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Abstract

The current approach to collecting human
judgments of machine translation quality for
the news translation task at WMT – segment
rating with document context – is the most
recent in a sequence of changes to WMT hu-
man annotation protocol. As these annotation
protocols have changed over time, they have
drifted away from some of the initial statisti-
cal assumptions underpinning them, with con-
sequences that call the validity of WMT news
task system rankings into question. In simu-
lations based on real data, we show that the
rankings can be influenced by the presence of
outliers (high- or low-quality systems), result-
ing in different system rankings and cluster-
ings. We also examine questions of annotation
task composition and how ease or difficulty of
translating different documents may influence
system rankings. We provide discussion of
ways to analyze these issues when considering
future changes to annotation protocols.

1 Introduction

At the WMT (now Conference on Machine Trans-
lation) shared task on news translation, research
groups build machine translation systems to accu-
rately translate news data, as tested on test sets of
recent news documents. The systems are clustered
and ranked on their performance as judged by hu-
man annotators. The way that human judgments of
translation quality have been collected has varied
over the course of WMT’s history.

In this work, we examine how changes in the
collection of human judgments over the last three
years have resulted in rankings that are now less
robust to the effects of outliers (high- or low-
performing systems) and overall annotation task
composition. We replicate the human judgment
rankings from 2018-2020, perform simulations for
reranking, and examine issues of annotation task
composition and translation difficulty. We find that
sampling sentences for annotators to annotate by

document – intended as a step towards evaluat-
ing sentences in context – reintroduces a known
problem from the earlier era of relative rankings,
namely that systems suffer or benefit in their rank-
ings based on the quality of the other data being
rated alongside them in the same annotation tasks.

We begin with a discussion of the progression of
direct assessment (DA) styles employed in WMT
evaluations (§2) and how scoring is performed (§3),
before delving into theoretical and practical under-
standings of the z-scores used to rank systems (§4
and §5), including simulations and analysis of spe-
cific examples. We also discuss issues around doc-
ument distribution and translation difficulty (§6),
and close with considerations for downstream im-
pacts (§7) and future study (§8).

2 Historical Context

In 2016, WMT added direct assessment (DA) scor-
ing of system outputs as an investigatory ranking,
with relative ranking (RR) remaining the official
scoring mechanism (Bojar et al., 2016). In relative
ranking, five system outputs for a given segment
were ranked in comparison to one another, from
which pairwise translation comparisons were gen-
erated; these were then used to produce overall sys-
tem rankings by means of the TrueSkill algorithm
(Herbrich et al., 2007; Sakaguchi et al., 2014). Rel-
ative ranking can be used to compare systems, but
does not provide an absolute score, thus obscuring
how close a good system is to a “perfect” transla-
tion or, at the other extreme, how poor a system is
as compared to others.

The following year, 2017, WMT adopted DA
as its main assessment format on the basis of high
Pearson correlations between RR and DA in the
previous year’s investigations (Bojar et al., 2017).
In DA (Graham et al., 2013, 2014, 2016), annota-
tors provide an absolute numerical score (0-100)
for MT output adequacy (at the sentence level or at
the document level) using a sliding scale.
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The use of DA has changed since it was first
introduced to WMT. In 2016, it was trialed for
monolingual evaluations of translation fluency and
monolingual evaluations of adequacy. Here we pro-
vide an overview of changes from the 2016 task to
the present, based on Findings papers descriptions.

Bojar et al. (2016) noted that the 2016 version of
DA assessments has the potential to avoid a known
bias of the RR setup. In RR, each rating task con-
sisted of ranking the outputs of five systems on
the same input segment, and “a system may suffer
more losses if often compared to the reference, and
similarly it may benefit from being compared to a
poor competitor” (Bojar et al., 2011). In the 2016
DA setup, translations were annotated in sets of
100, including quality assurance tasks, but each
segment was annotated individually, rather than in
direct comparison to other system output for the
same segment.1 Quality assurance tasks can in-
clude references (which should score highly), “bad”
references (which should score poorly; these are
produced by randomly replacing substrings in ref-
erences to degrade quality), and repeat assessments
of a segment (which should be scored consistently).

In 2017, DA was adopted as the main annotation
style, with exact duplicate segment translations be-
ing able to be scored just once (rather than once
per system that produced them) and with human
assessment scores “standardized according to each
individual human assessor’s overall mean and stan-
dard deviation score” (Bojar et al., 2017).

Bojar et al. (2018) describes two setups for the
2018 DA tasks, a standard structure (with repeat
pairs, “bad” references, and references, as quality
assurance) and an alternate setup where an addi-
tional constraint was imposed, such that within
each 100-translation task, for each input the task
would include the corresponding output of all MT
systems. This makes a tradeoff between the aim
of DA (to make absolute score judgments rather
than relative ones) and getting a single annotator to
provide scores for all systems’ output of the same
source input (which risks reintroducing some form
of relative judgement to the task). This is also the
first year that the findings paper explicitly spells out
the goal of the way tasks (referred to here using the
Amazon Mechanical Turk nomenclature “Human
Intelligence Task” or HIT) are built in the standard
HIT structure:

1It is still possible that there may be biases based on the
segments observed in any given set of 100.

