sentences
instead of an unpaired one that evaluates scores of
both systems in isolation. We use the Wilcoxon
signed-rank test (Wilcoxon, 1946) in contrast to the
Mann-Whitney U-test (Mann and Whitney, 1947)
originally suggested for DA (Graham et al., 2017).
Secondly, each annotator is assigned the same num-
ber of sentences for each evaluated system which
mitigates bias from different rating strategies as
each system is affected evenly by each annotator.

When calculating the system score, we take the
average of human judgements.2 We analyze human
judgements for 4380 systems and 2.3 M annotated
sentences. This data is one and a half orders of
magnitude larger than the data used at WMT Metric
Shared Tasks, which evaluate around 170 systems
each year (see Section 6).

2.3 Systems

We evaluate competing systems against human
judgement. The system pairs could be separated
into three groups: (1) model improvements, (2)
state-of-the-art evaluation, and (3) comparisons
with third-party models. The first group contains
system pairs where one system is a strong base-
line (usually our highest quality system so far)
and the second system is an improved candidate
model; this group evaluates stand-alone models
without additional pre- and post-processing steps
(e.g., rule-based named entity matching). The sec-
ond group contains pairs of the candidate for the
new best performing system and the current best

2We do not assume a normal distribution of annotator’s
annotations; therefore, we do not use z-score transformation.
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BERTScore D — D — 104
BLEURT D D D — *
COMET D D D — 100
ESIM D D D — 104
Prism D — D — 39
COMET-src D D — n/a 100
Prism-src D — — n/a 39

Table 1: Comparison of selected string-based and pre-
trained automatic evaluation metrics. We mark met-
rics designed to work at sentence-level, fine-tuned
on human judgements, requiring reference(s), or sup-
porting multiple references, and report the number of
supported languages. *BLEURT is built on top of
English-only BERT (Devlin et al., 2019) in contrast to
BERTScore and ESIM that use multilingual BERT.

performing system. The third group compares our
best-performing model at the time with a publicly
available third-party MT system.

Analyzing the variety of systems, hyperparame-
ters, training data, and even architectures is out of
the scope of this paper. However, all models are
based on neural architectures.

3 Automatic metrics

In this study, we investigate metrics that were
shown to provide promising performance in re-
cent studies (see Section 6) and currently most
widely used metrics in the MT field.3 We focus
on language-agnostic metrics, therefore we do not
include metrics supporting only a small set of lan-
guages. The full list of evaluated metrics and their
main features is presented in Table 1.

Two categories of automatic machine translation
metrics can be distinguished: (1) string-based met-
rics and (2) metrics using pretrained models. The
former compares the coverage of various substrings
between the human reference and MT output texts.
String-based methods largely depend on the quality
of reference translations. However, their advantage
is that their performance is predictable as it can be

3The YiSi – high correlating metric (Ma et al., 2019) – was
not publicly available at the time of our evaluation.
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Figure 1: Each point represents a difference in average human judgement (y-axis) and a difference in automatic
metric (x-axis) over a pair of systems. Blue points are system pairs translating from English; green points into
English; red points are non-English system pairs (a few French, German, or Chinese-centric system pairs). We
report Spearman’s ρ correlation in the top left corner and Pearson’s r in the bottom right corner. Metrics disagree
with human ranking for system pairs in pink quadrants. Other metrics are in Figure 2 in the Appendix.

easily diagnosed which substrings affect the score
the most. The latter category of pretrained meth-
ods consists of metrics that use pretrained neural
models to evaluate the quality of MT output texts
given the source sentence, the human reference, or
both. They are not strictly dependent on the trans-
lation quality of the human reference (for example,
they can better evaluate synonyms or paraphrases).
However, their performance is influenced by the
data on which they have been trained. Moreover,
the pretrained models introduce a black-box prob-
lem where it is difficult to diagnose potential un-
expected behavior of the metric, such as various
biases learned from training data.

For all metrics, we use the recommended imple-
mentation. See Appendix A for implementation
details. Most metrics aim to achieve a positive cor-
relation with human assessments, but some error
metrics, such as TER, aim for a negative corre-
lation. We simply negate scores of metrics with
anticipated negative correlations. Pretrained met-
rics usually do not support all languages, therefore
to ensure comparability, we evaluate metrics on a
set of language pairs supported by all metrics.

4 Evaluation

4.1 Pairwise score differences

Most previous works studied the system-level eval-
uation of MT metrics in an isolated scenario corre-
lating individual systems with human judgements
(Callison-Burch et al., 2007; Mathur et al., 2020b).
They have mostly employed Pearson’s correlation
(see Section 6) as suggested by Macháček and Bo-
jar (2014) and evaluated each language direction
separately. However, Mathur et al. (2020a) suggest

using a pairwise comparison as a more accurate
scenario for the general use of metrics.

