
Proceedings of the Sixth Conference on Machine Translation (WMT), pages 431–438
November 10–11, 2021. ©2021 Association for Computational Linguistics

431

Data Processing Matters: SRPH-Konvergen AI’s Machine Translation
System for WMT’21

Lintang Sutawika∗

Konvergen AI
Jakarta, Indonesia

lintang@konvergen.ai

Jan Christian Blaise Cruz∗
Samsung Research Philippines

Manila, Philippines
jcb.cruz@samsung.com

Abstract

In this paper, we describe the submission
of the joint Samsung Research Philippines-
Konvergen AI team for the WMT’21 Large
Scale Multilingual Translation Task - Small
Track 2. We submit a standard Seq2Seq Trans-
former model to the shared task without any
training or architecture tricks, relying mainly
on the strength of our data preprocessing tech-
niques to boost performance. Our final sub-
mission model scored 22.92 average BLEU
on the FLORES-101 devtest set, and scored
22.97 average BLEU on the contest’s hidden
test set, ranking us sixth overall. Despite us-
ing only a standard Transformer, our model
ranked first in Indonesian → Javanese, show-
ing that data preprocessing matters equally, if
not more, than cutting edge model architec-
tures and training techniques.

1 Introduction

This paper describes the machine translation sys-
tem submitted by the joint team of Samsung
Research Philippines and Konvergen AI for the
WMT’21 Large Scale Multilingual Translation
Task. Our team participated in Small Track #2,
where the task is to produce a multilingual ma-
chine translation system for five Southeast-Asian
languages: Javanese, Indonesian, Malay, Tagalog,
and Tamil1, plus English, in all 30 directions.

We will first describe the filtering heuristics that
we used to preprocess the data, and then outline
the steps we took to train and evaluate our models.
Specific hyperparameters, preprocessing decisions,
and other training parameters will be listed in their
corresponding sections. Finally, we report our re-
sults on the FLORES-101 (Goyal et al., 2021) de-
vtest set, as well as on the competition’s hidden test
set.

∗Equal contribution. Order determined via coinflip.
1Tamil is considered an official language in Singapore, a

Southeast Asian country

2 Parallel Text Preprocessing Heuristics

The contest dataset comprises of vari-
ous bitext sources, including: bible-uedin
(Christodouloupoulos and Steedman, 2015),
CCAligned (El-Kishky et al., 2020), ELRC
29222, MultiCCAligned (El-Kishky et al., 2020),
ParaCrawl 3, TED2020 (Reimers and Gurevych,
2020), WikiMatrix (Schwenk et al., 2019), tico-19,
Ubuntu, OpenSubtitles, QED, Tanzil, Tatoeba,
GlobalVoices, GNOME, KDE4, and WikiMedia
(Tiedemann, 2012).

We preprocess the datasets before training in or-
der to minimize spurious relations that originate
from incorrect text pairs. Our preprocessing re-
moves samples based on a few heuristics that we
developed based on our observation on the datasets.
Each bitext file is applied a different set of pre-
processing based on observation. For example
we filter by number content for datasets such as
CCAAligned while TED2020 is not applied that
same filter.

In this section, we will cover the decisions made
during preprocessing. We observe a score increase
of 1.91 BLEU on our submission model when the
preprocessing is applied. We report the total num-
ber of lines filtered from the bitext for all language
pairs on Table 1.

2.1 Filter by Duplicate

Duplication is present throughout the dataset. Table
2 outlines samples of duplication based on three
distinct types:

• Duplicates within the same language
Within a subset file of a designated language,
multiple lines have the same string while the
its counterpart may feature different transla-
tions.