[...] within each 100-translation HIT, the
same proportion of translations are in-
cluded from each participating system
for that language pair. This ensures the fi-
nal dataset for a given language pair con-
tains roughly equivalent numbers of as-
sessments for each participating system.
This serves three purposes for making
the evaluation fair. Firstly, for the point
estimates used to rank systems to be re-
liable, a sufficient sample size is needed
and the most efficient way to reach a suf-
ficient sample size for all systems is to
keep total numbers of judgments roughly
equal as more and more judgments are
collected. Secondly, it helps to make the
evaluation fair because each system will
suffer or benefit equally from an overly
lenient/harsh human judge. Thirdly, de-
spite DA judgments being absolute, it is
known that judges “calibrate” the way
they use the scale depending on the gen-
eral observed translation quality. With
each HIT including all participating sys-
tems, this effect is averaged out.2

The 2018 shared task also introduced source-
based DA, trialling a bilingual version of the task.
Rather than scoring MT output against a reference,
this version scores it against the source segment,
which allows human references to be scored as a
“human system” rather than solely as a QA task.
They raise a number of potential cautions against
drawing strong conclusions, namely that bilingual
DA is not yet validated, the alternate task structure
may introduce biases, the year’s sample size for
source-based DA was smaller than 1,500 judgments
per system, and that there may be quality issues
with some reference segments.

In 2019, WMT introduced additional versions
of DA (Barrault et al., 2019). They used monolin-
gual (reference-based) assessment for translation
into English and for language pairs that did not
include English at all. For translation out of En-
glish, they performed bilingual (source-based) DA.
The style of DA used in previous years is renamed
to SR–DC (Segment Rating without Document
Context), as a new style, SR+DC (Segment Rating
with Document Context) is introduced. In the new
SR+DC style, the full translation of a single docu-

2Here we reproduce this quote from Barrault et al. (2019),
though it appears consistent 2018-2020.
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ment by a single MT system is shown to the annota-
tor in order (but still scored segment-by-segment);3

a task consists of multiple such documents. The
generation of annotation tasks is described as fol-
lows: all documents translated by all systems are
pooled, then sampled (without replacement) until
up to 70 segments are selected, at which point qual-
ity control documents are added, and finally the
order of documents in the task is shuffled. Barrault
et al. (2020) uses both SR–DC and SR+DC styles.

3 Scoring

In order to experiment with questions surrounding
human evaluation, it is necessary to understand and
be able to replicate the official scores produced
by WMT. For the human annotations of interest
(segment-level evaluation, with or without docu-
ment context), there are two main types of scores:
raw scores and z-scores, with the latter used as the
official ranking. These are presented in a table, or-
dered by z-score, and clusters of systems deemed
statistically significantly different (according to a
Wilcoxon rank-sum test p < 0.05) are separated by
horizontal lines.4

Following the approach used at WMT, after re-
moving any HITs deemed unacceptable due to qual-
ity issues, we calculate raw and z-scores for sys-
tems as follows. First, any worker ID whose scores
have a standard deviation of 0 is removed. Given a
raw score x generated by the worker with worker
ID W , its corresponding z-score z is computed as

z =
x−mean(y ∈W )

std(y ∈W )
(1)

where mean(y ∈W ) is the mean of all raw scores
generated by worker W , and std(y ∈ W ) is the
standard deviation of all raw scores generated by
that worker. When we say that the mean and stan-
dard deviation are computed from all raw scores
from a given worker ID, this includes references
(which are treated as systems in SR+DC but are
treated as quality assurance in SR–DC), “bad ref-
erences” (which are only ever used for quality as-
surance), and repeats.5 However, after computing

3There is also a Document Rating with Document Context
DR+DC, but we do not examine that in this work.

4A horizontal line is drawn below a system if and only if
it is significantly better (p < 0.05) than every system with a
lower z-score than it.

5We compute mean and standard deviation using
ad-latest.csv, but use ad-good-raw-redup.csv
to compute the individual z-scores and averages. The files are

the mean and standard deviation, only a subset of
scores are used to actually compute system aver-
ages: those with type “SYSTEM” or “REPEAT”
(discarding “BAD_REF” and “REF” types).6 To
compute averages (raw or z-score), first an aver-
age is computed for any “SYSTEM” or “REPEAT”
scores that share the same system ID, the same
document ID, and the same sentence ID; that is,
if a given sentence of a given document was an-
notated multiple times for a particular system, we
first average those scores (so that more frequently
annotated sentences do not receive more weight).
Then, for each system, all of its “SYSTEM” or
“REPEAT” type scores are averaged, resulting in a
system-level score.

We note that the 2019 and 2020 document con-
text (SR+DC) evaluations differ in their quality
assurance (see Table 1). In both 2019 and 2020,
references are treated as a “Human” system, to
be ranked alongside the other systems; which
may explain the lack of “REF” labeled segment
types in the data. In 2019, the Appraise interface
data used to generate the rankings did not include
any segments labeled as “REPEAT”, “REF”, or
“BAD_REF”, though these are described as being
included in the HITs (Barrault et al., 2019); per-
haps they were removed before processing the data.
In 2020, the Appraise data did include segments
labeled as “BAD_REF”, but none labeled as “RE-
PEAT” or as “REF”, while the 2020 Mechanical
Turk document-level ones included all three. The
2019 data collected using the Turkle platform con-
tains no human or reference data and we do not use
it for any of our analysis in this work.

We reimplemented the scoring system using
python and plan to release code for this paper. We
were able to exactly replicate the raw scores and
z-scores for most of the language pairs of inter-
est from 2018-2020,7 as well as the significance
clusters.8 See Appendix A for details. We use this
reimplementation of the WMT scoring scripts in or-

downloaded from 2018-2020 WMT websites: http://www.
statmt.org/wmt18/results.html, http://www.
statmt.org/wmt19/results.html, and http://
www.statmt.org/wmt20/results.html.