As the primary unit, we use the difference in
metric (or human) scores between system A and B:

∆ = score(System A)− score(System B)

We gather all system pairs from each campaign
separately as only systems within a campaign are
evaluated under equal conditions. All campaigns
compare two, three, or four systems, which results
in one, three, or six system pairs, respectively.

To understand the relationship between metrics
and absolute human differences, we plot these dif-
ferences and calculate Pearson’s and Spearman’s
correlations in Figure 1. All metrics exhibit a
positive correlation with human judgements but
differ in behavior. For example, COMET has
the smallest deviation which results in the high-
est correlation with human judgements. However,
when we evaluate into-English and from-English
language directions separately, we observe that
COMET, Prism, and mainly BLEURT have incon-
sistent value ranges for different language pairs.4

Hence, we cannot assume equal scales for one
metric and different language pairs, so we can not
use Pearson’s nor Spearman’s correlation in pair-
wise metrics evaluation. Nonetheless, we provide
both correlations in Appendix Table 8 for the com-
plete picture.

4.2 Pairwise system-level metric quality
As standard correlation cannot be used, we inves-
tigate a different approach to evaluation. We ad-
vocate that the most important aspect of a metric

4A possible explanation for BLEURT is that it is trained
on English-only. But this does not explain other metrics.
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is to make reliable binary pairwise decisions (i.e.,
which of two systems provides a higher translation
quality) without the focus on the magnitude of dif-
ference.5 Therefore, given the size of our data set,
we propose to use accuracy on binary comparisons:
which system is better when human rankings are
considered gold labels.

We define the accuracy as follows. For each sys-
tem pair, we calculate the difference of the metric
scores (metric∆) and the difference in average hu-
man judgements (human∆). We calculate accuracy
for a given metric as the number of rank agree-
ments between metric and human deltas divided by
the total number of comparisons:

Accuracy =
|sign(metric∆) = sign(human∆)|

|all system pairs|

Assuming human judgements as a gold labels, ac-
curacy gets an intrinsic meaning of how „reliable”
a given metric is when making pairwise compar-
isons. On the other hand, accuracy does not take
into account that two systems can have comparable
quality, and thus the accuracy of a metric can be
over-estimated by chance if a small human score
difference has the same sign as the difference in
a metric score. To overcome this issue, we also
calculate accuracy over a subset of system pairs,
where we remove system pairs that are deemed to
not be different based on Wilcoxon’s signed-rank
test over human judgements.

In order to estimate the confidence interval for
accuracy, we use the bootstrap method (Efron and
Tibshirani, 1994), for more details see Appendix B.
We consider all metrics that fall into the 95% con-
fidence interval of the best performing metric to
be comparable. We visualize the clusters of best-
performing metrics in our analysis with a grey back-
ground of table cells.

5 Results

5.1 Which metric is best suited for pairwise
comparison?

In this section, we examine all available system
pairs and investigate which metric is best suited for
making a pairwise comparison.

The results presented in Table 2 show that pre-
trained methods (except for Prism-src) generally
have higher accuracy than string-based methods,

5The value of score difference (e.g., a difference of 2
BLEU) is important mainly to measure the confidence of
a ranking decision.

All 0.05 0.01 0.001 Within
n 3344 1717 1420 1176 541

COMET 83.4 96.5 98.7 99.2 90.6
COMET-src 83.2 95.3 97.4 98.1 89.1
Prism 80.6 94.5 97.0 98.3 86.3
BLEURT 80.0 93.8 95.6 98.2 84.1
ESIM 78.7 92.9 95.6 97.5 82.8
BERTScore 78.3 92.2 95.2 97.4 81.0
ChrF 75.6 89.5 93.5 96.2 75.0
TER 75.6 89.2 93.0 96.2 73.9
CharacTER 74.9 88.6 91.9 95.2 74.1
BLEU 74.6 88.2 91.7 94.6 74.3
Prism-src 73.4 85.3 87.6 88.9 77.4
EED 68.8 79.4 82.4 84.6 68.2

Table 2: Accuracies for binary comparisons for rank-
ing system pairs. Column “All” shows the results for
system pairs. Each following column evaluates accu-
racy over a subset of systems that are deemed different
based on human judgement and a given alpha level in
Wilcoxon’s test. Column “Within” represents a subset
of systems where the human judgement p-value is be-
tween 0.05 and 0.001. “n” represents the number of
system pairs used to calculate accuracies in a given col-
umn. Only the scores in each column are comparable.
Results with a grey background are considered to be
tied with the best metric.

which confirms findings from other studies (Ma
et al., 2018, 2019; Mathur et al., 2020b). COMET
reaches the highest accuracy and therefore is the
most suited for ranking system pairs. The runner-
up is COMET-src, which is a surprising result be-
cause, as a quality estimation metric, it does not use
a human reference. This opens possibilities to use
monolingual data in machine translation systems
evaluation in an effective way. On the other hand,
the second reference-less method Prism-src does
not reach high accuracy, struggling mainly with
into-English translation directions (see Figure 2 in
the Appendix). In terms of string-based metrics,
the highest accuracy is achieved by ChrF, which
makes it a better choice for comparing system pairs
than the widely used BLEU.