2https://elrc-share.eu/
3https://www.paracrawl.eu/



432

ISO Language Pair Before Preprocessing After Preprocessing Reduction
en-id English - Indonesian 54,075,891 27,186,074 49.73%
en-ms English - Malaysian 13,437,727 7,674,956 42.89%
en-tl English - Tagalog 13,612,403 5,302,768 61.04%
en-jv English - Javanese 3,044,920 388,766 87.23%
en-ta English - Tamil 2,115,925 1,420,827 32.85%
id-ms Indonesian - Malaysian 4,857,321 3,371,777 30.58%
id-tl Indonesian - Tagalog 2,743,305 1,823,140 33.54%
id-jv Indonesian - Javanese 780,119 432,734 44.53%
id-ta Indonesian - Tamil 500,898 393,336 21.47%
ms-tl Malaysian - Tagalog 1,358,486 985,493 27.46%
ms-jv Malaysian - Javanese 434,710 250,070 42.47%
ms-ta Malaysian - Tamil 372,623 351,416 5.69%
tl-jv Tagalog - Javanese 817,146 544,233 33.40%
tl-ta Tagalog - Tamil 563,337 482,618 14.33%
jv-ta Javanese - Tamil 65,997 48,806 26.05%

Table 1: Number of parallel text lines per language pair before and after applying preprocessing

• Partial duplication The whole string of text
in one language is present in its counterpart
translation.

• Duplication among parallel text Both
source and target text line feature exactly the
same string. While this may be correct for
named entities, most of these duplication are
short and can be non-informative.

2.2 Filtering by Language and Letters

In algorithmically-aligned datasets such as
CCAligned, some training examples are not in
the list of contest languages. We find full text
lines that are in Azerbaijani, Turkish, Arabic, and
Japanese. To identify these languages, we use
langdetect4. This filter works for sentences that are
fully foreign. It is also the case that foreign letters
that may refer to named-entity can be found in the
dataset. We consider this to be allowable so long
as the the foreign character string is present in both
source and target text line. To filter this, we use
AlphabetDetector5 and check if detected foreign
letters are present in both text line.

2.3 Filter by Specific Keywords and Symbols

There are a number of cases where the transla-
tions are generally correct but also feature extra
keywords that have no relation to the parallel text.
These keywords are generally in English and are

4https://pypi.org/project/langdetect/
5https://pypi.org/project/alphabet-detector/

consistently present in a number of bitext datasets
such as KDE4, GNOME, and Ubuntu.

Bitexts such as OpenSubtitles feature secondary
information that relates to a particular scene (for
example "(loud music playing)"). These secondary
information may be in parentheses to denote an ac-
tion being done or to signify a song being played.
These secondary information are not always avail-
able for each language. We opt to remove all lines
that have these specific symbols.

2.4 Filtering Number Content

We apply a filter to remove incorrect text lines in
the bitext by checking if both source and target
text lines feature the same numeric values such as
date and quantities. Table 4 shows that filtering by
number can remove text lines that do not relate to
one another as numeric values tend to translate the
same. Due to the limited time allotted for the shared
task, we opt to remove entirely parallel sentences
that do not have matching numbers. We filter this
by using regular expressions.

2.5 Filtering by Length

Text lines with very long lengths are generally not
informative, we find most of these text lines con-
sists of a list of names that would normally be found
in a bibliography. We set an arbitrary max length of
500 characters for both source and target sentences.



433

Duplicates within the same file
GNOME.en-tl.en GNOME.en-tl.tl

Error reading from file: %s Error sa pagbasa ng talaksang ’%s’: %s
Error seeking in file: %s Error sa pagbasa ng talaksang ’%s’: %s

Error closing file: %s Error sa pagbasa ng talaksang ’%s’: %s
Partial duplication

WikiMatrix.en-jv.en WikiMatrix.en-jv.jv
CJ E&M Corporation. Drama iki diprodhuksi déning CJ E&M Corporation.

New Orleans, Louisiana. Lair ing New Orleans, Louisiana.
Edward Thomas Hardy. Jeneng dawané ya iku Edward Thomas Hardy.

Duplication among parallel text
OpenSubtitles.en-ta.en OpenSubtitles.en-ta.ta

Those who are invited will find the way. Those who are invited will find the way.
Gazelle, whose face the full moon forms: Gazelle, whose face the full moon forms:

Time has warned us never to approach her. Time has warned us never to approach her.

Table 2: Examples of duplication based on three types

KDE4.en-id.en KDE4.en-id.id
Task Scheduler Penjadwal TugasComment

Configure and schedule tasks Atur dan jadwal tugasName

Table 3: Example of translations that also have an extra keyword. Underlined text are keywords that are misplaced
in correct translations.