6“SYSTEM” type are system outputs, while the remainder
are quality assurance: “REPEAT” are repeated system outputs
which are also valid for computing averages, “BAD_REF” are
degraded references, and “REF” are references.

7In order to match the z-scores generated by the R pack-
ages used for WMT, we set ddof equal to 1 when using the
stats.zscore function from scipy.

8We replicated the significance clusters using scipy’s
stats.mannwhitneyu function.

http://www.statmt.org/wmt18/results.html
http://www.statmt.org/wmt18/results.html
http://www.statmt.org/wmt19/results.html
http://www.statmt.org/wmt19/results.html
http://www.statmt.org/wmt20/results.html
http://www.statmt.org/wmt20/results.html
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Dataset SYSTEM REPEAT REF BAD_REF
newstest2018-humaneval 265387 26489 26003 36924
appraise-doclevel-humaneval-newstest2019 194625 0 0 0
mturk-sntlevel-humaneval-newstest2019 92164 13266 13177 13113
turkle-sntlevel-humaneval-newstest2019 47799 0 0 0
appraise-doclevel-humaneval-newstest2020 186663 0 0 26856
mturk-sntlevel-humaneval-newstest2020 26262 3741 3746 3773
mturk-doclevel-humaneval-newstest2020 93777 12887 12939 12965

Table 1: Counts of sentence types in ad-good-raw-redup.csv files from 2018-2020. We omit the Turkle data from
most of our analysis because it contains neither human systems nor reference data.

der to score authentic and modified WMT data, to
examine underlying assumptions and hypothesize
about how these may impact final system rankings.

For 21 language pairs annotated in SR–DC style
and 25 in SR+DC style from 2018-2020, we were
able to exactly replicate rankings, nearly replicate
rankings (e.g., with rounding difference related
changes to one significance line), or produce rank-
ings whose differences could be explained by de-
lays in data collection (2020 en-iu).9 Appendix A
provides more details on replication. We use our
recalculated rankings and clusters as the starting
point for all remaining analysis in this paper.

4 Understanding z-scores

While we’ve described how the z-score is calcu-
lated in the setting of the WMT human annotations,
it’s important to take a closer look at z-scores to
understand how they behave in different scenar-
ios. In this section, we explore z-scores and their
underlying assumptions in hypothetical scenarios.

Given a raw score x, a mean µ, and a standard
deviation σ, the z-score (or standard score) is the
number of standard deviations above or below the
mean that x falls. The z-score for a given raw score
x can be computed as follows:

z =
x− µ
σ

(2)

This is a linear transformation; the shape of the
distribution of z-scores is the same as that of the
raw scores, but now with a mean of 0 and a standard
deviation of 1. It is a unitless score.

Intuitively, the z-score provides a potential way
of comparing scores from different annotators, but
it requires a careful examination of underlying as-
sumptions. If we think of the z-score as a unitless
score, perhaps we can think of each annotator as

9Language codes: Chinese (zh), Czech (cs), German (de),
English (en), Estonian (et), Finnish (fi), Gujarati (gu), Inuktitut
(iu), Japanese (ja), Kazakh (kk), Khmer (km), Lithuanian (lt),
Pashto (ps), Polish (pl), Russian (ru), Tamil (ta), Turkish (tr).

having their own measurement units: we might
have a lenient annotator and a harsh annotator, such
that a raw score of 50 by the lenient annotator is
quite bad while a raw score of 50 for the harsh an-
notator is actually quite good. In order to directly
compare the two annotators’ scores, we would like
to map them to a shared scale, a unitless z-score.
Under what assumptions is it appropriate to calcu-
late z-scores to compare annotators’ scores?

We start with perhaps the most obvious (but fre-
quently unstated) assumption: there exists some
latent “quality” of a given translation, which can
be judged by a human annotator, such that annota-
tors roughly agree about what constitutes a “good”
or a “bad” translation. In practice, human anno-
tators may disagree – for any number of reasons
(Basile et al., 2021) – about which of two transla-
tions of “similar quality” is better, but we assume
that the disagreement is not extreme; i.e., we hope
that under a correlation coefficient like Pearson’s
r or Spearman’s ρ, the correlation between anno-
tators’ scores would be much closer to 1 than to
-1. For the sake of simplicity in the following ex-
amples, we will assume there exists a “true” and
“objective” score for every translation.

Suppose that we have some translations with a
true mean score of µ and a true standard deviation
of σ. A lenient annotator scores all of the transla-
tions such that the distribution of their scores has a
mean of µ+n and a standard deviation of σ, while
a harsh annotator scores all of the translations such
that the distribution of their scores has a mean of
µ−m and a standard deviation of σ.10 When we
compute their z-scores, it is easier to directly com-
pare sentence scores, since they are now on the
same scale. This seems like a reasonable use of
z-scores, but in this scenario annotators are scor-
ing exactly the same data, which doesn’t scale to
WMT-style annotations; annotators simply don’t

10We use the same standard deviation for simplicity, with
arbitrary positive values of n and m.
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have time to score all of the data.
Now suppose that we have two disjoint sets of

sentences scored by two different annotators: the
set SX of sentences scored by annotator X and
the set SY of sentences scored by annotator Y .
From these raw scores, we can compute µX and
µY along with σX and σY . If µX > µY , can we
conclude that annotator X is a more lenient anno-
tator than annotator Y and resolve this by comput-
ing z-scores? Not without additional information!
Imagine that we could see the “true” mean scores
of SX and SY , as annotated by a perfect omniscient
annotator. It could be the case that the true means
are identical and annotator X is indeed more le-
nient, but it could also be the case that the true
mean of the scores in set SX is actually higher. In
the latter case, the annotators could be equally le-
nient, or it is even possible that annotator Y could
be more lenient! In short, without a shared basis
for comparison, we don’t know whether computing
z-scores is normalizing out annotator differences,
differences in the data itself, or a combination.

