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Abstract

This paper describes Netmarble’s submission
to WMT21 Automatic Post-Editing (APE)
Shared Task for the English-German language
pair. First, we propose a Curriculum Training
Strategy in training stages. Facebook Fair’s
WMT19 news translation model was chosen
to engage the large and powerful pre-trained
neural networks. Then, we post-train the trans-
lation model with different levels of data at
each training stages. As the training stages go
on, we make the system learn to solve multi-
ple tasks by adding extra information at differ-
ent training stages gradually. We also show
a way to utilize the additional data in large
volume for APE tasks. For further improve-
ment, we apply Multi-Task Learning Strategy
with the Dynamic Weight Average during the
fine-tuning stage. To fine-tune the APE cor-
pus with limited data, we add some related sub-
tasks to learn a unified representation. Finally,
for better performance, we leverage external
translations as augmented machine translation
(MT) during the post-training and fine-tuning.
As experimental results show, our APE sys-
tem significantly improves the translations of
provided MT results by -2.848 and +3.74 on
the development dataset in terms of TER and
BLEU, respectively. It also demonstrates its ef-
fectiveness on the test dataset with higher qual-
ity than the development dataset.

1 Introduction

Automatic Post-Editing (APE) aims to improve the
quality of an existing Machine Translation (MT)
system by learning from human-edited samples
(Chatterjee et al., 2019, 2020). With the continu-
ous performance improvements of Neural Machine
Translation (NMT) systems along with deep learn-
ing advancements, developing APE systems has
faced a big challenge. Simple translation errors
are hard to find in machine translation outputs, and
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the remaining errors are still hard to solve. In re-
cent years, transfer learning and data augmentation
techniques have shown their efficiency when train-
ing models on datasets with limited size (Devlin
et al., 2019). Therefore, such approaches are also
adopted in APE tasks (Lopes et al., 2019).

Participants in WMT21 APE shared tasks are
required to develop systems to automatically post-
edit the translation outputs from an unknown MT
system. In this year, the same data has been re-
post-edited to improve the quality. As a result of
performing statistics on the development set, the
evaluation scores are 19.057 and 68.79 in terms
of TER and BLEU, which are much higher than
the scores of last year, 31.374 and 50.37, respec-
tively. The central distribution of TER has shifted
to the left compared to last year. We find that the
section in the range of 5 to 10 has the most exam-
ples, which indicates that over-correction problems
should be considered during the APE tasks. In ad-
dition, the dataset has been changed in terms of
the domain (from IT to Wikipedia), which results
in the change in data distribution. Therefore, di-
rectly using previous datasets or officially provided
synthetic corpus (Junczys-Dowmunt and Grund-
kiewicz, 2016; Negri et al., 2018) to enlarge the
training set of APE tasks might not be appropriate
under such circumstances. In work by Yang et al.
(2020), considering the change of data distribution,
they select to use additional MT candidates as the
data augmentation method to improve feature di-
versity in their APE systems, which significantly
improves the APE performance.

Inspired by this idea, we decided to solve the
APE task as NMT alike task and utilize the exter-
nal MT at the fine-tuning stage. However, because
of the limited size of the APE corpus and the im-
provement of MT quality, fine-tune the model only
on the APE data, easily reach the performance ceil-
ing in spite of using external translation. To solve
the aforementioned issues, existing works for other
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Natural Language Processing (NLP) tasks have
adopted several Multi-task Learning (MTL) meth-
ods with the auxiliary task (Whang et al., 2021;
Oh et al., 2021). We wondered whether it is pos-
sible to apply MTL mechanism with APE task to
the fine-tuning stage since MTL trains the model
to encourage representation sharing and improve
generalization performance. Furthermore it aims
to alleviate the data sparsity problem with a lim-
ited number of data in each task (Zhang and Yang,
2021). Therefore, we add some related NLP tasks
along with the APE task. Our experiment results
demonstrate that such approaches can further im-
prove performance.

As mentioned above, large-volume data, such as
news translation data and artificial synthetic data,
can not be used to enlarge the APE corpus directly
during the fine-tuning because of the large gap in
data distribution. We wondered if there is a way to
apply any learning method to the post-training so
that we can utilize more data to train a more robust
and powerful model. In work by (Xu et al., 2020),
they applied Curriculum Learning according to the
difficulty of each example on a single training stage.
Inspired by the research, we try to apply Curricu-
lum Learning across multiple training stages. As
the training stage increases, we make the system
learn to solve the different tasks by gradually pro-
viding extra information, described in Section 3 in
detail. Extensive experiments show the effective-
ness of applying the Curriculum Learning Strategy
during the training phase. Finally, We combined
these two approaches to make our final APE sys-
tem, which significantly improves the performance
of the APE task.