MultiCCAligned.id-tl.id MultiCCAligned.id-tl.tl

Removed
Di. 13:00 - 17:30 Mo. 13:00 - 18:00

Di 24 nov. 10h – 18h Sa 23 nov. 10h – 18h

Kept
(Terakhir diperbarui saat: 24/03/2020) (Huling nai-update Sa: 24/03/2020)

Harga / $: 1,2835 presyo / $: 1.2835

Table 4: Incorrect translations can be easily identified by checking whether numeric values in both strings match.
In the first example, the sentence pair was removed due to differing date and time. In the second example, the
sentence pair was kept as we do not check punctuation for numerical values.

3 Experiments

3.1 Model Architecture

For our submission, we wish to measure how much
performance can be boosted by heuristics-based
data preprocessing alone. Given that we anticipate
most, if not all, submissions to the shared task will
be transformer-based models, we opt to use the
standard “vanilla” Sequence-to-Sequence Trans-
former (Vaswani et al., 2017) model with little-
to-no changes. This lets us more clearly compare
the performance boost of our filtering heuristics
against the boost provided by a number of archi-
tecture augmentations and training tricks that other
submissions might have.

In addition to using a standard Transformer
model, we only train the model directly on our

filtered bitext and do not make use of Backtransla-
tion (Sennrich et al., 2015a) for data augmentation.
We also start from-scratch with models initialized
using Glorot Uniform (Glorot and Bengio, 2010),
opting not to use massively-pretrained translation
models such as M2M-100 (Fan et al., 2021) as our
starting checkpoint.

Following Vaswani et al. (2017), we produce two
models: a base model and a large model. For the
sake of simplicity, for the rest of the paper, we will
refer to our models trained with our filtered data as
BaseHeuristics and LargeHeuristics.

The hyperparameters used for our models are
presented in Table 5.



434

Base Large
Vocab Size 37,000 37,000
Encoder Layers 6 6
Decoder Layers 6 6
Attention Heads 8 16
Embedding Dim. 512 1024
Feedforward Dim. 2048 4096
Dropout 0.1 0.3
Attention Dropout 0.1 0.3
Pos. Embeddings Sinusoid Sinusoid
Parameters 63M 214M

Table 5: Model hyperparameter choices for the base
and large Transformer variants.

3.2 Data Preformatting and Tokenization

Our models employ one single shared vocabulary
for all languages and directions. We train our to-
kenizer using the SentencePiece6 library, limiting
our vocabulary to 37,000 BPE (Sennrich et al.,
2015b) tokens, and training with a character cover-
age of 0.995.

Before training the tokenizer, we first preformat
the dataset into the format to be used for training
later on. We append the source and target lan-
guage’s ISO-639-1 code enclosed in square brack-
ets at the beginning of each sentence. For example:

[en] [tl] Today is a sunny day.

is the preformatted version of "Today is a sunny
day." when translating from English to Tagalog.

This preformatting is only done for the source
sentences in the training dataset, while the target
sentences are untouched.

For the purpose of training the tokenizer, the
six language tokens ([en], [id], [jv], [ms],
[ta], and [tl]) are treated as special tokens to
ensure that they will not be segmented later on.

3.3 Training Setup

We then compile our filtered, preformatted bitext
and train our base and large models. During train-
ing, we limit all source and target sentences to a
maximum sequence length of 150 subword tokens.
All sentences that are much longer are truncated.

Our models are trained using the Adam (Kingma
and Ba, 2014) optimizer. Following Vaswani et al.
(2017), we also use the “Noam“ learning rate
scheduler, linearly increasing the learning rate from

6https://github.com/google/sentencepiece

0 for the first 8000 steps, then decaying afterward.
We also set Adam’s β2 = 0.998 and use a label
smoothing factor of 0.1.

For batching, we accumulate tokens until we
reach a maximum size of approximately 32,000
tokens per batch, an increase over the 25,000 tokens
used in Vaswani et al. (2017). We then train the
base model and the large model for 100,000 steps
and 300,000 steps, respectively. All our models are
trained on 8 NVIDIA Tesla P100 GPUs in parallel
using the OpenNMT-py (Klein et al., 2017) toolkit.