To minimize the risk of being affected by ran-
dom flips due to a small human score delta, we
also explore the accuracy after removing sys-
tems with comparable performance with respect
to Wilcoxon’s test over human judgements. We in-
crementally remove system pairs not significantly
different with alpha levels of 0.05, 0.01, and 0.001.
As expected, removing pairs of most likely equal-
quality systems increases the accuracy, however,
no metric reaches 100% accuracy even for a set of
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Everything Into EN From EN Non Latin Logograms Non WMT Discussion
n 1717 ↓ 922 768 131 44 484 78

COMET 96.5 95.3 98.3 96.2 90.9 97.3 93.6
COMET-src 95.3 93.5 97.7 95.4 88.6 96.7 93.6
Prism 94.5 92.2 98.2 96.2 90.9 96.9 83.3
BLEURT 93.8 93.8 95.1 93.1 84.1 94.6 89.7
ESIM 92.9 90.6 96.6 93.9 86.4 94.8 76.9
BERTScore 92.2 91.2 94.1 95.4 88.6 92.8 71.8
ChrF 89.5 88.7 91.0 95.4 88.6 89.7 57.7
TER 89.2 87.6 91.7 90.1 72.7 90.9 70.5
CharacTER 88.6 86.4 91.7 88.5 70.5 91.9 69.2
BLEU 88.2 86.9 90.5 92.4 79.5 89.9 61.5
Prism-src 85.3 80.8 91.4 84.0 65.9 91.7 84.6
EED 79.4 75.1 84.8 82.4 54.5 83.1 60.3

Table 3: Accuracies for ranking system pairs. Each column represents a different subset of significantly different
system pairs with alpha level 0.05. Results with a grey background are considered to be tied with the best metric.
Accuracies across columns are not comparable as they compare different sets of systems.

strongly different systems with an alpha level of
0.001. This implies that either current metrics can-
not fully replace human evaluation or remaining
systems are incorrectly assessed by human anno-
tators.6 Moreover, we observe that the ordering of
metrics by accuracy remains the same even after re-
moving system pairs with comparable performance,
which implies that accuracy is not negatively af-
fected by non-significantly different system pairs.
Due to that where we analyze only subsets of the
data, we use systems that are statistically different
by human judgement with an alpha level of 0.05.

Ma et al. (2019) have observed that system out-
liers, i.e., systems easily differentiated from other
systems, can inflate Pearson’s correlation values.
Moreso, Mathur et al. (2020a) demonstrated that af-
ter removing outliers some metrics would actually
have negative correlation with humans. To analyze
if outliers might affect our accuracy measurements
and the ordering of metrics, we analyze a subset of
systems with human judgement p-values between
0.05 and 0.001, i.e. removing system pairs that
have equal quality and outlier system pairs that
are easily distinguished. From column “Within”
in Table 2, we see that the ordering of metrics re-
mains unchanged. This shows that accuracy is not
affected by outliers making it more suitable for
metrics evaluation than Pearson’s ρ.

6An alpha level of 0.001 could (mis)lead to the conclusion
that 0.1% of human judgements are incorrect. However, the
alpha level only determines if two systems are different enough
and cannot be used to conclude that a human pairwise rank
decision is incorrect.

5.2 Are metrics reliable for non-English
languages and other scenarios?

The superior performance of pretrained metrics
raises the question if unbalanced annotation data
might be responsible; around half of the systems
translate into English. Moreover, COMET and
BLEURT are fine-tuned on human annotations
from WMT on the news domain. This could lead
to an unfair advantage when being evaluated w.r.t.
human judgements.7 To shed more light on metrics
behavior and robustness, we analyze various sub-
sets, including into and from English translation
directions, languages with non-Latin scripts, and
non-news domain.

We showed in Section 4.1 that some metrics per-
form differently for systems translating from and
into English. Analyzing this scenario in Table 3
reveals that BLEURT does better (the second best
metric) for “into English” translation compared to
other metrics. It is surprising that BLEURT has
a high accuracy for unseen “from English” pairs
which suggests that BLEURT might have learned
some kind of string-matching. We also observe
in Table 3 gains for Prism for the “from English”
directions. The overall ranking of metrics, how-
ever, remains similar which confirms that the high
accuracy of pretrained methods compared to the
string-based ones cannot be attributed to the abun-
dance of system pairs with English as the target.

7We double-checked and removed all campaigns contain-
ing test sets from WMT 2015 to 2020 from our work and
analysis.
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When investigating language pairs with non-
Latin (Arabic, Russian, Chinese, ...) or logogram-
based scripts (Chinese, Korean and Japanese) as
the target languages, we observe a slight drop in
metric ranks for some pretrained metric in contrast
to higher score for ChrF. This indicates that non-
Latin scripts might be a challenge for pretrained
metrics but more analysis would be required here.
For an summary on individual language pairs, refer
to Table 9 in the Appendix.