5 z-scores in practice

This raises the question: what is happening in prac-
tice when we compute z-scores on WMT DAs? Are
we really normalizing away inter-annotator differ-
ences, or is the normalization also doing something
else, such as normalizing away real differences in
HIT and system quality? If it is the latter, even
z-scores for DAs may suffer the same bias from
comparisons to better (or worse) systems.

We don’t have access to an oracle, and we don’t
have a direct or reliable way to compute interan-
notator agreement, because in some collections it
is rare that two annotators annotate the same text
(and for the Appraise data, we only have HIT in-
formation, not annotator information). However,
we can still examine this in the existing data and
modifications thereof. Bojar et al. (2011) noted
that systems might suffer from being compared to
the reference too frequently under relative ranking,
or might benefit from being compared to particu-
larly poor systems. The same could hold true in
DA. Consider the following toy example: a HIT
contains 4 sentences, with raw scores of 25, 50, 50,
75, respectively. A sentence with a raw score of 50
in this HIT would have a z-score of 0. If, instead,
the raw scores were 0, 25, 50, 75, a sentence with
a raw score of 50 would have a z-score of 0.39,
while for a HIT with raw scores of 25, 50, 75, 100,

a sentence with a raw score of 50 would have a
z-score of -0.39. While it is possible that such a
set of scores could reflect differences in annotator
behavior, we could also easily imagine that they
might reflect differences in HIT composition, with
one containing only system scores, one contain-
ing system scores and a bad reference, and one
containing system scores and a (good) reference.

5.1 HIT Composition
Thus we examine HIT composition, or, more ac-
curately, the composition of data annotated by
any given worker/worker ID. In 2018, all sys-
tems were SR–DC, and 100% of workers anno-
tated “BAD_REF” data.11 However, an “Alter-
nate DA HIT Structure” was employed for a sub-
set of researcher HITs (run in Appraise), which
used only “BAD_REF” segments for quality as-
surance, “omitting repeat pairs and good reference
pairs” while also attempting to include “the output
of all participating systems for each source input”
(to have the same annotator produce annotations
across systems). The percentage of (non-rejected)
workers who annotated data containing “REF” in
2018 ranged from 4.9% (en-et) to 98.8% (zh-en);
the former is an outlier, as the next two lowest are
25.8% (en-cs) and 47.4% (en-fi).

In 2019 annotations into English, 100% of work-
ers annotated both “REF” and “BAD_REF” seg-
ments. In 2019 annotations out of English, the
final output data does not include any “REF” or
“BAD_REF” segments (though these are described
as having been included for QA), but human refer-
ences are treated as systems, and between 37.8%
(en-de) and 61.5% (en-kk) of workers annotated at
least some human reference data.

The 2020 Appraise annotations differed from
prior years as well: 100% of the 2020 into En-
glish (Mechanical Turk) workers annotated both
“REF” and “BAD_REF” segments. In 2020 anno-
tations out of English (Appraise), between 95.8%
(en-iu) and 100% (en-{ja, ta, zh}) of workers12

annotated “BAD_REF” data. The percentage of
Appraise “workers” that annotated data containing
human references (treated as a system) ranged from
8.3% (en-iu) to 73.4% (en-zh).

11These values are calculated on ad-good-raw-redup.csv
files, so only include annotators who successfully passed QA.

12The definition of “worker” is really a bit fuzzy here; the
“WorkerID” produced by Appraise is really a HIT ID, so aver-
ages are not necessarily being computed across all of a given
worker’s annotations, but rather each HIT is being treated as a
unique worker.
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5.2 Analysis

In an ideal world where z-score normalization is
only correcting for annotator variation, removing
one system should not result in changes to the rel-
ative rankings of the remaining systems. That is
to say, the z-scores themselves may be expected
to change (shifting up if a very good system is
removed, shifting down if a low-quality system
is removed), but we wouldn’t expect the relative
ranking of two systems to change. After all, one
stated motivation of the shift to DA was to avoid
the known bias in RR of systems being unfairly pe-
nalized or benefiting unfairly from comparisons to
stronger/weaker systems (Bojar et al., 2016). Sim-
ilarly, replacing one system – for example with a
much better or much worse system – should not
result in other systems switching places in the rank-
ings. We simulate these two scenarios using the
existing data, and show that rankings produced in
SR+DC settings are much more sensitive to re-
moval or modification of systems than SR–DC.

Year/Type ∆ Rank ∆ Cluster ∆ Both
’18 (–DC) 1/13 0/13 0/13
’19 (–DC, MTurk) 2/5 1/5 0/5
’20 (–DC, MT.) 1/3 0/3 0/3
ALL SR–DC 4/21 1/21 0/21
’19 (+DC, MT.) 1/2 1/2 1/2
’19 (+DC, A.) 6/8 3/8 1/8
’20 (+DC, MT.) 7/7 3/7 3/7
’20 (+DC, A.) 4/8 5/8 3/8
ALL SR+DC 18/25 12/25 8/25

Table 2: Effect of removing human and “REF” scores
from annotations and recalculating rankings by year,
platform (MTurk or Appraise), and annotation style.
Values indicate the fraction of language pairs that had
changes in rank, clustering, or both rank and clustering.