Our APE system is built based on Trans-
former (Vaswani et al., 2017) and is post-trained
on WMT21 News-Translation Data (Koehn, 2005;
Tiedemann, 2012; Rozis and Skadin, š, 2017; Bhatia
et al., 2016; Tiedemann, 2012) and artificial syn-
thetic data (Junczys-Dowmunt and Grundkiewicz,
2016; Negri et al., 2018) provided by APE Task
with Curriculum Learning Strategy. For fine-
tuning, MTL is applied with related NLP sub-
tasks such as Part-Of-Speech (POS), Named En-
tity Recognition (NER), Masked Language Model
(MLM), and Keep/Translate are added to the model
to reduce the over-fitting as well as achieve bet-
ter performance, described in Section 4 in detail.
For better training efficiency, the Dynamic Weight
Average (DWA) mechanism (Liu et al., 2019) is

applied during the MTL to keep the correct balance
between these subtasks. Here we summarize our
contributions as follows:

• We design Multi-task Learning Strategy
(MLS) with DWA to the fine-tuning stage,
which improves the training efficiency and
the performance significantly.

• We adapt Curriculum Training Strategy (CTS)
to our APE system during the post-training
across the multiple training stages, which
shows the effectiveness in performance. In
addition, we showed a way to utilize the addi-
tional data in large volumes in APE tasks.

2 Base System

Our system is based on Facebook FAIR’s WMT19
News Translation Model (Ng et al., 2019), which
used the big Transformer (Vaswani et al., 2017)
and provided the pre-trained weights. We use both
of them as our base system. In addition, we utilize
data augmentation with external MT, which has
been proposed by Yang et al. (2020) to generate
the external translated sentence (mt_ext) and help
generate the post-editing sentence (pe). An input
sentence X that contains a source sentence (src),
a translated sentence by the machine translation
system (mt), and an external translated sentence
(mt_ext) is defined as,

X = [src <SEP>mt <SEP>mt_ext], (1)

and output a sequence, H = [hsrc0 , hsrc1 , ...,
hsrcn , h<SEP>, hmt0 , ..., hmtm , h<SEP>, hmt_ext0 , ...,
hmt_extl ] ∈ Rdh×(n+m+l+2), where dh represents
a dimension of the encoder, and n, m, l represents
the number of tokens for src, mt, mt_ext,
respectively. We represent the parameters of the
encoder as Θs. Then, H is fed into the decoder,
and the decoder target is defined as Y = [pe].

3 Curriculum Training Strategy (CTS)

CTS has been inspired by Curriculum Learning
(Xu et al., 2020) that is applied according to the
difficulty of each example on a single training stage,
which has already been applied to our baseline
architecture by Ng et al. (2019). In addition, we
propose CTS, which applied Curriculum Learning
across multiple training stages. CTS aims at step-
by-step learning. In an early stage, the system
learns to solve easy problems or something that
needs to know beforehand and complex problems
or target tasks in the later stages.
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Figure 1: Overall architecture

3.1 Step 1: Understanding for Machine
Translation

X = [src], (2)

The APE task has to understand the machine trans-
lation system because the APE task modifies the
mt results. Therefore, we designed the first step of
the curriculum with the input as Equation 2 and the
target as pe.

3.2 Step 2: Learning about Post-Editing

X = [src <SEP>mt], (3)

After the first step, our system understands as the
machine translation system. In this step, we make
our system learn how to edit mt to pe with the
input as Equation 3 and the target as pe.

3.3 Step 3: Post-Editing with External MT

For the second step, our system learns about the
post-editing mechanism. In this step, we make the
system learn to take the External MT into account
with the input as Equation 1 and the target as pe.

3.4 Fine-Tuning

Finally, we fine-tune the APE system using the data
given in the challenge with the input as Equation 1
and the target as pe.