We also investigate if some pretrained methods
might have an unfair advantage due to being fine-
tuned on human assessments in the news domain.
For this, we analyze a subset of news test sets with
target languages that were not part of WMT human
evaluation (i.e., languages which those methods
have not been fine-tuned on) and call this set “non-
WMT”, and also system pairs evaluated on a propri-
etary test sets in the EU parliamentary discussions
domain covering ten languages. Neither results on
non-WMT nor discussion domains in Table 3 show
a change in the ranking of metrics, suggesting that
COMET is not overfitted to the WMT news domain
or WMT languages. Somewhat surprisingly, we
actually see a drop in accuracy for the string-based
metrics for the discussion domain. We speculate
this might be due to their inability to forgivingly
match disfluent utterances to expected fluent trans-
lations (Salesky et al., 2019).

Overall, the results for various subsets show a
similar ordering of metrics based on their accuracy,
confirming the general validity of our results.

5.3 Are statistical tests on automatic metric
worth it?

Mathur et al. (2020a) studied the effects of statisti-
cal testing of automatic metrics and observed that
even large metric score differences can disagree
with human judgement. They have shown that even
for a BLEU delta of 3 to 5 points, a quarter of these
systems are judged by humans to differ insignifi-
cantly in quality or to contradict the verdict of the
metric. In our analysis, we have 203 system pairs
deemed statistically significant by humans (p-value
smaller than 0.05) for which using BLEU results
in a flipped ranking compared to humans. The
median BLEU difference for these system pairs
is 1.3 BLEU points. This is concerning as BLEU
differences higher than one or two BLEU points
are commonly and historically considered to be
reliable by the field.

No test Boot. ↓ Type II Err.

COMET 83.4 95.1 204 (17.3%)
COMET-src 83.2 94.2 242 (19.4%)
BLEURT 80.0 92.0 349 (25.4%)
Prism 80.6 91.3 200 (18.3%)
BERTScore 78.3 87.9 244 (20.9%)
ChrF 75.6 85.4 350 (27.3%)
BLEU 74.6 83.4 378 (27.4%)
Prism-src 73.4 81.5 325 (29.4%)

Table 4: The first column shows accuracy for all sys-
tem pairs and represent situation, where we would trust
any small score difference. The second column shows
accuracy, where we ignore systems considered to be
tied with respect to the paired bootstrap resampling
test. The third column represents the number of system
pairs incorrectly decided to be non-significantly differ-
ent by the paired bootstrap resampling and the percent-
age from all non-significant systems.

In this section, we corroborate that statistical
significance testing can largely increase the confi-
dence of the MT quality improvement and increase
the accuracy of metrics. We compare how accu-
rate a metric would be under two situations: either
when not using statistical testing and solely trust-
ing in the metric score difference; or when using
statistical testing and throwing away systems that
are not statistically different.

We evaluated the first situation in Section 5.1
and the results are equal with the first column of
Table 2. For the second situation, we calculate
accuracy only over the system pairs that are statisti-
cally different. We use paired bootstrap resampling
(Koehn, 2004), a non-parametric test, to calculate
the statistical significance for a pair of systems.8

Additionally, the second situation introduces
type II errors which represent systems where the
statistical significance test rejected a system pair
as being non-significant, but humans would judge
the given pair as significantly different. In other
words, it shows how many system pairs are incor-
rectly rejected as non-significantly different. See
Appendix C for a detailed explanation.

From the results in Table 4, we can see that
if we apply paired bootstrap resampling on auto-
matic metrics with an alpha level 0.05 the accuracy
increases by around 10% for all metrics in con-

8Approximate randomization (Riezler and Maxwell III,
2005) can be used as an alternative test, and for metrics based
on the average of sentence-level scores, we can use also tests
such as the Student t-test.
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trast to not using statistical testing. On the other
hand, when using statistical testing, we introduce
type II errors, where 17.3%, for COMET, of non-
significantly different system pairs are deemed sig-
nificantly different by humans.9

In conclusion, we corroborate that using statis-
tical significance tests largely increases reliability
in automatic metric decisions. We encourage the
usage of statistical significance testing, especially
in the light of Marie et al. (2021) who show that
statistical significance tests are widely ignored.

5.4 Does BLEU sabotage progress in MT?

Freitag et al. (2020) have shown that reference
translations with string-based metrics may system-
atically bias against modeling techniques known to
improve human-judged quality and raised the ques-
tion of whether previous research has incorrectly
discarded approaches that improved the quality of
MT due to the use of such references and BLEU.
They argue that the use of BLEU might have mis-
lead many researcher in their decisions.