3.4 Translation

To generate translations using the model, we use
Beam Search with beam size 5 and apply an aver-
age length penalty of 0.6. During generation, we
limit all outputs to a maximum sequence length
of 100, preemptively terminating generation if it
begins to exceed this maximum length. We do not
use sampling during translation, nor increase the
temperature parameter as this induces randomness
(Lopez et al., 2020).

We test our experimental models on the
FLORES-101 devtest set. We report our BLEU
scores using the SPM-BLEU variant of Sacre-
BLEU7 (Post, 2018).

4 Results

After training our models and producing sample
translations from the FLORES-101 devtest set, we
compare the results of our two models with a num-
ber of baselines:

• Transformers with No Heuristics – These
models are essentially identical with our
Transformer models in terms of architecture,
hyperparameters, and training setups, except
the bitext they are training on are the raw train-
ing corpus given in the competition (i.e. the
filtering heuristics were not applied on them).
We train these models as an ablation experi-
ment to be able to identify how much of the
final performance is attributable to the filter-
ing heuristics.

• M2M-100 615M – This is the baseline given
for the WMT’21 Large-scale Multilingual
Translation Task Small Track 2 competition.
This M2M-100 (Fan et al., 2021) model was

7BLEU+case.mixed+numrefs.1+smooth.exp+tok.spm
+version.1.5.0



435

trained on CCMatrix and CCaligned with no
further finetuning on the contest dataset.

• DeltaLM+ZCode – This is the best perform-
ing model for the Small Track 2. The model is
a finetuned version of the DeltaLM (Ma et al.,
2021) encoder-decoder pretrained model.

All analyses and results within this section are
based on the public devtest set and not the contest’s
hidden test set, unless specified. A summary of
the BLEU scores for all models and baselines are
available on Table 6.

4.1 Transformer + Heuristics vs. Baselines
We report the results of our BaseHeuristics and
LargeHeuristics models against the M2M-100 615M
model baseline as well as the best performing
model for the shared task.

BaseHeuristics scored an average BLEU of 20.78
on all 30 directions. On the other hand,
LargeHeuristics scored 22.92 average BLEU on all
30 directions, which is 2.14 BLEU points higher
than the base model. Both models outperformed
the M2M-100 615M baseline, with the base model
giving a 5.32 BLEU improvement, and the large
model giving a 7.46 BLEU improvement.

It is worth noting that, while the BaseHeuristics
outperforms the baseline on average, it fails to out-
perform it on four specific translation directions:
en↔id and en↔ms. Note that it is these two lan-
guage pairs that have the most number of training
sentences in the training corpus.

The language pairs that benefit significantly
from training on the contest dataset are language
pairs that are of less volume than en↔id and
en↔ms. This is likely due to these pairs being
less-sampled in M2M100’s training dataset, and
thus were not as learned by the model compared to
pairs with a higher volume of training data.

The same observations can be found when com-
paring the performance of LargeHeuristics against the
baseline model. LargeHeuristics only marginally out-
performed the baseline in one direction (id→en,
+0.07 BLEU), and marginally underperformed
against the baseline in one direction (ms→en, -
0.47 BLEU). This higher performance for M2M-
100 is likely due to the training method used in
the model in addition to the size of the training
corpora used. While M2M-100 is advantageous in
these translation directions, the difference is only
marginal, most likely owing to LargeHeuristics’s size
which gives it higher capacity.

Both our transformer models and the base-
line model are significantly outperformed by the
DeltaLM+ZCode model, which is the best perform-
ing model in the competition. The best model
outperforms our best model (LargeHeuristics) by a
significant 11.02 average BLEU, and the baseline
model by 18.48 average BLEU.

While DeltaLM+ZCode outperforms our model
in terms of average performance, it is worth noting
that our model – a standard Transformer without
any augmentations and training tricks – managed
to outperform DeltaLM+ZCode in one translation
direction: id→jv.

