
Proceedings of the Sixth Conference on Machine Translation (WMT), pages 368–375
November 10–11, 2021. ©2021 Association for Computational Linguistics

368

EdinSaar@WMT21: North-Germanic Low-Resource Multilingual NMT

Svetlana Tchistiakova1, Jesujoba O. Alabi2,
Koel Dutta Chowdhury2, Sourav Dutta3, Dana Ruiter2

1The University of Edinburgh, Edinburgh, Scotland
2Saarland University, Saarbrücken, Germany

3Technical University of Kaiserslautern, Kaiserslautern, Germany
Corresponding author: stchisti@ed.ac.uk

Abstract

We describe the EdinSaar submission to the
shared task of Multilingual Low-Resource
Translation for North Germanic Languages at
the Sixth Conference on Machine Translation
(WMT2021). We submit multilingual transla-
tion models for translations to/from Icelandic
(is), Norwegian-Bokmål (nb), and Swedish
(sv). We employ various experimental ap-
proaches, including multilingual pre-training,
back-translation, fine-tuning, and ensembling.
In most translation directions, our models out-
perform other submitted systems.

1 Introduction

This paper presents the neural machine translation
(NMT) systems jointly submitted by The Univer-
sity of Edinburgh and Saarland University to the
WMT2021 Multilingual Low-Resource Transla-
tion for Indo-European Languages task, describ-
ing both primary and contrastive systems which
translate to/from the three North Germanic lan-
guages, Icelandic (is), Norwegian-Bokmål (nb),
and Swedish (sv). Our contrastive system, sub-
mitted as “edinsaarContrastive” outperforms the
other submissions across all evaluation metrics ex-
cept for BLEU, for which our “edinsaarPrimary”
system performs best.

Although low-resource MT has recently gained
much attention, there is little prior work on North
Germanic languages. We contribute to this space
by experimenting with both training a multilingual
system from scratch and exploiting model adapta-
tion from a large pre-trained language model. We
fine-tune our initial translation models to the target
languages, and then experiment with further in-
domain fine-tuning. Data is sourced from openly
available data sets in accordance with the corpora
allowed in the shared task. We use parallel data
sets pairing our target languages with each other
and with the allowed high-resource languages, and
monolingual data from Wikipedia.

The rest of the paper is structured as follows: we
review related work in Section 2, we introduce the
methods and experimental settings including data
and model architecture in Section 3, we evaluate
model performance in Section 4, and, finally, we
draw conclusions and suggest avenues for future
work in Section 5.

2 Related Work

Recent work in NMT for North Germanic lan-
guages is limited; however, OPUS-MT (Tiedemann
and Thottingal, 2020), which contains over 1,000
pre-trained, ready-to-use neural MT models includ-
ing models for Danish, Norwegian, and Swedish,
is a notable exception.

Due to the scarcity of parallel data for low-
resource languages, recent work leverages mono-
lingual data, including pivoting from high-resource
languages (Currey and Heafield, 2019; Kim et al.,
2019), and using back-translation (Sennrich et al.,
2016a; Edunov et al., 2018) to generate pseudo-
parallel data with synthetic sources from monolin-
gual data. Since the little parallel data that is avail-
able often comes from noisy web crawls, parallel
corpus filtering is used to develop better translation
models (Koehn et al., 2020). Additional methods
for boosting the performance of low-resource pairs
include transfer learning from models trained on
higher-resource pairs (Zoph et al., 2016; Kocmi and
Bojar, 2018), and developing multilingual systems
to allow models to take advantage of linguistic re-
latedness. Multilingual systems can employ either
separate encoders or decoders for each language
(Dong et al., 2015; Firat et al., 2016), or shared
encoders/decoders, and can additionally make zero-
shot MT possible (Johnson et al., 2017; Ha et al.,
2016), while scaling to hundreds of language pairs
(Aharoni et al., 2019; Fan et al., 2020). Sampling
language pairs in proportion to their prevalence in
the training data can ensure that all directions get
enough coverage by the model (Arivazhagan et al.,
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2019; Fan et al., 2020). Further fine-tuning multi-
lingual systems on target language directions can
improve performance of low-resource pairs (Neu-
big and Hu, 2018; Lakew et al., 2019). Adapting
a multilingual pre-trained language model to the
translation task has led to improvements in trans-
lation quality (Clinchant et al., 2019; Chen et al.,
2020). Finally, combining multiple MT system
checkpoints together by ensembling improves per-
formance of the final system (Sennrich et al., 2017).