In this section, we investigate the hypothesis if
the usage of BLEU negatively affects model selec-
tion. To do so, we compare two groups of system
pairs based on the premise if they could be directly
affected by BLEU. The first group contains pairs
of incremental improvements of our systems. We
can assume that incremental models use similar
architecture, data, and settings, although we do
not study particular changes. We use BLEU as the
main automatic metric to guide model development.
If BLEU shows improvements, we evaluate models
with human judgements to make a final deployment
decision. Therefore, systems with degraded BLEU
scores which would be deemed improved by hu-
mans are missing in this group as we reject them
based on BLEU scores during development. The
second group contains independent system pairs,
which use different architectures, data, settings,
and therefore BLEU has not been used to preselect
them. In this group, we compare our systems with
publicly available third-party MT systems.

We compare three models within the same cam-
paign, two internal10 and one external system.
Thus, the same annotators annotated the same sen-
tences from all three systems under the same con-
ditions. We call system pairs comparisons between

9Wilcoxon’s test on human judgement and alpha level 0.05.
10The pair of internal models contains the best model from

the last year and our latest improved model.

Incremental Independent
n 161 ↓ 246

BLEU 99.4 90.7
BERTScore 98.8 91.5
ESIM 98.8 92.3
Prism 98.1 94.3
ChrF 98.1 91.5
COMET 98.1 98.4
COMET-src 97.5 98.8
CharacTER 97.5 89.8
Prism-src 96.9 92.7
BLEURT 96.9 93.5
TER 95.7 91.5
EED 78.9 78.0

Table 5: Evaluation of incremental and independent
system pairs. We use a subset of 333 system pairs sig-
nificantly different based on Wilcoxon’s test and alpha
level of 0.05 over human judgement. Results with grey
background are considered tied with the best metric.

two internal models “incremental”, and compar-
isons between the newer internal model and the
external model as “independent”.

Over the past three years we carried out 333
campaigns across 17 language pairs (each cam-
paign comparing three models), resulting in almost
530000 human annotations.

The results in Table 5 show that for independent
systems, the ranking of the metrics is comparable
with results in Table 3. Pretrained metrics generally
outperform string-based ones and COMET is in the
lead. However, when inspecting the incremental
systems, BLEU wins. This indicates that BLEU
influenced our model development and we rejected
models that would have been preferred by humans.

Another possible explanation is that systems pre-
selected by BLEU are easy to differentiate by all
metrics. This could explain why all metrics have
high accuracy in contrast to the “Independent” col-
umn and most of them are in a single cluster.

In conclusion, results showing BLEU as the met-
ric with the highest accuracy where we would ex-
pect pretrained metrics to dominate, suggests that
BLEU affected system development and we re-
jected improved models due to the erroneous degra-
dation seen in the BLEU score. However, this
is indirect evidence as for sound conclusions we
would need to evaluate those rejected systems with
other metrics and human judgement as well.
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WMT Metric task 2020b 2020b 2019 2018 2017 2016b 2015 2014 2013
↓ n 168 (no outliers) 184 225 149 152 120 121 92 135

st
ri

ng
-b

as
ed

BLEU .740 (.727) .837 (.832) .906 .955 .910 .873 .841 .910 .845
CharacTER .735 (.723) .873 (.871) .942 .964 .932 .938
ChrF .743 (.730) .743 (.864) .948 .959 .942 .911 .908
EED .762 (.750) .888 (.885) .951
METEOR .900 .884 .878
NIST .860 .970 .921 .870 .854 .899 .834
TER .609 (.668) .704 (.763) .922 .953 .918 .863 .837 .860 .788
WER .917 .934 .913 .846 .829 .818 .752

pr
et

ra
in

ed

BEER .942 .973 .938 .925 .942
BLEURT .764 (.752) .902 (.900)
COMET .711 (.762) .853 (.908)
ESIM .770 (.755) .906 (.902)
Prism .677 (.710) .846 (.886)
YiSi-1 .759 (.744) .894 (.890) .967 .973

Table 6: “n” is sum of systems in each study used to calculate aggregated correlation. The results in brackets are
without systems on English into Chinese. Correlations are comparable only within columns.

6 Meta Analysis

We analyze findings from past research to put our
results in the broader context. We focus on the
results on the system-level evaluation, however, a
large part of the research studied a sentence-level
evaluation. The largest source of metrics evalu-
ation is yearly WMT Metric Shared Task occur-
ring over more than the past ten years (Callison-
Burch et al., 2007), where various methods are
evaluated with human judgement over the set of
submitted systems and language pairs in WMT
News Translation Shared Tasks. Recently, Freitag
et al. (2021) reevaluated two translation directions
from WMT 2020 with the multidimensional quality
metric framework and raised a concern that gen-
eral crowd-sourced annotators used in into-English
evaluation in WMT prefer literal translations and
have a lower quality than some automatic metrics.