We first examine removing human systems and
“REF” – acting as though they had never been an-
notated at all, so all z-scores are calculated without
“REF” or human system scores.13 We then compute
rankings and significance clusters. We compare
these against the original rankings generated from
all available data, with the significance clusters re-
computed after removal of human systems.14 For
each pair of rankings, we check whether there is
any change in the order of systems (ignoring sig-
nificance clusters; we call this ∆ Rank), whether
there is any change in clusters (different number

13We observe similar results if we only remove “REF”, but
in that setting we cannot examine the 2019 and 2020 Appraise
SR+DC rankings, as they do not make use of “REF” at all.

14Relevant to clusters containing or above human system(s).

or composition of clusters; we call this ∆ Cluster),
and/or changes in both (∆ Both). Table 2 shows
the results. Rank changes (ignoring significance
clusters) are the most common, and many of these
occur within significance clusters as we would ex-
pect. However, there are also a number of changes
to the significance clusters (clusters merging, split-
ting, or rearranging), as well as pairs for which both
rank and cluster changes occur. Most strikingly, all
of these changes are much more common in the
SR+DC settings than in the SR–DC. Removing hu-
man and “REF” data results in cluster changes to
almost half (12/25) of the SR+DC rankings, but
less than 5% (1/21) of the SR–DC rankings. No
SR–DC rankings exhibit changes in both rank and
clusters, but 32% of SR+DC rankings do. This is
evidence that the SR+DC rankings are less stable,
and consequently less reliable, than the SR–DC
rankings. We replicate this result with removing
the highest and lowest ranked systems, respectively,
as shown in Table 3; the SR+DC rankings are much
less robust than the SR–DC rankings to the removal
of the best or worst single system.

Removed/Type ∆ Rank ∆ Cluster ∆ Both
Lowest (SR–DC) 4/21 3/21 1/21
Lowest (SR+DC) 18/25 10/25 7/25
Highest (SR–DC) 0/21 1/21 0/21
Highest (SR+DC) 17/25 10/25 5/25

Table 3: Effect of removing single lowest ranked or
highest ranked system across all years, by data collec-
tion type (–/+DC). Values indicate the fraction of lan-
guage pairs that had changes in rank, clustering, or both
rank and clustering.

One might worry that some of this instability is
due to the shrinking number of datapoints avail-
able when we remove “REF” and human systems,
or the highest/lowest ranked systems. To account
for this, we run the same experiment and measure
the same changes, but instead of removing “REF”
and human systems, we degrade their raw scores
(dividing each score by 1.25, 1.5, 2, 4, and 10) be-
fore computing z-scores, rankings, and significance
clusters. This could be viewed as a simulation of
what would occur if the high-quality human sys-
tem were replaced with mediocre (or, in the case
of division by 10, very low-quality) systems.15

We visualize the result in Figure 1. Once again,
the SR+DC evaluations are more brittle to these

15The reverse – inflating scores of low-performing systems
– has a similar effect, but requires consideration of how to
handle scores of zero.
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Figure 1: Effect of dividing raw human system and “REF” scores on overall (z-score) rankings for all SR–DC and
SR+DC shown in Table 2. The x-axis shows the divisor (ranging from 1.25 to 10) and the y-axis shows the fraction
of pairs for which the rankings, clusters, or both ranks and clusters changed.

changes. However, we see that even the SR–DC
evaluations are not immune to the effects of ex-
treme outliers on rankings and clusterings – as the
divisor used increases, so does the fraction of pairs
that have ranking and/or clustering changes. This
makes sense intuitively: if most systems are of sim-
ilar quality, a slight imbalance in which systems
are compared to one another likely won’t have dra-
matic effects, but if one system is much worse (or
much better) than the rest, systems that are com-
pared against it more or less frequently than oth-
ers will see their z-scores benefit or suffer accord-
ingly. We also examined monolingual vs. bilingual
tasks in the SR+DC context (all SR–DC tasks were
monolingual), but note similar rates of changes to
ranks, clusters, and both across the two settings.

We have used a very coarse measurement here:
counting whether the ranks or clusters changed at
all rather than whether multiple clusters or large
numbers of systems were reranked. Indeed, many
of these changes are quite subtle, with just a sin-
gle new significance line appearing or two clus-
ters merging, or two close systems switching ranks
(within or across clusters). If that is the case, why
should we be concerned with this? The first reason
is to better understand what it is that is actually
being measured and whether the WMT annotation
protocol is succeeding in its goals. If the inclu-
sion of outliers or the degradation of system scores
results in other systems shifting ranks, this indi-
cates that the current approach does suffer from
a similar comparison bias to RR. Thus we can’t
always be confident that what is being measured
is a property of the system itself and not closely
intertwined with HIT composition – this approach
is doing something other than only normalizing

away interannotator differences. The second rea-
son is to highlight these goals and assumptions so
that they can be considered when making future
modifications to the annotation process. Many of
these issues are currently resulting in small incon-
sistencies, but if future modifications are made to
the annotation process without considering the un-
derlying assumptions and goals, there is no reason
to expect that the errors will cancel one another out
rather than compound. If we are aware of the under-
lying assumptions when changes are introduced to
the annotation process, we will be better positioned
to consider potential problems in the hypothetical
and then examine the real data to see if they appear
in practice. There is also the question of effects on
downstream tasks (§7). Finally, it also helps us to
consider ways to mitigate these challenges before
they grow, and we discuss some options for future
consideration in §8.