3 Method

Given a set of primary languages Lp and secondary
languages Ls, we train a multilingual MT system
on the parallel data between all the language com-
binations {Lp, Ls} ↔ {Lp, Ls}. This is our base-
line. We extend this approach with a combination
of the following methods:

Pre-training: We initialize a base model us-
ing a highly multilingual pre-trained model, in
order to transfer the learned parameters to the
translation task. This is our primary system.
Back-translation: We use the baseline model
to back-translate monolingual corpora in Lp

into all other languages in Lp to obtain a train-
ing data set of back-translations DBT.
Fine-tuning: We fine-tune the baseline model
on the subset of languages {Lp, Ls} ↔ Lp,
on both parallel and back-translated dataDBT.
Our contrastive system is an ensemble of the
last four checkpoints of this model.

3.1 Data

For training our models, we include data from the
target primary low-resource languages, Icelandic
(is), Norwegian-Bokmål (nb), and Swedish (sv),
and the related secondary languages Danish (da),
German (de), English (en).

We use data for all translation directions in-
volving da, de, en, is, nb, sv from the
following parallel corpora from Opus: Bible
(Christodouloupoulos and Steedman, 2014), Books
(Tiedemann, 2012), Europarl (Koehn, 2005), Glob-
alVoices (Tiedemann, 2012), JW300 (Agić and
Vulić, 2019), MultiCCAligned (El-Kishky et al.,
2020), Paracrawl (Esplà et al., 2019), TED2020
(Reimers and Gurevych, 2020), and WikiMatrix
(Schwenk et al., 2019). We also use all corpora
from ELRC1 that include these directions (a total

1https://elrc-share.eu/

of 159 corpora, retrieved in May 2021). These cor-
pora include all corpora allowed by the shared task,
with the exception of the Opus-100 data set, which
we avoided as it had many duplicate sentences with
the above corpora.

We use monolingual data from Wikipedia for
is and nb to augment our data set with back-
translations (Sennrich et al., 2016a). Because the
Wikipedia data for sv was created in large part
by a bot2 and consisted of many stub articles and
tables, we use the sv portion of our training data
as monolingual data for back-translation instead.

Our final data includes 30 language directions:

(a) Lp ↔ Lp: {is,nb,sv}↔ {is,nb,sv}
(b) Lp ↔ Ls: {is,nb,sv}↔ {da,de,en}
(c) Ls ↔ Ls: {da,de,en}↔ {da,de,en}
(d) Lp_bt →Lp: {is,nb,sv} → {is,nb,sv}

where Lp_bt is created from the monolingual
target side back-translated data DBT.

Parallel Data Filtering We filter the parallel
data using rule-based heuristics borrowed from the
Bifixer/Bicleaner tools (Sánchez-Cartagena et al.,
2018; Ramírez-Sánchez et al., 2020) and language
identification using FastText (Joulin et al., 2016,
2017). This repairs common orthographic errors,
including fixing failed renderings of glyphs due
to encoding errors, replacing characters from the
wrong alphabet with correct ones, and un-escaping
html. It also removes any translation pairs where:
the pair is a duplicate, the source and target are
identical, the source or target language is not the
intended language, one side is more than 2x the
length of the other, one side is empty, one side
is longer than 5000 characters, one side is shorter
than 3 words, or one side contains primarily URLs
and symbols rather than text.

Filtering reduces our parallel data to 77% of its
original total size. This data is then reversed in
order to train our multilingual model in all transla-
tion directions, resulting in a total of 421,656,410
parallel sentence pairs in all 30 language directions.
Table 1 lists the filtered data counts and the percent-
age of the original data that these counts represent.