Past studies evaluate system-level correlations
with Pearson’s correlation calculated for each trans-
lation direction separately. We are interested in how
metrics correlate with human judgement in general
across different language pairs. Thus, to general-
ize the past findings, we use the Hunter-Schmidt
method (Hunter and Schmidt, 2004), which allows
combining already calculated correlations with var-
ious sizes. We use it to generalize correlations
within each study across all language pairs. For this
purpose, Hunter-Schmidt is effectively a weighted
mean of the raw correlation coefficients.

Although past studies evaluated a larger number
of methods and their variants, we have selected a
subset of metrics that are evaluated in more than
one study or showed promising performance over

other metrics in a given study. When a study eval-
uated several variants of a metric with various pa-
rameters, we selected the setting closest to either
the recommended setting in the recent years, such
as SacreBLEU, or a setting that is used in the later
evaluation study, mainly in Mathur et al. (2020b).

Meta-analysis in Table 6 shows that pretrained
methods outperform string-based methods as con-
cluded by Mathur et al. (2020b); Ma et al. (2019,
2018). The second important observation is that
there was not a single year where BLEU had a
higher correlation than ChrF. This supports our
conclusions and shows that the MT community
had results supporting the deprecation of BLEU as
a standard metric for several years. Comparing the
pretrained methods, ESIM is the best performing
method in general (Mathur et al., 2020b), while
COMET is the best performing method when re-
moving the suspicious system.

In the study by Mathur et al. (2020b), COMET
under-performed other pretrained metrics. We
found out that submitted COMET scores failed to
score one English-Chinese system with tokenized
output. However, we obtain valid COMET scores
on that system output when replicating the results.
Moreover, we have not seen any problems with
COMET on Chinese. As this one system largely
skews Pearson’s correlation, we also present analy-
sis without English-Chinese systems in Table 6.

7 Discussion

We corroborate results from past studies that pre-
trained methods are superior to string-based ones.
However, pretrained methods are relatively new
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techniques and we can potentially discover signif-
icant drawbacks, for example, they could resem-
ble biases from training data, fail on particular do-
mains, or prefer fluency over adequacy. Another
problem could arise if an MT system would be
trained on the same data as the metric was or if it in-
corporates the same pretrained model, for example,
XLM-R (Conneau et al., 2020) used by COMET.
Pretrained methods support only a selected set of
languages and the quality can differ for each of
them. Thus, we argue that the string-based method
should be used as a secondary metric.

An interesting solution to dissipate potential
drawbacks of any metric would be if different re-
search groups preselect a different primary pre-
trained metric in advance to lead their research
decisions and to discover improvements not appar-
ent under other metrics. However, we fear that it
could lead to “metric-hacking”, i.e., picking a met-
ric that confirms results. Therefore, we recommend
using COMET as the primary metric. And to use
ChrF, the best performing string-based method, as
a secondary metric and for unsupported languages.

A surprising results is the high accuracy of
COMET-src, a reference-free metric. It allows auto-
matic evaluation over monolingual domain-specific
testsets as suggested by Agrawal et al. (2021).

Limitations of BLEU are well-known (Reiter,
2018; Mathur et al., 2020a). Callison-Burch et al.
(2006) argued that MT community is overly re-
liant on it, which Marie et al. (2021) confirmed by
showing that 98.8% of MT papers use BLEU. We
present indirect evidence that the over-use of BLEU
negatively affects MT development and support
deprecation of BLEU as the evaluation standard.

We show that the reliability of metrics decisions
can be increased with statistical significance tests.
However, Dror et al. (2018) point out the assump-
tion of statistical significance tests that data sam-
ples are independent and adequately distributed is
rarely true. Also, statistical significance tests do not
account for random seed variation across training
runs. Thus, one should be cautious when making
conclusions based on small metrics improvements.
Wasserstein et al. (2019) give recommendations for
a better use of statistical significance testing.

Marie et al. (2021) have shown that almost 40%
of MT papers from 2020 copied score from dif-
ferent papers without recalculating them, which is
a concerning trend. Also, new and better metrics
will emerge and there is no need to permanently

adhering to a single metric. Instead, the simplest
and most effective solution to avoid the need to
copy scores or stick to obsolete metric is to always
publish translated outputs of test sets along with
the paper. This allows anyone to recalculate scores
with different tools and/or metrics and makes com-
parisons with past (and future) research easier.

There are some shortcomings in our analysis.
We have only a handful of non-English systems,
therefore we cannot conclude anything about the
behaviour of the metrics for language pairs without
English. Similarly, the majority of our language
pairs are high-resource, therefore, we cannot con-
clude the reliability of metrics for low-resource lan-
guages. Lastly, many of our translation directions
are from translationese into authentic, which as
Zhang and Toral (2019) showed is the easier direc-
tion for systems to score high by human judgement.
These are potential directions of future work.