5.3 Case Study
We manually select for examination a relatively dra-
matic case of rankings and clusters changing, from
en-de 2020, pictured in Figure 2. This is an unusual
case since it contained multiple human-based sys-
tems.16Nevertheless, it incorporates several issues
we raised in hypotheticals, so we discuss it here.

Figure 2 shows the rankings for the original data
(human systems were dropped only for the pur-
pose of computing clusters, but were used for cal-
culating z-scores), and each of the rankings com-
puted by degrading raw scores by dividing them
by 1.25 through 10 (denoted d-n where n is the
divisor). We begin by focusing on PROMT_NMT,
whose rank increases with increased degradation

16See Appendix A for details.
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Tohoku-AIP-NTT

Online-B

Tencent_Translation

VolcTrans

Online-A

eTranslation

AFRL

UEDIN

PROMT_NMT

Online-Z

Online-G

zlabs-nlp

WMTBiomedBaseline

Figure 2: Plot showing z-score rankings (top is best) for
2020 en-de (SR+DC), from original rankings and five
divisors for raw human scores. Significance lines are
marked with black “x”. Human systems were used in
calculating z-scores but were removed prior to comput-
ing clusters for ease of visualization and comparison.

of the human systems. In the original ranking,
AFRL and PROMT_NMT appear in the same
cluster, with AFRL having a higher score than
PROMT_NMT, but not statistically significantly
so. When degrading the human raw scores by 1.25
or 1.5, AFRL is in a higher significance cluster
than PROMT_NMT, but when dividing by 2, this
is reversed: PROMT_NMT is now ranked as sig-
nificantly better than AFRL, while with a divisor
of 4 or 10, they return to the same cluster but with
PROMT_NMT scoring higher. Thus we see, purely
by degrading the raw scores of other systems, we
observe the full range of possible relative rank-
ings and clusterings for this pair of systems. The
same holds true for PROMT_NMT compared with
Online-A.

The en-de 2020 rankings may have suffered
somewhat from having fewer annotations (1123.6
assessments per system), so we also show results
for one of the most-assessed pairs that year: zh-en
(2035.1 assessments per system). This is shown
in Figure 3.17 Here we focus on the top system:
VolcTrans, which was ranked in Barrault et al.
(2020) as significantly better than all systems. As
we degrade the human systems, we see it begin to
drop in rank, and this significance cluster merges
with the one below it, raising the possibility that
the initial finding was an artifact of the distribution
of data across HITs rather than an inherent property

17Note that in the original rankings shown, the human sys-
tem was omitted when computing significance clusters, and
in this case a new significance line (separating Online-A and
Online-G appears) where it had been, which was not there in
the published rankings that do include human systems.

orig d-1.25 d-1.5 d-2 d-4 d-10

VolcTrans
DiDi_NLP

WeChat_AI
Tencent_Translation

Online-B
DeepMind

OPPO
THUNLP

SJTU-NICT
Huawei_TSC

Online-A
Online-G
dong-nmt
zlabs-nlp
Online-Z

WMTBiomedBaseline

Figure 3: Rankings for 2020 zh-en (SR+DC), from
original rankings and with divisors, as in Figure 2.
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Figure 4: Co-occurrence matrix of systems for en-lt
2019 (SR+DC). Each cell shows the number of HITs
that contained segments from the systems at those x
and y values. The diagonal shows the total number of
HITs that contained each system.

of the MT quality of that particular system.

5.4 System Comparisons

There is a distinct difference in the way that sys-
tems are distributed across HITs in the SR–DC and
SR+DC annotation styles. In SR–DC, almost all
HITs contain segments from every single system
(though there is no guarantee that they appear in
exactly equal proportions to one another).

In SR+DC, this is not the case, owing to the fact
that HITs are limited to 100 segments, there are
often 10 or more systems, and documents are often
longer than 10 segments. This means that it may be
numerically impossible for a given HIT to cover all
systems. We see this in Figure 4. A given system
may be paired with any other system in less than
half of the HITs in which it appears. These kinds



472

of imbalances mean that systems may be more
frequently compared to better or worse systems,
resulting in unfair effects on their rankings.

6 Documents

In both SR+DC and SR–DC styles, we don’t have a
guarantee that every segment-system pair is judged
by an annotator, nor that at least one segment from
every document-system pair is judged. If we as-
sume approximately uniform translation difficulty
across the test set, this isn’t necessarily too much
of a concern. However, is that really the case, or
are some documents “easy” and others “hard”?

Figure 5 shows a matrix of document-system
pairs, with each cell showing the average of all of
the segment raw scores for that system-document
pair.18 The documents are ranked from highest
average raw score to lowest average score (top to
bottom), while the systems are ranked by highest
average raw score to lowest average raw score (left
to right). In the leftmost column, we see the “HU-
MAN” system, which has high scores across all
documents. If all documents were equally diffi-
cult to translate, we would expect to see a gradient
along the x-axis (i.e., across systems), with min-
imal variation along the y-axis (i.e., across docu-
ments). What we observe instead in this en-lt pair
from 2019 (and across a number of other language
pairs) is a rough gradient from the top left to the
bottom right (with the exception of the “HUMAN”
system, which remains strong throughout). This
suggests that there are some documents that are
“easy” for most systems to translate (top) and some
that are “hard” (bottom). This raises a concern:
when we attempt to compare two systems of very
similar quality, they are not being measured on the
same test set. An unlucky sample of documents
might see one system judged on a “harder” set of
documents, calling the resulting rankings into ques-
tion.