LargeHeuristics scored 23.91 BLEU while
DeltaLM+ZCode scored 23.35 BLEU. While the
difference is marginal (+0.56 BLEU), our model
still outperforms the best model in this direction,
which we attribute to the quality of our data
preprocessing and filtering heuristics.

4.2 Heuristics vs. No Heuristics

To quantify how much our filtering heuristics con-
tributed to the final performance of our models,
we trained two additional models: both identical to
our base and large transformer variants, except the
training corpus used was not processed using our
filtering heuristics. For these ablation experiments,
we use the same BPE tokenizer that is used for our
main transformer models (trained on the filtered
data). This is to ensure full model equivalency. To
prevent confusion, we will refer to these ablation
models simply as Base and Large to differentiate
them from our contest models BaseHeuristics and
LargeHeuristics.

On average, both sizes of models performed
worse when trained without the filtering heuris-
tics. Base scored 19.28 average BLEU on the de-
vtest set, 1.5 points lower than BaseHeuristics. On
the other hand, Large scored average 21.01 BLEU,
which is 1.91 points lower than LargeHeuristics.

It is interesting, however, that Base outperformed
BaseHeuristics in two translation directions: en→ms
and ms→id. This may indicate that the filtering
heuristics work better for a certain subset of lan-
guages. We look towards exploring how filtering
methods such as ours affect multilingual translation
datasets in terms of balance and informativeness in
the future.

On the other hand, Large performed worse than
LargeHeuristics in all 30 directions. This may be
due to the increase in total trainable parameters, as



436

BaseHeuristics LargeHeuristics Base Large M2M100 DeltaLM
Baseline +ZCode

en→id 35.94 39.29 35.12 36.51 36.34 50.90
id→en 31.20 33.40 29.22 30.93 33.33 47.35
en→jv 21.53 23.57 16.95 20.98 15.06 27.70
jv→en 22.09 24.61 18.85 21.26 21.38 39.44
en→ms 31.36 36.93 36.63 38.60 32.63 46.77
ms→en 31.92 33.16 30.31 32.97 33.63 47.86
en→ta 9.15 10.64 8.78 9.68 4.24 35.48
ta→en 17.00 19.55 15.83 18.47 7.52 35.29
en→tl 26.91 33.23 27.87 27.56 9.95 40.52
tl→en 31.22 33.65 26.51 29.61 26.59 48.55
id→jv 23.18 23.91 21.41 22.30 15.86 23.35
jv→id 25.45 27.10 24.15 25.15 23.21 34.64
id→ms 30.58 33.94 28.38 33.01 29.32 38.30
ms→id 30.94 33.68 31.29 32.54 31.44 40.36
id→ta 7.04 7.88 6.78 7.09 1.44 29.61
ta→id 13.74 16.46 13.35 14.87 4.99 28.56
id→tl 23.32 25.27 22.30 23.23 9.32 33.56
tl→id 25.31 27.76 23.40 25.03 20.76 38.70
jv→ms 23.36 25.08 19.92 23.63 19.57 33.14
ms→jv 21.08 21.29 12.33 20.97 14.22 23.91
jv→ta 4.70 4.97 3.85 4.62 3.52 24.19
ta→jv 9.25 11.13 7.54 9.22 2.51 18.35
jv→tl 17.43 19.61 15.79 17.31 11.96 28.50
tl→jv 16.96 18.82 14.56 17.00 12.31 23.17
ms→ta 7.01 7.87 6.65 7.23 2.38 28.83
ta→ms 15.09 16.64 14.54 16.44 4.70 26.83
ms→tl 23.30 24.97 22.17 23.01 11.04 32.81
tl→ms 25.86 27.10 23.19 25.85 18.16 36.15
ta→tl 15.26 18.43 14.98 16.05 3.15 26.64
tl→ta 6.27 7.65 5.89 6.60 3.10 28.80
Average 20.78 22.92 19.28 21.01 15.46 33.94

Table 6: Summary of BLEU scores on the FLORES-101 devtest set. The first two columns show the performance
of our Transformer models trained with the data filtering heuristics. The next two columns show the same Trans-
former models, but trained on an unpreprocessed version of the training dataset. We also show the scores of the
M2M-100 615M baseline model, as well as the best performing model (DeltaLM+ZCode) for the Small Track 2.
LargeHeuristics (column 2) is our final submission model for the contest.