Lastly, we assume that human judgement is the
gold standard. However, we need to keep in mind
that there can be potential drawbacks of the method
used for human judgement or human annotators fail
to capture true assessment as Freitag et al. (2021)
observe. For example, humans cannot explicitly
mark critical errors in DA and instead they usually
assign low assessment scores.

8 Conclusion

We show that metrics can use a different scale for
different languages, so Pearson’s correlation cannot
be used. We introduce accuracy as a novel evalua-
tion of metrics in a pairwise system comparison.

We use and release a large collection of the hu-
man judgement confirming that pretrained metrics
are superior to string-based. COMET is the best
performing metric in our study, and ChrF is the best
performing string-based method. The surprising
effectiveness of COMET-src could allow the use of
large monolingual test sets for quality estimation.

We do not see any drawbacks of the metrics
when investigating various languages or domains,
especially, for methods pretrained on human judge-
ment. We present indirect evidence that the over-
use of BLEU negatively affects MT development.

We show that statistical testing of automatic met-
rics largely increases the reliability of a pairwise
decision based on automatic metric scores.

We endorse the recommendation for publishing
translated outputs of research systems to allow com-
parisons and recalculation of scores in the future.
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A Metrics Implementation Details

We use the most common implementation with
default or recommended parameters to simulate
standard metric usage.

For BLEU (Papineni et al., 2002), ChrF
(Popović, 2015) and TER (Snover et al., 2006) met-
rics, we use SacreBLEU implementation https:
//github.com/mjpost/sacrebleu/ ver-
sion 1.5.0. We use “mteval-v13a” tokenizer for

all language pairs except for Chinese and Japanese
which use their own tokenizer, as is recommended.

For CharacTER (Wang et al., 2016), we
use https://github.com/rwth-i6/
CharacTER commit c4b25cb.

For EED (Stanchev et al., 2019), we
use https://github.com/rwth-i6/
ExtendedEditDistance commit f944adc.

For BERTScore (Zhang et al., 2020), we use
https://github.com/Tiiiger/bert_
score version 0.3.7.

For BLEURT (Sellam et al., 2020), we
use the recommended model “bleurt-base-128”
and implementation https://github.com/
google-research/bleurt version 0.0.1. It
is important to mention, that BLEURT is fine-tuned
for English only. Additionally, we evaluated other
variants and “bleurt-large-512” performed better
than recommended variant. We add it in Table 8.

For COMET (Rei et al., 2020), we use rec-
ommended model “wmt-large-da-estimator-1719”
and for COMET-src we use “wmt-large-qe-
estimator-1719”. The implementation is https:
//github.com/Unbabel/COMET in version
0.0.6. We evaluated all other COMET models, but
neither performed better than recommended model.

For Prism and Prism-src (Thompson and
Post, 2020), we use https://github.com/
thompsonb/prism commit 06f10da.

For ESIM (Mathur et al., 2019), we
use https://github.com/nitikam/
mteval-in-context.

B Confidence Interval for Metric
Accuracy

To estimate the confidence interval for the best
performing metric, we use the bootstrap method
(Efron and Tibshirani, 1994). It creates multiple
resamples (with replacement) from a set of obser-
vations and calculates accuracy on each of these
resamples. We employ modified paired bootstrap
resampling (Koehn, 2004), a method which we also
use for testing statistical significance of the metric
difference in Section 5.3. However, the usage is
different.

To calculate the bootstrap resampling. First, we
note the best performing metric on all system pairs
from the collection as metric α. We create 10 000
resamples by drawing system pairs with replace-
ments from the collection of all. For each resample,
we calculate accuracy for all metrics. We note
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which metrics have equal or higher accuracy than
metric α in a given resample.

If metric α outperforms metric X by less than
95% of the time, we draw the conclusion that met-
ric X performs on par with 95% statistical signifi-
cance to the winning metric α.

C Comparing Statistical Tests

The problem if two systems have the same MT
quality is still an open question. Applying statisti-
cal tests over the metric scores allows us to confirm
if the difference in score is significant or due to a
random change based on the set of translated sen-
tences and a given alpha level. To get the gold truth
about system equivalence, we employ Wilcoxon’s
test on human judgement and alpha level 0.05. We
use paired bootstrap resampling approach as the
statistical test for automatic metrics. Unfortunately,
we cannot directly compare the outputs of two sta-
tistical tests (for example, the Wilcoxon test on
human judgements with the bootstrap resampling
on metric scores) as even with the same alpha level,
these tests have a different power. Therefore, we
need to investigate it in isolation.

The null hypothesis in our setting is that both
evaluated systems have the same translation quality.
There are two possible outcomes of a statistical
test: accept the null hypothesis (i.e. MT quality
of systems is not significantly different) or reject
the null hypothesis (i.e. MT quality of systems is
significantly different). When observing outcomes
of statistical tests over human judgement and over
automatic metric, we get four possible outcomes:

Statistical test on a metric
Signif. Not signif.