4 Multi-task Learning Strategy (MLS)

Existing works for MTL propose jointly learn-
ing methods among related tasks. MTL aims
to improve the generalization performance of the
whole tasks by sharing knowledge representations
of other tasks and can also alleviate the data spar-
sity problem where each task has limited labeled
data (Zhang and Yang, 2021). Therefore, we uti-
lize MLS for our system because WMT21 APE
shared task provides only 7,000 train sentences. In
NMT, existing works for MTL applied POS, NER,
or MLM as subtasks and provided improved re-
sults (Chatterjee et al., 2017; Wang et al., 2020).
Despite the impressive results, they applied only
a few subtasks, such as one or two. Since we de-
fined the APE task as NMT alike problem in our
work, it would be helpful to leverage these subtasks
into our work to achieve better performance. We
find out that all these subtasks are cooperative with
each other and benefit our system. Inspired by the
word-level quality estimation task, we also add the
Keep/Translate classification tasks for encoder and
decoder to handle the high-quality APE task, which
is described in Section 4.2 in detail. Since utilizing
multiple subtasks, we have to consider the loss ra-
tio between these subtasks. In our work, we apply
the Dynamic Weight Average method described in
Liu et al. (2019), and more details are described in
Section 4.4. Our final system based on the model
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post-trained using CTS with fine-tuning the APE
data with MLS.

4.1 Architecture
Our architecture is described in Figure 1. The over-
all flow of the APE task is the same in Section 2.
In this section, we explain five auxiliary subtasks
consisting of POS, NER, MLM, Keep/Translate for
the encoder, and Keep/Translate for the decoder.
For the encoder, the encoding vector H is fed into
Task-shared Representation Layer in Figure 1 like
a Fully-connected Neural Network (FNN), and the
output is represented as,

Hs = (W1H + b1), (4)

where W1 ∈ Rdsh×dh , and dsh represents a dimen-
sion of the Task-shared Representation Layer.

4.2 Subtasks
POS & NER POS and NER task aims to predict
parts of speech and named entities about an input
sequence, respectively. Task-shared Representation
LayerHs is fed into Task-specific Output Heads on
Figure 1 like a FNN, and the output is represented
as,

Ŷ pos = softmax(W2Hs + b2), (5)

where W2 ∈ RCpos×dh is trainable parameters and
Cpos is the number of class of POS task. The pa-
rameters of Task-specific Output Heads for POS
task are represented as Θpos. Likewise, Ŷ ner is
obtained as in Equation 5 for NER task, where the
parameters are represented as Θner.

MLM In MLM task, we copy the input to-
kens from X to Xmlm, which is represented by
Xmlm = {x1, ..., xn+m+l+2}, where n, m, l rep-
resents the number of tokens for src, mt, mt_ext,
respectively. Then, we randomly mask 15% of the
tokens Xmlm using the special token mask, and
define the target as original input tokens. Xmlm is
fed into the encoder. Then, the output representa-
tion is used to the input for Task-specific Output
Heads for MLM task as,

Ŷ 3 = softmax(W3Hs + b3),

Ŷ mlm = {Ŷ 3
r |xr = mask,

∀ r ∈ {0, ..., n+m+ l + 2}}
(6)

where W3 ∈ RCmlm×dh represents trainable pa-
rameters and Cmlm is the number of vocab for the
encoder. The parameters of a linear projection layer
are represented as Θmlm for MLM task.

Keep/Translate Considering the characteristics
of the APE data with relatively low TER scores,
we decide to add Keep/Translate classification sub-
task to both Encoder and Decoder in our APE
system. Keep/Translate subtask aims to predict
the labels of the input sequence, where is Ŷ kt ∈
{Keep, Translate}. In this subtask, each token in
the input will be labeled with Keep or Translate.
For label generation, we apply to the pair of src-mt
and src-mt. First, we use SimAlign (Jalili Sabet
et al., 2020) to perform word alignment on the pe-
mt pair. To each aligned word pair, we labeled
them with Keep if they are equal. Otherwise, they
will be marked as Translate. As for the pair of src-
mt, we also do word alignment to find the corre-
spondence between the source and target side. On
the src side, the tokens are labeled with the same
name as the corresponding words on the mt side.
In our case, the same procedure on pe-mt is con-
ducted for the pair of mt_ext and pe because we
use the mt_ext as our data augmentation method.
Figure 2 shows an example of label generation in
the Keep/Translate task for better understanding.
The output is represented as,

Ŷ kt = softmax(W4Hs + b4), (7)

where W4 ∈ RCkt×dh is trainable parameters and
Ckt is the number of class of Keep/Translate task.
The parameters of Task-specific Output Heads for
Keep/Translate task are represented as Θkt and Ŷ kt

is obtained as in Equation 7 for Keep/Translate
task.

