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Abstract

This report describes Microsoft’s machine
translation systems for the WMT21 shared
task on large-scale multilingual machine trans-
lation. We participated in all three evaluation
tracks including Large Track and two Small
Tracks where the former one is unconstrained
and the latter two are fully constrained. Our
model submissions to the shared task were ini-
tialized with DeltaLM', a generic pre-trained
multilingual encoder-decoder model, and fine-
tuned correspondingly with the vast collected
parallel data and allowed data sources ac-
cording to track settings, together with ap-
plying progressive learning and iterative back-
translation approaches to further improve the
performance. Our final submissions ranked
first on three tracks in terms of the automatic
evaluation metric.

1 Introduction

Recently, multilingual neural machine translation
has attracted lots of attention because it enables
one model to translate between multiple languages
(Dong et al., 2015; Johnson et al., 2017; Arivazha-
gan et al., 2019; Dabre et al., 2020; Philip et al.,
2020; Lin et al., 2021). To improve the perfor-
mance of the multilingual translation models, there
are various approaches on the training methods
(Aharoni et al., 2019; Wang et al., 2020a,c), the
model structures (Wang et al., 2018; Gong et al.,
2021; Zhang et al., 2021a), and the data augmenta-
tion (Tan et al., 2019; Pan et al., 2021). M2M (Fan
et al., 2020) leverages the large-scale data mined
from the web data and explore the strategies to
scale the model size and train the model effectively.
Meanwhile, the multilingual pre-trained language
models have proven beneficial for the multilingual
machine translation models. mBART (Liu et al.,
2020) pre-trains a multilingual model with the mul-
tilingual denoising objective to improve the multi-
lingual machine translation.

'https://aka.ms/deltalm

In this work, we explore the effects of differ-
ent advanced approaches for multilingual machine
translation models, especially on the large-scale
dataset. We first explore the way to leverage the
pre-trained language models that have been trained
with large-scale monolingual data. We use the pub-
lic available DeltalLM-Large checkpoint to initial-
ize the model. DeltalLM (Ma et al., 2021) is a multi-
lingual pre-trained encoder-decoder model, which
has been proven useful for multilingual machine
translation.

We further explore the training methods and the
data augmentation to improve the model. For ef-
ficient training, we apply progressive learning (Li
et al., 2020; Zhou et al., 2021; Zhang et al., 2021b)
to our model that continue-trains a shallow model
into a deep model. Specifically, we first train a
model with 24 encoder layers, and then continue-
train it by adding 12 layers on the top of the en-
coder. As for the data augmentation, we implement
iterative back-translation (Hoang et al., 2018; Dou
et al., 2020) that back-translates the data for mul-
tiple rounds. Due to the limits of time and GPU
memories of the shared task, we do not explore
other approaches like mixture-of-experts (MOE)
and model ensemble.

We participated in all three tracks including
Large Track, Small Track #1, and Small Track #2.
Our final submissions are fine-tuned from DeltaLM
with the allowed data sources according to the track
settings, followed by progressive learning and iter-
ative back-translation. The submissions on three
tracks all rank first in terms of the automatic evalu-
ation metric.

2 Data

Large Track The monolingual and bilingual
data are collected from multiple sources, includ-
ing CCAligned (El-Kishky et al., 2020), CCMatrix
(Schwenk et al., 2021), OPUS-100 (Zhang et al.,
2020), JW300 (Agic and Vulic, 2019), Tatoeba
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Figure 1: Dataset statistics of the bilingual data of the 102 languages. For better visualization, we apply the
logarithmic function (base 10 logarithm) to the size of the training data. Each column denotes the data size of a
language that was paired with the remaining 101 languages. For example, the first column denotes the number of
bilingual sentence pairs that contain sentences from language hr.

(Tiedemann, 2012), WMT2021 news track?, mul-
tilingual track data®, and our in-house data. To
improve the translation quality of non-English lan-
guages, we construct dual-pseudo parallel data (or
dual-pseudo data briefly) in which the source and
target sides per each sentence pair are translated
from the same monolingual English sentence re-
spectively. The Wikipedia English monolingual
sentences are translated to other 70 languages by
leveraging various machine translation models in-
cluding in-house MT models, M2M (Fan et al.,
2020), the multilingual model of small tracks, and
our intermediate multilingual MT model.

Finally, the training data was split into three
parts: the bitext data (1.7B parallel sentences from
394 language pairs), the back-translation (1.4B par-
allel sentences from 45 language pairs), and the
dual-pseudo data (8.7B parallel sentences of 70
languages from 4830 language pairs). Figure 1
lists the statistics of the bilingual training data size
of 102 languages.