Monolingual In-Domain Data Filtering The
validation set provided by the shared task organiz-
ers, containing thesis abstracts and descriptions, is
dissimilar to our available parallel corpora. There-
fore, we filter the Wikipedia monolingual is and

2https://en.wikipedia.org/wiki/Lsjbot

https://elrc-share.eu/
https://en.wikipedia.org/wiki/Lsjbot
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de en is nb sv
da 6921831 (48) 20604309 (77) 797806 (68) 10654 (89) 5590356 (65)
de 144890166 (80) 456054 (62) 24963 (91) 5119372 (59)
en 3766342 (78) 279370 (46) 21906032 (78)
is 351833 (60) 597 (89) 446106 (46)
nb 2943733 (44) 14247 (89)

Table 1: Number of sentences after filtering (with % of total raw data remaining after filtering) in each language
direction from source (left) to target (top) from all corpora and for additional monolingual data from Wikipedia.
The parallel data was mirrored in the reverse directions to create 30 total language directions for training.

nb data for similarity to this validation set to cre-
ate in-domain monolingual data for use in back-
translation. We identify in-domain monolingual
instances in our data by calculating the cosine simi-
larity between each sentence in a given language in
the monolingual data to each of the sentences in the
shared task validation data for that language. When
a training instance has a similarity of >= θ with at
least one validation instance, it is added to the in-
domain fine-tuning corpus. We set θ = 0.9 and use
LASER (Artetxe and Schwenk, 2019) to extract
vector representations of sentences for calculating
similarity.

Validation and Test Data We split off 2000 sen-
tence pairs from each language pair in our parallel
data to use as an internal test set. For is-nb
directions, we use the few parallel sentences avail-
able for this, meaning that no parallel data is left
for the training or validation corpus. Therefore,
translating between these directions is a zero-shot
task for our models.

We also split off 2000 sentence pairs from each
language pair in our parallel data for internal val-
idation. For validation of our primary model, we
use the entire collection of 2000 validation sentence
pairs in each language direction. For the baseline
system, we cut this down to a total of ∼ 2000 sen-
tences, because performing validation is quicker
on smaller data. Therefore, we use a subset of 72
validation sentences in each {Lp, Ls} ↔ {Lp, Ls},
except is-nb, resulting in 2016 sentences. For
the contrastive model, we use the same sentences
in only {Lp, Ls} ↔ {Lp}, to which we add 72 sen-
tences from the back-translated data in the is-nb
directions, resulting in a total of 1728 sentences.

We use the shared task validation set, to com-
pare performance between our systems, and do not
use it during model training or fine-tuning. We
additionally report results Section 4 on the shared
task test set, which was provided to the teams af-
ter the completion of the shared task. These test

is nb sv
is 2564234 (87) 10123 (99)
nb 279818 (80) 344583 (78)
sv 299277 (85) 2521823 (86)

Table 2: Number of back-translated filtered sentences
(with % of total data remaining after filtering) between
synthetic source (left) to original target (top).

sets contain approximately 500 sentences in each
language direction.

Back-translation We use the baseline system
(Section 3.3) to create back-translations of our
monolingual in-domain filtered Wikipedia data.
This generates synthetic sources from is to {nb,
sv} and from nb to {is, sv}. We additionally
back-translate the sv side of our parallel nb-sv
corpus into is and our is-sv corpus into nb.
After creating the back-translations, we filter the
new synthetic parallel data sets again using the par-
allel data filtering steps (Section 3.1), in order to
remove sentences that consisted primarily of model
errors or hallucinations. The final counts of filtered
back-translated data are in Table 2, as well as the
percentage of the original total in-domain data that
these counts represent.

3.2 Byte-pair Encoding

To create a vocabulary for our baseline and con-
trastive systems, we train a shared byte-pair en-
coding (BPE) (Sennrich et al., 2016b) model using
SentencePiece (Kudo and Richardson, 2018). We
sample 10 million monolingual sentences from our
parallel training data, based on the amount of mono-
lingual data available for each language. Following
the idea of Arivazhagan et al. (2019), we use tem-
perature sampling, where the probability of sam-
pling any particular data set D in language ` out of
the n total data sets is defined as p` = ( D`∑n

i
Di

)
1
T ,

where we set T = 5. The goal of sampling in this
way is to provide a compromise that allows the BPE
model to view a larger portion of lower resource
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language tokens (unlike sampling according to the
original distribution would), while still providing
extra space in the model for the larger variety of
tokens coming from high-resource corpora (unlike
sampling uniformly would). We use a vocabulary
of 32, 000 tokens. When BPE-ing our training data,
we use BPE-dropout (Provilkov et al., 2020) with
a probability of 0.1.