4.3 Loss
As described above, five subtasks are used in our
system, and most of them have data with imbal-
anced labels. The imbalanced ratio reaches 1:2160,
1:15, and 1:6 between minority and majority
classes in POS Tagger, NER, and Keep/Translate
subtasks, respectively. With such imbalanced data,
the Cross-Entropy loss used in classification prob-
lems may result in performance degradation in
some tasks. To improve the performance, the Focal
loss (Lin et al., 2017) is considered as an alternative
candidate because a Focal Loss function addresses
class imbalance during training in tasks. It applies
a modulating term to the cross-entropy loss in or-
der to focus on learning the hard negative exam-
ples. It reduces the relative loss for well-classified
examples (pt > 0.5), putting more focus on hard,
misclassified examples. Equation 8 describes the
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Figure 2: A label generation example in the Keep/Translate task

Focal Loss, where pt is the probability of each
class predicted by the model and γ represents the
focusing parameter. Considering the imbalanced
property of each task, we apply the Focal Loss to
three of our subtasks, such as POS Tagger, NER,
and Keep/Translate in the decoder.

FL(pt) = −(1− pt)
γlog(pt) (8)

Class Balanced Loss is designed to use a re-
weighting scheme that uses the effective number
of samples for each class to re-balance the loss,
thereby yielding a class-balanced loss (Cui et al.,
2019). As the number of samples increases, there
is information overlap among data. Therefore, the
marginal benefit that a model can extract from the
data diminishes. The effective number of samples,
which played as the expected volume of samples,
is used to capture the diminishing marginal ben-
efits by using more data points of a class. For
Keep/Translate task in the decoder, it just consid-
ered the PE as input, so we applied the Focal Loss
to the subtask. However, for Keep/Translate task
in the encoder, as one of the data augmentation
methods, the external MT is also considered as in-
put along with the src and mt. As the information
of input increases, we think it may cause infor-
mation overlap among data because mt and the
mt_ext have the most in common. Therefore, we
apply the Class-Balanced Loss as our loss function
in Keep/Translate subtask in the encoder. Equa-
tion 10 describes the Class-Balanced Loss (Lcb),
where C is the total number of classes, zy is the
output from the model for class y, ny is the num-
ber of samples in the ground-truth class and β ∈
[0, 1) is a hyperparameter which can be calculated
in Equation 9. In Equation 9, i denotes the class

index, i ∈ {1, 2, ..., C}, and N is the number of
samples.

As for the MLM task, since it does not suffer
from the data imbalance problem, we use the Cross-
Entropy loss in our work as other works do.

Ni = N,

βi = β = (N − 1)/N
(9)

Lcb = − 1− β
1− βny

log

(
exp(zy)∑C
j=1 exp(zj)

)
(10)

4.4 Dynamic Weight Average

For most Multi-Task learning networks, it’s dif-
ficult to find the best ratio between each task in
subtasks manually. Therefore, we apply the Dy-
namic Weight Average (DWA) (Liu et al., 2019)
to our work, which adapts the task weighting over
time by considering the rate of change of the loss
for each task.

Equations 11 and 12 describe DWA. Here, λk(·)
represents the weighting for task k, wk(·) calcu-
lates the relative descending loss rate for each task
in each epoch, t is an iteration index, and T rep-
resents a temperature that controls the softness of
task weighting. L in Equation 12 is the loss value,
calculated as the average loss in each epoch over
several iterations.

λk(t) :=
Kexp(ωk(t− 1)/T )∑
iKexp(ωi(t− 1)/T )

(11)

ωk(t− 1) =
Lk(t− 1)

Lk(t− 2)
(12)
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TER BLEU

CTS-best (ensemble) 16.44 71.88

CTS-best (single) 16.46 71.94
w/o step 2 16.70 71.84
w/o step 3 17.33 70.24
w/o step 2 & 3 17.28 70.88

baseline 19.06 68.79

Table 1: CTS results on WMT21 APE development
dataset. CTS-best (ensemble) is built by two similar
single models. we submitted CTS-best (ensemble) as
CONTRASTIVE result.

4.5 Joint Learning Procedure
All tasks are jointly trained, and the objective is
defined as,

L =
1

K

K∑
i

λiL(Yi, f(Xi)), (13)

where λ is a dynamic weight determining the de-
gree of subtasks and f is the training classifier.
Note that the parameter K is the number of sub-
tasks. L(Y, f(X)) is the loss of f w.r.t. the target
Y .