7 Downstream Consequences

While researchers building MT systems for the
shared task may view the human judgment rank-
ings as the end result, the rankings are the input
to the metrics tasks at WMT. Thus the reliabil-
ity of the rankings has a direct impact on the re-
liability of the metrics task – which in the long
term feeds into MT research as researchers decide

18We can also produce such a matrix using z-scores or
automatic metric scores, and results are comparable.
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Figure 5: Average raw scores for document-system
pairs from en-lt 2019 (SR+DC). Empty cells indicate
pair was not judged. Documents are ranked by average
raw score (highest: top) as are systems (highest: left).

which automatic metrics to use for evaluating their
systems. In system-level metric evaluation at the
WMT Metrics shared task, Pearson correlations are
computed between metric scores and the z-score
human rankings (Mathur et al., 2020b). Note that
these correlations are directly between the system
average z-scores and the metric scores, and as such
do not treat all systems within a given cluster as
tied. In practice, this means that even rank-only per-
turbations in the official ranking can be expected
to cause changes to metrics task results.

Metrics scores are run on the full test set, not
the various human-annotated subsets. Citing Gra-
ham et al. (2013), the Metrics task papers note that
system-level DA scores are “consistent and have
been found to be reproducible” even though differ-
ent sets of segments are assessed for each system.
However, that work predates the shift to sampling
by document, and our analysis of instability and
document difficulty suggest revisiting it.

Recent work has shown that outliers have a
concerning impact on metric correlations (Mathur
et al., 2020a), and organizers have worked to miti-
gate this (Mathur et al., 2020b). This paper is a step
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towards answering questions raised in Mathur et al.
(2020b) regarding outliers and unfair advantages. It
may seem tempting to remove outliers from human
judgment tasks, but this will not solve the other
problems and could instead mask their presence.

8 Proposals for Future Work

The issues discussed in this paper raise concerns
about changes to the human evaluation protocols
used at WMT and their effects on the validity of
WMT system rankings. A partial solution would
be to return to SR–DC annotations, perhaps after
validation of the 2018 alternate HIT structure that
guarantees that for every segment in the HIT, the
HIT contains every MT system’s output for that
sentence. But this may be an unsatisfactory con-
clusion, and fails to address the interest in pushing
MT evaluation toward whole documents.

Document-level and context-inclusive evalua-
tions are growing in popularity, but there is limited
study on document-level assessment methodolo-
gies for MT. Castilho (2021) examines setups com-
parable to SR–DC, SR+DC, and document rating
with document context (which we omitted from
this work), and finds in a controlled experiment
using Likert scale ratings that a methodology com-
parable to SR+DC produces higher levels of in-
terannotator agreement and fewer misevaluations
than either whole document scores or individual
sentences without context. However, that experi-
mental setup does not suffer from the same task
composition issues we observe in WMT; in fact
these may be orthogonal issues.

If the choice is made to use SR+DC style anno-
tations, there are some improvements to consider,
but as noted in Castilho (2020), it remains “es-
sential to test which methodologies will be best
suited for different tasks and domains” prior to
adopting them. One option would be to create
2018-alternate-structure style HITs with document
context, where a HIT contains all systems’ out-
put for one or more documents. The downside to
this is that it would likely require longer HITs or
HITs that only contain a small number of docu-
ments; if systems are of similar quality, we might
be concerned about annotator fatigue from repeti-
tion. The amount of context needed to adequately
assess translations is still a question under consider-
ation (Castilho et al., 2020; Castilho, 2021), which
ties into issues of document and HIT length.

Another possibility to consider would be to al-

ways normalize over annotators (rather than over
HITs), but this isn’t a solution on its own – it is still
necessary to make sure that annotators see compa-
rable distributions of systems and documents, or
the same problems will be reintroduced. Having
annotators do calibration HITs, i.e., a set of anno-
tations that all annotators complete, could also be
considered. The calibration HITs would provide a
consistent basis for computing the parameters of an
annotator-specific z-score transformation, which
could then be applied to the remainder of the anno-
tator’s judgments. This could untangle the issue of
annotator strictness/leniency, but would still merit
study before implementation (as annotator behavior
may depend on HIT composition, so the z-scores
learned in calibration may not be as applicable as
one might hope if there is a mismatch between cal-
ibration HITs and the remainder of the HITs). One
could also consider additional ways of modeling
annotator behavior beyond z-score normalization
(Paun et al., 2018).

A simpler starting point to deal with the issue
of different systems being annotated over different
documents would be to guarantee that all systems
are scored over the same subset of documents.

All of these are (partially) orthogonal to the ques-
tions of what type of annotation tasks result in the
most reliable ratings – whether it be direct assess-
ment, ranking, or detailed error annotation – or
questions of annotator skills and knowledge (Fre-
itag et al., 2021).