Small Track #1 We use the constrained mono-
lingual and bilingual data of 6 languages (Croatian,
Hungarian, Estonian, Serbian, Macedonian, and
English) provided by the shared task. According
to the statistics, the bitext data contains 273M sen-
tence pairs of all translation directions. Inspired
by the previous work, we leverage the multilingual
iterative back-translation method with one single
multilingual model to generate parallel pseudo data.

nttp://statmt.org/wmt21/
translation-task.html

*http://data.statmt.org/wmt21/
multilingual-task/

For En—X and X—En directions, we generate the
back-translation data of 390M sentence pairs. As
for X—Y directions, we generate the dual-pseudo
data of 1.18B sentence pairs, where X and Y stand
for any two non-English languages.

Small Track #2 The monolingual and bilingual
corpora of 6 languages (Javanese, Indonesian,
Malay, Tagalog, Tamil, and English) provided by
the shared task are used for the multilingual model
training, containing 98M bilingual data, 256M gen-
erated back-translation data, and 860M generated
dual-pseudo data.

3 Large-scale Data Augmentation

In this section, we introduce details about
how to perform the iterative back-translation
method (Hoang et al., 2018) to augment data. We
use different models for data augmentation accord-
ing to different tracks. For the small tracks, the mul-
tilingual models were trained over the constrained
data sets to generate data. For the large track, we
leverage the M2M model (Fan et al., 2020), the in-
termediate multilingual MT models, and in-house
MT models to generate different language pairs’
data respectively, so as to play their respective ad-
vantages to enhance the data generation quality.

In practice, both the monolingual and bilingual
corpora are effectively utilized in three ways: 1)
For the back-translation data of X—En and En—X
directions, we used the best model to generated X
data accordingly by back-translating monolingual
English Wikipedia data; 2) For the dual-pseudo
data of X—Y directions, they are generated by
back-translating the same English text to X and Y
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respectively. Alternatively, when the monolingual
data of either X or Y is enough, we also directly
perform back-translation between X and Y to ob-
tain pseudo parallel data; 3) We try to augment
existing bilingual corpora with the third language.
Given the bilingual corpus (X7, Y1), we generate
pseudo parallel corpus of (X1, Y2) and (X9, Y1) by
back-translating X; to X5 and Y; to Y5, where X
and Y5 are non-English languages.

4 Preprocessing

Filtering To enhance the model performance, we
remove the noisy sentence pairs with the incor-
rect language identification or character encoding.
More specifically, we remove the sentences longer
than 1024 words and truncate the sentence to 512
tokens. We also construct three corpora after to-
kenization with different length ratio limitations,
ie. {1.5,2.0,2.5,3.0}, between the source and the
target sentence. Our multilingual model is first
trained on the entire noisy data set and then contin-
ually tuned on cleaner data with descending length
ratio, where the number of training directions is
also gradually reduced by removing noisy language
pairs. Therefore, we can progressively fine-tune
the multilingual model in an efficient way (noisy
corpora — clean corpora A numerous directions
— selected directions A shallow encoder layers —
deep encoder layers). Besides, to clean the back-
translation corpora, we remove the sentences con-
taining unknown tokens ([UNK] ). Regarding the
language St (Serbian), those sentences comprised
of Latin characters in training data were also dis-
carded since we found that the validation sets use
Cyrillic script for this language instead.

Tokenization After data filtering, we use the Sen-
tencePiece (Kudo and Richardson, 2018) to tok-
enize all raw training, validation, and test data sets,
where the SentencePiece model is consistent with
the one used for DeltaLM (Ma et al., 2021). We
shuffled the whole training dataset before launch-
ing the training of multilingual models. The input
sentence is prefixed with the language tag to indi-
cate the translation direction.

S Model and Training

5.1 DeltaLM

We adopt the DeltalM_large architecture as
the backbone model for all our experiments, which
has 24 Transformer encoder layers and 12 inter-

leaved decoder layers with an embedding size
of 1024, a dropout of 0.1, the feed-forward net-
work size of 4096, and 16 attention heads. We
directly initialize our model with the public avail-
able DeltaLM large checkpoint®.