3.3 Models

Baseline Our baseline system is trained on a con-
catenation of data sets (a), (b), and (c) (see Section
3.1). The data is pre-processed using byte-pair en-
coding as described in Section 3.2. Following the
method of Johnson et al. (2017), we jointly train
the model to translate in all our language directions,
pre-pending a token <2xx> to the source side to
inform the model which target language to translate
into. The system is comprised of a transformer base
model trained using Marian (Junczys-Dowmunt
et al., 2018) with cross-entropy loss, following the
method of (Vaswani et al., 2017) and the default
Marian transformer configuration.

We differ from the default configuration in
the following ways. We fit our mini-batch to
a workspace of 6144 MB, set the learning rate
to 0.0003 with a warm-up increasing linearly for
16000 batches and decaying by 16000√

no. batches
after-

wards. We train on multiple GPUs using Adam
(Kingma and Ba, 2014) with synchronous updates
for optimization, setting β1 = 0.9, β2 = 0.98
and ε = 1e − 09. We set transformer dropout
between layers to 0.01. We use a maximum sen-
tence length of 200 tokens, a maximum target
length as source length factor of 2, and a label
smoothing of 0.01. During validation, we use a
beam size of 6 and normalize the translation score
by translation_length0.6. We check translation
quality on our internal validation set (Section 3.1)
every 5000 model updates and stop training when
performance doesn’t improve for 15 checkpoints.
The model was trained for approximately 66 hours
on four NVIDIA GeForce RTX 3090 GPUs.

Contrastive Our contrastive model fine-tunes
the baseline model directly, using a concatenation
of all data sets that incorporate our target languages,
including parallel and back-translated data (the data
sets (a), (b), and (d) described in Section 3.1). The
fine-tuned model uses the same architecture, train-
ing settings, and stopping criterion as the original
baseline model, essentially allowing us to continue

training further from the original baseline. The
final submitted system is an ensemble of the last
four checkpoints of this model. The model was
trained for approximately 54 hours on two NVIDIA
GeForce RTX 2080 TI GPUs.

Primary For the primary system, we adapt mT5
(Xue et al., 2020), a multilingual pre-trained trans-
former language model, to the translation task. We
use mt5 because of its state-of-the-art performance
and its coverage of all of our target North Ger-
manic languages. We use the SimpleTransform-
ers3 framework which extends HuggingFace (Wolf
et al., 2019), with the default parameters. Since
our model is initialized from the parameters of the
mt5-base system, including the embedding lay-
ers, we use the same byte-pair encoded vocabulary
as the original model. Due to resource constraints,
we sample a total of 100k parallel sentences from
data sets (a) and (b) (described in Section 3.1). We
pre-pend a string to the source side to indicate to
the model which target language to translate into,
and adapt the model for 5 epochs. We further fine-
tune this model on data that includes our target
languages (sets (a) and (b) from Section 3.1) to
create our Primary system. The model was trained
for approximately 46 hours on a single NVIDIA
A100 SXM4 GPU.

4 Evaluation

Table 3 reports results on detokenized SacreBLEU
on each of our internal test set, the shared task
validation set, and the shared task test set4. Com-
paring results on the internal test set and shared
task validation sets show that our models fail to
generalize well to the shared task domain. The
mt5_base_ada_ft performance drops by an
average of −4.2 BLEU points between the in-
ternal test set and the shared task validation set,
while the marian_ft_esmb model performance
drops by an average of −1.0 BLEU points. Perfor-
mance on the shared task test set suffers the most
on the least represented languages (in particular
on is) causing the marian_ft_esmb to lose
an additional −1.7 average BLEU points and the
mt5_base_ada_ft model to lose an additional
−1.8 average BLEU points. In future work, we
would like to experiment with different sampling

3https://github.com/ThilinaRajapakse/
simpletransformers

4BLEU+case.mixed+numrefs.1+smooth.exp
+tok.13a+version.1.4.14

https://github.com/ThilinaRajapakse/simpletransformers
https://github.com/ThilinaRajapakse/simpletransformers
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Model is → nb is → sv nb → is nb → sv sv → is sv → nb Avg.