5 Experiments

5.1 Datasets
Following existing works, we utilize additional
resources (Junczys-Dowmunt and Grundkiewicz,
2016; Negri et al., 2018), which have source sen-
tences (src), machine translation sentences (mt),
and post-editing sentences (pe). Moreover, we
also utilize some of News-Translation data for the
WMT21 (Koehn, 2005; Tiedemann, 2012; Rozis
and Skadin, š, 2017; Bhatia et al., 2016; Tiedemann,
2012), which has source sentences (src) and trans-
lated sentences that can be used as pe. For evalua-
tion and fine-tuning, we use the data for WMT21
automatic post-editing shared task. Moreover, we
utilize translated sentences using Google Translate
and Quality Estimation NMT Model (Fomicheva
et al., 2020). The former is used to make mt_ext
from the additional resources and the data for
WMT21 automatic post-editing. The latter is used
to make mt from News-Translation data. We fil-
tered all the training data based on and number
checking logic, which filters the pairs with differ-
ent numbers in source and target side.

TER BLEU

MLS w DWA 16.21 72.53
MLS w/o DWA 16.37 72.34

Table 2: Ablation analysis of DWA on the WMT21
APE development dataset.

5.2 Experimental Settings

For the first step of CTS, we utilize WMT19 en-
de weights by Fairseq (Ng et al., 2019). In the
second step, we utilize News-Translation data with
translated sentences with Quality Estimation NMT
Model asmt. In the third step, we make our system
learn with Junczys-Dowmunt and Grundkiewicz
(2016); Negri et al. (2018) and Google Translate
as mt_ext. Finally, when learning the fine-tuning
step, which contains MLS, we utilize the data for
WMT21 Automatic Post-Editing shared task.

5.3 Results: CTS

To study the effectiveness of CTS, we conduct ab-
lation experiments on WMT21 Automatic Post-
Editing development dataset. We set the baseline,
which is a system that leaves all the test instances
unmodified. As shown in Table 1, we can observe
that the step 3 is more effective than the step 2,
and that using only step 2 doesn’t help APE. As
our system is learning step by step with CTS, it
allows that our system has strengths in the APE
task.

5.4 Results: MLS

Table 2 presents the ablation analysis about DWA
when fine-tuning with MLS on WMT21 APE de-
velopment set. From the result, we can observe that
MLS with DWA has better performance than the
one without applying it. For that reason, we adopt
DWA at a fine-tuning stage with MLS in our APE
Task.

To find the best combination of subtasks in MLS,
we conducted an ablation analysis on the same de-
velopment dataset. Vanilla in the table is a system
without adding any subtasks. We add the subtasks
one by one during the fine-tuning to see the effect
of each subtask on the performance. As shown in
Table 3, the one using all the subtasks performs
best among all the combinations, which means that
these subtasks are cooperative in the APE task.
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TER BLEU

Vanilla 16.71 71.75

w/ POS 16.49 72.12
w/ NER 16.52 72.19
w/ MLM 16.55 72.00
w/ Keep/Translate 16.45 72.32

Fine-tuned with MLS 16.21 72.53

Table 3: The Multi-task Learning results on WMT21
APE validation dataset. Fine-tuned with MLS using all
subtasks model is submitted as PRIMARY result.

TER BLEU

Netmarble_CONTRASTIVE 17.28 71.55
Netmarble_PRIMARY 17.97 70.53

baseline 18.05 71.07

Table 4: Official results on WMT21 APE test dataset.

5.5 Official Results
Table 4 shows the official results of our proposed
methods on WMT21 test dataset. The test dataset
has baseline scores of 18.05 and 71.07, which is
higher than the development dataset with 19.06 and
68.79 in terms of TER and BLEU, respectively. De-
spite its high quality, our proposed methods showed
effectiveness on this test dataset.

5.6 Implementation Details
We set the batch size to 256 for the step 2 and
step 3 in CTS at each GPU, 16 for the fine-tuning
and MLS. We set the initial learning rate to 1e-
4 using scheduler in Fairseq (Ng et al., 2019)
for all experiments. The average runtime of one
epoch for each approach was about 360 minutes
for the step 2, 90 minutes for the step 3, and
40 seconds for MLS. We train our models using
AdamW (Loshchilov and Hutter, 2019) optimizer
and conduct experiments with 16 Tesla A100 GPUs
for CTS, Tesla V100 GPU for MLS.

6 Conclusion

In this paper, we propose an APE system based on
CTS and MLS. CTS allows understanding between
machine translation and automatic post-editing,
and shows a way using additional data in large
volume in APE task. MLS learns a shared unified
representation from related subtasks to improve
the performance. We submitted the system, which

Fine-tunes with MLS, as our primary version and
the ensembled CTS as our contrastive version. The
experimental results show that our system is able
to effectively detect and correct the errors made by
a high-quality NMT system, improving the score
by -2.848 and +3.74 on the development dataset
in terms of TER and BLEU, respectively. Our
proposed methods also achieved performance im-
provement on the test dataset with higher quality.
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