5.2 Multilingual Fine-tuning

The training data was split into the bitext corpora
Dy = {Dj{,...,D}{}, the back-translation corpora
Dy = {D},,..., D}, and the dual-pseudo cor-
pora Dy, = {Dép, ..., D}, where u, v, w repre-
sent the number of the corpora of different trans-
lation directions. The multilingual model with pa-
rameters O is jointly trained over the corpora to

optimize the combined objective as below:

Lyr =—M ZEz,ygpg [—log P(y|z; ©)]

i=1

v
— A2 Z]Ez,yeggt [ log P(y|z; ©)] (D
i=1
w
— X3 ZEz,yeDgp [~ log P(y|z; ©)]
i=1

where x, y denote the sentence pair in the bilingual
corpus. L7 is the combined translation objec-
tive of the multilingual model. A1, As, Az (A1 +
A2 + A3 = 1.0) are used to balance the training ob-
jectives of the bitext corpora, the back-translation
corpora, and the dual-pseudo corpora. In this work,
we first set A7 = 0.33, Ay = 0.33, A3 = 0.33 and
then reset Ay = 0.6, 2 = 0.2, A3 = 0.2 to fo-
cus more on the bitext corpora avoiding the noise
introduced by pseudo data.

We follow the dynamic temperature-based data-
sampling strategy (Fan et al., 2020; Wang et al.,
2020b) to ease the underrepresentation of low-
resource languages. The probability of picking
a language is proportional to its number of sen-

tences Dy, i.e., p; = %. We set the temperature
[ 1
T = 5 to rescale and control the distribution p;" . It

can balance the samples between the high-resource
languages and the low-resource languages.

5.3 Progressive Learning

We implement the progressive training method to
train the model from shallow to deep (Li et al.,
2020). The training process can be divided into two
stages. In the first stage, the pre-trained DeltaLM
model with 24 encoder layers and 12 decoder lay-
ers is directly adopted to initialize the multilingual

*https://aka.ms/deltalm
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translation model with the same architecture. The
shallow translation model with 24 encoder layers
and 12 decoder layers is fine-tuned on all avail-
able multilingual corpora. In the second stage, we
increase the depth of the encoder from 24 layers
to 36 layers, where the bottom 24 layers of the
encoder are initialized with the shallow model’s
encoder and the top 12 layers are randomly ini-
tialized. Then we perform continue training. The
deeper encoders enlarge the model’s capacity, but
no much extra decoding cost is introduced.

5.4 Training Details

We train multilingual models with the Adam op-
timizer (Kingma and Ba, 2014) (51 = 0.9, 82 =
0.98). The learning rate is set as le-4 with a warm-
up step of 4, 000. The models are trained with the
label smoothing with a ratio of 0.1. All experi-
ments are conducted on 64 NVIDIA V100 or 32
A100 GPUs. The batch size is 1536 or 2048 tokens
per GPU and the model is updated every 32 (for 64
V100 GPUs) or 64 (for 32 A100 GPUs) steps to
simulate the large batch size.

5.5 Decoding

To enhance the performance of low-resource lan-
guage pairs for X—Y directions, we adopt the
pivot-based translation method (Kim et al., 2019).
We use English as the pivot language and employ
a unified model to perform the pivot-based trans-
lation. When the performance of X—Y directions
on the validation set is better than the pivot-based
translation X—En A En—Y, we directly translate
the language X into Y. Otherwise, we translate
them in the pivot way. This approach is used for the
submission to Large Track and Small Track #2. As
for Small Track #1, we do not use the pivot-based
translation.

6 Evaluation Results

Following the previous work (Goyal et al., 2021),
we use the dev and the devtest of the FLORES-
101 benchmark as our validation set and test set
respectively. During the inference, the beam search
strategy is performed with a beam size of 4 for
the target sentence generation. We set the length
penalty as 1.0 by default. The last NV checkpoints
(N = {1,5,10,15,20}) are averaged for evalua-
tion and we select the best checkpoint based on the
performance on the validation set. We report the

SentencePiece-based BLEU using spBLEU”.

6.1 Large Track

Given the unbalanced large-scale multilingual cor-
pora, we use the hybrid strategy for the translation
for Large Track. The pivot-based translation is
more suitable for the low-resource translation di-
rection between non-English languages since the
corpora of X—Y are commonly scarce. Our model
with the 36 encoder layers significantly outper-
forms the shallow counterpart with the 24 encoder
layers, which indicates that using a deep encoder
and shallow decoder is a good trade-off between
the translation quality and the decoding speed. Ta-
ble 1 shows that our model with the hybrid strategy
gets the best performance with less inference cost
than the pivot-based translation which costs double
inference time compared to the direct translation.
We build a massively multilingual neural machine
model, which translates between any pair of 102
languages. In Figure 2 and Figure 3, we reported
the spBLEU scores of the shallow model with 24
encoder layers and 6 decoder layers and our best
multilingual model with 36 encoder layers and 12
decoder layers in all translation directions, where
the languages are ordered alphabetically by the
language code. Nearly 30% translation directions
adopt the pivot-based translation, where the zero-
resource and low-resource translation directions
lack of supervised training data tend to be chosen
for pivot-based translation.