437

larger models need more data with higher quality
to be effectively trained.

4.3 The Case of Tamil
We observe that our models, including the other
models on the shared task leaderboard, struggled
with Tamil. X↔ta translation is on average much
worse in terms of BLEU score compared to the
other translation directions that do not involve it.

We hypothesize that this is due to two things.
First, Tamil is the most underrepresented lan-

guage in the shared task dataset, with X↔ta having
the least amount of parallel text for every language
X in the training set. This causes the model, to a
certain extent, to underfit on directions that trans-
late to or from Tamil.

Second, Tamil is the only language in the shared
task dataset that does not use the latin alphabet.
Combined with the fact that it is the most under-
represented language in the dataset, there is a pos-
sibility that the model may have treated Tamil as
noise during training. The observation that X→ta
performs worse on average compared to its inverse
direction ta→X lends more credence to this hy-
pothesis. The model is not trained well to represent
sentences in Tamil, and thus, struggles when gen-
erating Tamil translations.

Part of our planned future work includes iden-
tifying methods to improve translation in multi-
lingual datasets where the alphabets used may be
more than one. This is to improve translation to
non-latin alphabet languages in future methods.

4.4 Hidden Test Set Performance
We also report the performance of our models
on the shared task’s hidden test set. We once
more compare our results against the baseline
M2M-100 model as well as the best performing
DeltaLM+ZCode model.

Our final submission for the shared task was
our LargeHeuristics model, which performed with an
average BLEU of 22.97 on the shared task’s hidden
test set. This is a marginal difference from it’s
devtest set score (+0.05 average BLEU).

LargeHeuristics, unsurprisingly, still outperformed
BaseHeuristics (20.73 average BLEU, +2.24 improve-
ment) and the baseline M2M-100 model (14.02
average BLEU, +8.95 improvement) in the hidden
test set. The shared task’s best performing model,
DeltaLM+ZCode, still outperforms all other mod-
els in the hidden test set, scoring 33.89 average
BLEU, a 10.92 improvement over our best model.

Public Hidden Rank
Test Test

M2M-100 615M 15.46 14.02 8
DeltaLM+ZCode 33.94 33.89 1
BaseHeuristics 20.78 20.73 -
LargeHeuristics 22.92 22.97 6

Table 7: Average BLEU scores on the contest’s hidden
test set. The BaseHeuristics model is unranked as it was
not submitted as our final model.

On the hidden test set, LargeHeuristics still ranked
first in the id→jv translation direction, scoring
24.05 BLEU. This outperforms DeltaLM+ZCode’s
23.79 BLEU (+0.26) and M2M-100’s 15.33 BLEU
(+8.72).

A summary of our model’s performance on the
hidden test set, as well as the baseline and best
performing model, can be found on Table 7

5 Conclusion

In this paper, we described the translation sys-
tems submitted by the joint Samsung Research
Philippines-Konvergen AI team for the WMT’21
Large Scale Multilingual Translation Small Track
2 shared task. We outline the filtering heuristics
that we took to preprocess our data. We then train
two models with a bitext preprocessed using our
filtering heuristics, with our best model reaching
an average BLEU score of 22.92 on the devtest
set, and outperforming the baseline model by 7.46
BLEU points. In addition, we rank sixth in the
contest leaderboard overall, scoring 22.97 BLEU
on the hidden test set.

We also reached first place for the id→jv trans-
lation direction, beating all other more complex
models, despite only using a standard transformer
without any special augmentations and training
tricks. This provides empirical evidence that data
quality and preprocessing decisions weigh just as
much, if not even more, than cutting edge model
architectures and training techniques do.

References
Christos Christodouloupoulos and Mark Steedman.