Internal test

marian 12.5 33.3 11.8 26.7 27.8 18.7 21.8
marian_ft 19.1 41.7 16.1 31.6 38.4 30.3 29.5
marian_ft_esmb 19.3 42.2 16.4 31.6 39.2 30.3 29.8
mT5_base_ada 23.1 42.3 19.4 33.7 42.8 33.9 32.5
mT5_base_ada_ft 26.5 42.9 20.0 33.9 43.3 34.2 33.5

Shared valid

marian 10.9 13.5 15.1 41.3 12.2 24.9 19.7
marian_ft 13.0 18.0 22.9 50.0 19.4 45.9 28.2
marian_ft_esmb 13.9 18.2 23.6 50.6 20.1 46.7 28.8
mT5_base_ada 14.6 19.2 25.8 46.6 20.6 43.2 28.3
mT5_base_ada_ft 17.4 18.7 26.5 47.9 20.8 44.2 29.3

Shared test marian_ft_esmb 13.0 17.3 18.3 45.4 20.2 48.2 27.1
marian_base_ada_ft 16.3 18.8 19.5 42.9 22.4 45.4 27.5

Table 3: SacreBLEU (detokenized) results on the internal test set and the shared task validation and test sets.

methods to boost the performance of the least rep-
resented directions.

Comparing results between models, our pri-
mary mt5_base_ada system outperforms the
marian model trained from scratch by an average
of +10.7 and +8.6 BLEU points on the internal
and shared task validation sets, respectively. The
further fine-tuned variant mt5_base_ada_ft
leads to an additional average improvement of just
under +1 BLEU point on both sets, showing that
the mt5 model already learned a good amount about
our target task and languages from our initial adap-
tation step. The marian model is also outper-
formed by the fine-tuned variant marian_ft, re-
sulting in an average improvement of +7.7 BLEU
points on the internal test set and +8.5 BLEU
points on the shared task validation set.

Both the mt5_base_ada_ft and
marian_ft models are exposed to similar
language data; however, the mt5 language model
we adapted from (mt5-base) is much larger than
our marian model (580 million vs 44 million
parameters), and was trained on more language
data (750 GB vs 46 GB), so it had a much
stronger base to start from. Ensembling the last
4 checkpoints of the fine-tuned marian model for
marian_ft_esmb boosts performance by +0.3
and +0.6 average BLEU on the internal and shared
task validation sets over marian_ft; however,
the mt5_base_ada_ft model still outperforms
the marian_ft_esmb model by +3.7 and +0.5
average BLEU on the internal test set and the
shared task validation set, respectively. Therefore,
we submitted the mt5_base_ada_ft model as
our primary system to the shared task; however,
our contrastive system, the marian_ft_esmb
model, won in the shared task rankings.

In the global automated evaluations of the shared
task, our contrastive system is the best-performing

submitted system5, outperforming the official mT5
baseline by approximately +8.5 BLEU. We hy-
pothesize that the mt5 baseline, while being pre-
trained on massive amounts of partially noisy
monolingual data, has learned the translation task
via training on the development set only, so it has
less informative parallel data available than our
models. The M2M-100 (Fan et al., 2020) baseline
outperforms all submitted systems, despite hav-
ing been trained on noisy parallel data only. We
hypothesize that the highly-multilingual nature of
the M2M-100 model allows the target languages
to benefit from the supervisory signals between
related language combinations.

5 Conclusion and Future Work

We contribute to the growing space of NMT for
North Germanic languages. We explore multilin-
gualism by training a transformer with a shared
encoder and decoder for all language pairs from
scratch, as well as adapting a pre-trained multi-
lingual language model. Fine-tuning these mod-
els to our low-resource language pairs was a key
component in our success in the task, and we ad-
ditionally confirm that employing popular tech-
niques in machine translation, such as data filtering,
back-translation, and model ensembling are bene-
ficial for improving performance on low-resource
directions. In future work, we would like to ex-
periment with fine-tuning additional pre-trained
models such as the M2M-100, incorporating itera-
tive back-translation, and trying different sampling
methods during training to boost lower performing
low-resource language pairs.

5Only our primary model was submitted for manual
evaluation, where it outranked the other submissions. Official
rankings are available at: http://statmt.org/wmt21/
multilingualHeritage-translation-task.
html

http://statmt.org/wmt21/multilingualHeritage-translation-task.html
http://statmt.org/wmt21/multilingualHeritage-translation-task.html
http://statmt.org/wmt21/multilingualHeritage-translation-task.html
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