6.2 Small Track #1

In Table 2, we compare the performance of M2M
with our method in different architectures on any
to English (X—En), English to any (En—X), and
the translation between any non-English languages
(X—=Y). Both En—X and X—En contain 5 direc-
tions, while X—Y have 20 directions. Given the
enormous bilingual and back-translation data of
Small Track #1, we are able to perform the direct
translation for all X—Y directions. Furthermore,
we explore the deep encoder (36 encoder layers)
and shallow decoder (12 decoder layers) consid-
ering the limited inference time. From Table 2,
we can observe that the largest model (36 encoder
layers and 12 decoder layers) has a significant im-
provement of +9.41 BLEU points over the strong
M2M baseline.

Shttps://github.com/ngoyal2707/
sacrebleu.git
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‘#Languages #Params #Layers | Avgx_gn AVEEnoy  AvEx_y | Avgan

102 175M 6/6 15.43 12.02 5.85 6.00
M2M (Fan et al., 2020) 102 615M  12/12 20.03 16.21 7.66 7.86
102 TIM 246 30.39 23.52 1121 | 1152
Deltal M + Zcode (Direct) 102 862M  24/12 33.09 2721 1356 | 13.89
102 1013M  36/12 33.35 27.39 1434 | 14.65
102 T1IM 24/6 31.32 24.04 1474 | 14.99
DeltaLM + Zcode (Pivot) 102 862M  24/12 33.09 27.21 1720 | 17.45
102 1013M  36/12 3335 27.39 1736 | 17.62
102 T1IM 24/6 31.32 24.04 1476 | 15.01
DeltaLM + Zcode (Hybrid) 102 862M  24/12 33.09 2721 1727 | 17.52
102 1013M  36/12 3335 27.39 1744 | 17.70

Table 1: Evaluation results of Large Track for M2M and our method of 102 languages on the devtest of the
FLORES-101 benchmark. Avgx_, g, denotes the average score of directions between other languages to English.
Avgx_, gy, denotes the average score of directions between English and other languages. Avgx_.y denotes the
average score of directions between non-English languages to other non-English languages. Avg,; denotes the

average result of all translation directions.

‘ #Languages #Params #Layers ‘ Avgx_En  AVEEnY  AVExy ‘ Avgan

102 175M  6/6 24.60 2083 2080 | 21.44

e ‘ 102 615M  12/12 ‘ 31.58 2062 26.66 ‘ 27.98
. 6 862M  24/12 | 4378 4102 3438 | 37.06

DeltaL.M + Zeode (Direct) ‘ 6 1013M  36/12 ‘ 4438 4132 3468 ‘ 37.39

Table 2: Evaluation results of Small Track #1 for M2M and our method of 6 languages (Croatian, Hungarian,
Estonian, Serbian, Macedonian, English) on the devtest of the FLORES-101 benchmark. DeltaLM + Zcode
(Direct) denotes the strategy that we choose the direct translation for all translation directions, where the target
language symbol is prefixed to the input sentence to indicate the translation direction. Our mutilingual translation
model is only trained on the constrained corpora of 6 languages provided by the shared task.

6.3 Small Track #2

Compared to Small Track #1 (273M bilingual
pairs), Small Track #2 contains smaller while more
unbalanced training data (93M bilingual pairs).
Therefore, we consider the hybrid strategy for
the X—Y translation directions. We separately
calculate the BLEU scores of the direct and the
pivot-based translation on the validation set. For
those directions satisfying BLEU j;ect(X,Y) >
BLEU,0t(X,Y’), we employ the direct transla-
tion. Otherwise, we use the pivot-based translation
direction by first translating the source language to
English and then to the target language. According
to Table 3, DeltaLM + Zcode (Hybrid) outper-
forms both the direct and pivot-based translation
by about +0.5 BLEU points. It confirms that the
hybrid strategy is essential since the training data
of the X—En and En—Y is easy to obtain while
the X—Y is hard to obtain. The deep model with
the 36 encoder layers and 12 decoder layers has
comparable performance with the shallow model
with the 24 encoder layers and 12 decoder layers,
which may be caused by the overfitting problem on
the low-resource directions.