2015. A massively parallel corpus: the bible in
100 languages. Language resources and evaluation,
49(2):375–395.

Ahmed El-Kishky, Vishrav Chaudhary, Francisco
Guzmán, and Philipp Koehn. 2020. CCAligned: A
massive collection of cross-lingual web-document

https://doi.org/10.18653/v1/2020.emnlp-main.480
https://doi.org/10.18653/v1/2020.emnlp-main.480


438

pairs. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing
(EMNLP 2020), pages 5960–5969, Online. Associa-
tion for Computational Linguistics.

Angela Fan, Shruti Bhosale, Holger Schwenk, Zhiyi
Ma, Ahmed El-Kishky, Siddharth Goyal, Mandeep
Baines, Onur Celebi, Guillaume Wenzek, Vishrav
Chaudhary, et al. 2021. Beyond english-centric mul-
tilingual machine translation. Journal of Machine
Learning Research, 22(107):1–48.

Xavier Glorot and Yoshua Bengio. 2010. Under-
standing the difficulty of training deep feedforward
neural networks. In Proceedings of the thirteenth
international conference on artificial intelligence
and statistics, pages 249–256. JMLR Workshop and
Conference Proceedings.

Naman Goyal, Cynthia Gao, Vishrav Chaudhary, Peng-
Jen Chen, Guillaume Wenzek, Da Ju, Sanjana Kr-
ishnan, Marc’Aurelio Ranzato, Francisco Guzman,
and Angela Fan. 2021. The flores-101 evaluation
benchmark for low-resource and multilingual ma-
chine translation. arXiv preprint arXiv:2106.03193.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Guillaume Klein, Yoon Kim, Yuntian Deng, Jean
Senellart, and Alexander Rush. 2017. OpenNMT:
Open-source toolkit for neural machine translation.
In Proceedings of ACL 2017, System Demonstra-
tions, pages 67–72, Vancouver, Canada. Association
for Computational Linguistics.

Luis Enrico Lopez, Diane Kathryn Cruz, Jan Chris-
tian Blaise Cruz, and Charibeth Cheng. 2020. Sim-
plifying paragraph-level question generation via
transformer language models. arXiv preprint
arXiv:2005.01107.

Shuming Ma, Li Dong, Shaohan Huang, Dong-
dong Zhang, Alexandre Muzio, Saksham Singhal,
Hany Hassan Awadalla, Xia Song, and Furu Wei.
2021. Deltalm: Encoder-decoder pre-training for
language generation and translation by augmenting
pretrained multilingual encoders. arXiv preprint
arXiv:2106.13736.

Matt Post. 2018. A call for clarity in reporting BLEU
scores. In Proceedings of the Third Conference on
Machine Translation: Research Papers, pages 186–
191, Belgium, Brussels. Association for Computa-
tional Linguistics.

Nils Reimers and Iryna Gurevych. 2020. Making
monolingual sentence embeddings multilingual us-
ing knowledge distillation. In Proceedings of the
2020 Conference on Empirical Methods in Natu-
ral Language Processing. Association for Compu-
tational Linguistics.

Holger Schwenk, Vishrav Chaudhary, Shuo Sun,
Hongyu Gong, and Francisco Guzmán. 2019. Wiki-
matrix: Mining 135m parallel sentences in 1620
language pairs from wikipedia. arXiv preprint
arXiv:1907.05791.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2015a. Improving neural machine translation
models with monolingual data. arXiv preprint
arXiv:1511.06709.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2015b. Neural machine translation of rare
words with subword units. arXiv preprint
arXiv:1508.07909.

Jörg Tiedemann. 2012. Parallel data, tools and inter-
faces in opus. In Proceedings of the Eight Interna-
tional Conference on Language Resources and Eval-
uation (LREC’12), Istanbul, Turkey. European Lan-
guage Resources Association (ELRA).

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information pro-
cessing systems, pages 5998–6008.

https://doi.org/10.18653/v1/2020.emnlp-main.480
https://www.aclweb.org/anthology/P17-4012
https://www.aclweb.org/anthology/P17-4012
https://www.aclweb.org/anthology/W18-6319
https://www.aclweb.org/anthology/W18-6319
https://arxiv.org/abs/2004.09813
https://arxiv.org/abs/2004.09813
https://arxiv.org/abs/2004.09813