9 Conclusions

We have shown that the current judgment collec-
tion methodology at the WMT news translation
task results in SR+DC judgments that are more
prone to variation on the basis of outliers than SR–
DC judgments, and that HIT composition issues
have helped reintroduce the relative ranking prob-
lem of unfair comparisons to the WMT rankings.
We examined issues of document difficulty and
how this interacts with the decision to sample docu-
ments (rather than sentences) for judgment. These
issues risk undermining the validity of WMT rank-
ings, with real consequences for MT research and
downstream tasks on automatic metrics. In exam-
ining these issues, we’ve also presented several
approaches to diving into the WMT ranking data
that may be helpful to consider when planning fu-
ture changes to WMT human judgment collection
procedures.
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A Notes on Replication

As shown in Table 4, we are able to duplicate
the following rankings exactly (or with minor
differences, as noted). Code to replicate this
work will be available at https://github.
com/nrc-cnrc/WMT-Stability/. Lan-
guage codes are as follows: Chinese (zh), Czech
(cs), German (de), English (en), Estonian (et),
Finnish (fi), Gujarati (gu), Inuktitut (iu), Japanese
(ja), Kazakh (kk), Khmer (km), Lithuanian (lt),
Pashto (ps), Polish (pl), Russian (ru), Tamil (ta),
Turkish (tr).

• 2018, Mechanical Turk, SR–DC: en-{cs, de,
et, fi, ru, tr, zh} and {cs, de, et, fi, ru, zh}-en,
but we do not successfully replicate the scores
for tr-en (we omit tr-en 2018 from future ex-
periments).

• 2019, Appraise, SR+DC: en-{cs, de, fi, gu, kk,
lt, ru, zh}, though we note that en-kk contains
a duplicate system that is omitted from the
published table.

• 2019, Mechanical Turk, SR–DC: {gu, kk, lt,
ru}-en, and fi-en is nearly replicated, but our
replication of it is missing a significance line
between two clusters due to a rounding differ-
ence when computing the significance value.

• 2019, Mechanical Turk, SR+DC: {de, zh}-en
are successfully replicated.

• 2019, Turkle, SR–DC: de-cs, de-fr, fr-de, zh-
en, are all successfully replicated but are not
included in the analyses.

• 2020, Appraise, SR+DC: en-{cs, ja, ru, ta,
zh}, are successfully replicated, while en-pl is
missing one significance line due to rounding
differences. The ranking for en-de has iden-
tical scores except for Human-A and Human-
paraphrase. The original en-de ranking in Bar-
rault et al. (2020) included Human-A, Human-
B, and Human-paraphrase. The released en-de
data only contained Human-A and Human-B,
though Human-A was about twice as large as
Human-B, suggesting that it may have incor-
porated the Human-paraphrase data. Finally,
the ranking for en-iu is quite different, though
we expect this is because of delays in data col-
lection resulting in a mismatch between the
reported scores in the findings paper and the

released scores. The en-iu scores also con-
tain an additional low-scoring system that was
omitted from the published table.

• 2020, Mechanical Turk, SR+DC: {cs, de, ja,
pl, ru, ta, zh}-en were all replicated exactly.

• 2020, Mechanical Turk, SR–DC: {iu, km, ps}-
en were all replicated exactly.

• 2020 en-{km, ps} appear to be missing from
the released data.

https://github.com/nrc-cnrc/WMT-Stability/
https://github.com/nrc-cnrc/WMT-Stability/
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Lang. Year –DC +DC Mono./Bi. Tool Replicated/Notes
en-cs 18 X M X
en-de 18 X M X
en-et 18 X M X
en-fi 18 X M X
en-ru 18 X M X
en-tr 18 X M X
en-zh 18 X M X
cs-en 18 X M X
de-en 18 X M XMatches clusters from Table 15, Appendix A, not Table 8.
et-en 18 X M X
fi-en 18 X M X
ru-en 18 X M X
*tr-en 18 X M Not successfully replicated.
zh-en 18 X M X
en-cs 19 X B Appraise X
en-de 19 X B Appraise X
en-fi 19 X B Appraise X
en-gu 19 X B Appraise X
en-kk 19 X B Appraise XContains a duplicate of one system.
en-lt 19 X B Appraise X
en-ru 19 X B Appraise X
en-zh 19 X B Appraise XMatches clusters from Table 33, Appendix A, not Table 11.
de-en 19 X M MTurk X
fi-en 19 X M MTurk Missing a significance line (rounding difference).
gu-en 19 X M MTurk X
kk-en 19 X M MTurk X
lt-en 19 X M MTurk X
ru-en 19 X M MTurk XMatches clusters from Table 45, Appendix A, not Table 11.
zh-en 19 X M MTurk XNote that this appears in Table 15.
*de-cs 19 X M Turkle X
*de-fr 19 X M Turkle X
*fr-de 19 X M Turkle X
*zh-en 19 X M Turkle XThis is the Table 11 ranking.
en-cs 20 X B Appraise X
en-de 20 X B Appraise Human-paraphrase missing (subsumed under Human-A?).
en-iu 20 X B Appraise Different scores/different data? Contains additional system.
en-ja 20 X B Appraise X
*en-km 20 ? ? Does not appear to exist.
en-pl 20 X B Appraise Missing a significance line (rounding difference).
*en-ps 20 ? ? Does not appear to exist.
en-ru 20 X B Appraise X
en-ta 20 X B Appraise X
en-zh 20 X B Appraise X
cs-en 20 X M MTurk X
de-en 20 X M MTurk X
iu-en 20 X M MTurk X
ja-en 20 X M MTurk X
km-en 20 X M MTurk X
pl-en 20 X M MTurk X
ps-en 20 X M MTurk X
ru-en 20 X M MTurk X
ta-en 20 X M MTurk X
zh-en 20 X M MTurk X

Table 4: Notes on Findings paper ranking replications, including information about language pairs, year, SR–DC
vs. SR+DC, monolingual vs. bilingual evaluation, tool used for data collection, and success or failure to replicate.
Systems marked with * were not included in any additional analysis.