6.4 Discussion on Progressive Learning

Given the pre-trained model and large-scale par-
allel data, we adopt progressive learning as an al-
ternative to fine-tune the multilingual model on
the multilingual translation task. Our multilingual
model is first trained on the large-scale noisy data
and then continues to be tuned on the clean data
(Noisy Data — Clean Data), where the model is
denoted as @. Since the training data of K lan-
guages in the dual-pseudo parallel data is gener-
ated by the same English monolingual data, we are
able to adopt all possible K x (K — 1) training
directions on the clean data. The performance of
many translation directions is improved by the ad-
ditional dual-pseudo data while the performance
of other directions has been degraded compared
to the initial model @, due to the poor quality of
some languages in the dual-pseudo data. Therefore,
only the part of K x (K — 1) training directions
is selected to continue training the multilingual
model (Numerous Directions — Selected Direc-
tions), which we denoted as @. To further enlarge
the model’s capacity, we extend the shallow model
with 24 encoder layers to the deep model with 36
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| #Languages #Params #Layers | Avgx_mn AVEEnoy AVEXLy | Avga
M2M (Fan et 2020) 2 siM 2 | e a1t | 158
DelulM+ZeodeDiree) | ¢ gy aens | s or 2860 | 83
DlLM+Zeode P00 | ¢ oM gin | 4356 04 263 | 3285
DealM+Zeode (brid) | ¢ (UM g | gise eor  okss | 109

Table 3: Evaluation results of Small Track #2 for M2M and our method of 6 languages (Javanese, Indonesian,
Malay, Tagalog, Tamil, English) on the devtest of the FLORES-101 benchmark. DeltaLM + Zcode (Hybrid)
denotes the strategy that we choose the pivot-based translation (X—En, En—X) for low-resource X—Y directions

and direct translation for high-resource X—Y directions.

D ‘ Large Track ‘ Avegan
@ | DeltaLM + Zcode 14.65
® | @ - Shallow Model — Deep Model 13.89
® | @ - Numerous Directions — Selected Directions | 13.09
@ | ® - Noisy Data — Clean Data 12.24

Table 4: Ablation study of the large track on devtest.
DeltalM + Zcode is fine-tuned on the multilingual
translation task via progressive learning.

encoder layers, where the top 12 encoder layers are
initialized by random parameters (Shallow Model
— Deep Model). Putting them all together, we
obtain the final model @ DeltalLM + Zcode. Ta-
ble 4 summarizes the results of the ablation study of
these approaches. It shows that each approach has
a significant contribution to the final model. This
proves the effectiveness of progressive learning that
can gradually improve performance in different as-
pects.

7 Submissions

Considering the trade-off between the decoding
time and the performance, we submit the model
(24 encoder layers and 12 decoder layers) with the
hybrid strategy to both the Large Track and Small
Track #2, while the deep model (36 encoder layers
and 12 decoder layers) with the direct translation is
submitted to Small Track #1. Table 5 summarizes
the evaluation results of our model on the hidden
test sets. According to the final results on the leader-
board, DeltaLM + Zcode ranks first across three
tracks.

8 Conclusion

This paper describes Microsoft’s submission to the
large-scale multilingual machine translation of the
WMT21 shared task. Our multilingual translation

Track ‘ Submission Name ‘ Avga
Large DeltalLM + Zcode (Microsoft) 16.63
Small #1 | DeltaLM + Zcode (Microsoft-Small) | 37.59
Small #2 | DeltaLM + Zcode (Microsoft-Small) | 33.89

Table 5: Submission results based on the hidden test
sets of our method on three tracks, including Large
Track, Small Track #1, and Small Track #2.

model achieves substantial improvement over the
baseline systems by fine-tuning the pre-trained lan-
guage model DeltaLM. We further enhance the
model performance with the progressive learning
and the iterative back-translation methods. As a
result, our submitted systems get the top evalua-
tion results on three tracks, including Large Track,
Small Track #1, and Small Track #2.
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Figure 2: Evaluation results of our multilingual model (24 encoder layers and 6 decoder layers) on all translation
directions on the FLORES-101 devtest set. The language x in the i-th row and language y in the j-th column
denotes the translation direction from the language x to language y. For example, the cell of the 1-th row (af) and
the 2-th column (am) represents the result of the translation direction af—am. The table shows the results of all
translation directions of 102 languages.
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Figure 3: Evaluation results of our multilingual model (36 encoder layers and 12 decoder layers) on all translation
directions on the FLORES-101 devtest set. The language x in the i-th row and language y in the j-th column
denotes the translation direction from the language x to language y. For example, the cell of the 1-th row (af) and
the 2-th column (am) represents the result of the translation direction af—am. The table shows the results of all
translation directions of 102 languages.
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