H
um

an
s Signif.

Truly differing
system pair

Type II
Error

Not
signif.

Type I.
Error

Systems with the
equal MT Quality

There are two outcomes for the statistical test
over a metric that we investigate separately.

In the first scenario, the bootstrap resampling
confirms the statistical difference between systems.
However, even when both tests agree that systems
have statistically different MT quality, it still may
happen that humans and metrics disagree on which
system is better than the other. The goal is to evalu-
ate how accurate metric decisions are if we employ
statistical testing. Therefore, we are interested in

the accuracy of a metric over system pairs that
are deemed statistically different according to the
paired bootstrap resampling, in other words, accu-
racy for system pairs that are either truly different
(top left quadrant) or fall into type I. error (bottom
left quadrant).

In the second scenario, we want to find out how
many system pairs are diagnosed as non-significant
even though human judgements would deem them
different. For this scenario, we investigate for how
many system pairs bootstrap resampling fails to
reject the null hypothesis. However, keep in mind
that two statistical tests cannot be directly com-
pared because different tests have different power
and the type II error will differ based on that.
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Figure 2: Each point represents a difference in average human judgement (y-axis) and a difference in automatic
metric (x-axis) over a pair of systems. Blue points are system pairs translating from English; green points are into
English; red points are non-English systems (French, German, and Chinese centric). Spearman’s ρ correlation is
in top left corner, while Pearson’s r is in the bottom right corner. Metrics disagree with human ranking for system
pairs in pink quadrants. For better visualization, we have clipped few outliers in BLEU, ChrF, and TER plots.
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Language pair Sys. Size Language pair Sys. Size Language pair Sys. Size

English - French 145 1034 English - Hindi 58 540 English - Ukrainian 25 988
English - German 139 2544 Polish - English 57 1229 English - Slovak 25 1776
French - English 131 1119 Portuguese - English 57 878 English - Irish 24 463
German - English 122 1212 Swedish - English 57 1116 English - Persian 24 510
Japanese - English 78 925 English - Arabic 56 1054 Slovak - English 23 1476
Chinese - English 74 1029 Korean - English 56 1462 Greek - English 23 1526
Italian - English 71 1156 Czech - English 55 1105 English - Croatian 22 1625
English - Portuguese 70 1679 English - Hungarian 55 1018 English - Welsh 22 497
English - Japanese 67 998 English - Korean 55 550 English - Norwegian 22 1533
English - Swedish 66 1219 English - Turkish 55 1043 English - Hebrew 22 940
English - Chinese 65 2443 English - Thai 54 510 English - Vietnamese 20 1857
English - Danish 64 1186 Hindi - English 54 816 Welsh - English 20 1686
English - Italian 64 1505 Turkish - English 54 1037 Vietnamese - English 20 1697
English - Polish 64 1188 Danish - English 52 986 Catalan - English 20 928
Spanish - English 64 1223 English - Russian 49 1159 English - Urdu 18 448
Dutch - English 63 927 Russian - English 44 736 English - Finnish 17 1802
English - Dutch 61 991 Thai - English 39 457 Tamil - English 16 834
English - Indonesian 61 948 English - Catalan 30 981 English - Lithuanian 16 1997
Indonesian - English 60 703 Hebrew - English 28 870 Lithuanian - English 16 1997
English - Czech 59 1329 English - Romanian 27 1056 English - Maltese 16 489
Arabic - English 59 2674 Romanian - English 27 1094 English - Kiswahili 16 457
English - Spanish 58 1172 English - Greek 27 1936
Hungarian - English 58 976 Persian - English 26 1372

Table 7: The column “Sys.” represents the number of systems for a given translation direction. We list only
translation directions with more than 15 evaluated systems. The column “Size” represents the average test set size
for the given direction. We evaluate 232 translation directions in total.

All 0.05 Within Spearman Pearson
n 3344 1717 541 3347 3347

COMET 83.4 96.5 90.6 0.879 0.919
COMET-src 83.2 95.3 89.1 0.824 0.855
Prism 80.6 94.5 86.3 0.827 0.839
BLEURT-large 80.1 94.4 85.4 0.808 0.748
BLEURT 80.0 93.8 84.1 0.787 0.729
ESIM 78.7 92.9 82.8 0.780 0.835
BERTScore 78.3 92.2 81.0 0.772 0.824
ChrF 75.6 89.5 75.0 0.716 0.739
TER 75.6 89.2 73.9 0.708 0.321
CharacTER 74.9 88.6 74.1 0.700 0.757
BLEU 74.6 88.2 74.3 0.661 0.640
Prism-src 73.4 85.3 77.4 0.661 0.631
EED 68.8 79.4 68.2 0.531 0.541

Table 8: Extended Table 2 with Spearman’s and Pear-
son’s correlations over all system pairs. Remaining
columns are identical to original table. This table also
contain additional BLEURT-large.
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