WeChat Neural Machine Translation Systems for WMT21

Xianfeng Zeng!*, Yijin Liu'>*, Ernan Li'*, Qiu Ran'*, Fandong Meng'*,
Peng Li', Jinan Xu?, and Jie Zhou'
! Pattern Recognition Center, WeChat Al, Tencent Inc, China
2 Beijing Jiaotong University, Beijing, China
{xianfzeng,yijinliu,cardli,soulcaptran,fandongmeng,patrickpli,withtomzhou } @tencent.com
jaxu@bjtu.edu.cn

Abstract

This paper introduces WeChat AI’s participa-
tion in WMT 2021 shared news translation
task on English—Chinese, English—Japanese,
Japanese—English and English—German.
Our systems are based on the Transformer
(Vaswani et al., 2017) with several novel and
effective variants. In our experiments, we
employ data filtering, large-scale synthetic
data generation (i.e., back-translation, knowl-
edge distillation, forward-translation, iterative
in-domain knowledge transfer), advanced fine-
tuning approaches, and boosted Self-BLEU
based model ensemble. Our constrained
systems achieve 36.9, 46.9, 27.8 and 31.3 case-
sensitive BLEU scores on English—Chinese,

English—Japanese, Japanese—English
and English—German, respectively.
The BLEU scores of English—Chinese,

English—Japanese and Japanese—English
are the highest among all submissions, and
that of English—German is the highest among
all constrained submissions.

1 Introduction

We participate in the WMT 2021 shared
news translation task in three language pairs
and four language directions, English—Chinese,
English<+Japanese, and English—German. In this
year’s translation tasks, we mainly improve the fi-
nal ensemble model’s performance by increasing
the diversity of both the model architecture and the
synthetic data, as well as optimizing the ensemble
searching algorithm.

Diversity is a metric we are particularly inter-
ested in this year. To quantify the diversity among
different models, we compute Self-BLEU (Zhu
et al., 2018) from the translations of the models on
the valid set. To be precise, we use the translation
of one model as the hypothesis and the translations
of other models as references to calculate an aver-

* Equal contribution.

age BLEU score. A higher Self-BLEU means this
model is less diverse.

For model architectures (Vaswani et al., 2017;
Meng and Zhang, 2019; Yan et al., 2020), we
exploit several novel Transformer variants to
strengthen model performance and diversity. Be-
sides the Pre-Norm Transformer, the Post-Norm
Transformer is also used as one of our baselines
this year. We adopt some novel initialization meth-
ods (Huang et al., 2020) to alleviate the gradi-
ent vanishing problem of the Post-Norm Trans-
former. We combine the Average Attention Trans-
former (AAN) (Zhang et al., 2018) and Multi-Head-
Attention (Vaswani et al., 2017) to derive a series of
effective and diverse model variants. Furthermore,
Talking-Heads Attention (Shazeer et al., 2020) is
introduced to the Transformer and shows a signifi-
cant diversity from all the other variants.

For the synthetic data generation, we exploit the
large-scale back-translation (Sennrich et al., 2016a)
method to leverage the target-side monolingual
data and the sequence-level knowledge distillation
(Kim and Rush, 2016) to leverage the source-side
of bilingual data. To use the source-side monolin-
gual data, we explore forward-translation by en-
semble models to get general domain synthetic
data. We also use iterative in-domain knowledge
transfer (Meng et al., 2020) to generate in-domain
data. Furthermore, several data augmentation meth-
ods are applied to improve the model robustness,
including different token-level noise and dynamic
top-p sampling.

For training strategies, we mainly focus on
scheduled sampling based on decoding steps (Liu
et al., 2021b), the confidence-aware scheduled sam-
pling (Mihaylova and Martins, 2019; Duckworth
et al., 2019; Liu et al., 2021a), the target denoising
(Meng et al., 2020) method and the Graduated La-
bel Smoothing (Wang et al., 2020) for in-domain
finetuning.

For model ensemble, we select high-potential
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candidate models based on two indicators, namely
model performance (BLEU scores on valid set)
and model diversity (Self-BLEU scores among all
other models). Furthermore, we propose a search
algorithm based on the Self-BLEU scores between
the candidate models with selected models. We
observed that this novel method can achieve the
same BLEU score as the brute force search while
saving approximately 95% of search time.

This paper is structured as follows: Sec. 2 de-
scribes our novel model architectures. We present
the details of our systems and training strategies in
Sec. 3. Experimental settings and results are shown
in Sec. 4. We conduct analytical experiments in
Sec. 5. Finally, we conclude our work in Sec. 6.

2 Model Architectures

In this section, we describe the model architec-
tures used in the four translation directions, includ-
ing several different variants for the Transformer
(Vaswani et al., 2017) .

2.1 Model Configurations

Deeper and wider architectures are used this year
since they show strong capacity as the number of
parameters increases. In our experiments, we use
multiple model configurations with 20/25-layer en-
coders for deeper models and the hidden size is set
to 1024 for all models. Compared to our WMT20
models (Meng et al., 2020), we also increase the
decoder depth from 6 to 8 and 10 as we find that
gives a certain improvement, but deeper depths give
limited performance gains. For the wider models,
we adopt 8/12/15 encoder layers and 1024/2048
for hidden size. The filter sizes of models are set
from 8192 to 15000. Note that all the above model
configurations are applied to the following variant
models.

2.2 Transformer with Different Layer-Norm

The Transformer (Vaswani et al., 2017) with Pre-
Norm (Xiong et al., 2020) is a widely used architec-
ture in machine translation. It is also our baseline
model as its performance and training stability is
better than the Post-Norm counterpart.

Recent studies (Liu et al., 2020; Huang et al.,
2020) show that the unstable training problem of
Post-Norm Transformer can be mitigated by mod-
ifying initialization of the network and the suc-
cessfully converged Post-Norm models generally
outperform Pre-Norm counterparts. We adopt these

initialization methods (Huang et al., 2020) to our
training flows to stabilize the training of deep Post-
Norm Transformer. Our experiments have shown
that the Post-Norm model has a good diversity com-
pared to the Pre-Norm Model and slightly outper-
form the Pre-Norm Model. We will further analyze
the model diversity of different variants in Sec. 5.1.

2.3 Average Attention Transformer

We also use Average Attention Transformer (AAN)
(Zhang et al., 2018) as we used last year to intro-
duce more model diversity. In the Average Atten-
tion Transformer, a fast and straightforward aver-
age attention is utilized to replace the self-attention
module in the decoder with almost no performance
loss. The context representation g; for each input
embedding is as follows:

1 7
gizFFN(gZyk) (D
k=1

where y, is the input embedding for step k£ and
i is the current time step. F'F'N(-) denotes the
position-wise feed-forward network proposed by
Vaswani et al. (2017).

In our preliminary experiments, we observe that
the Self-BLEU (Zhu et al., 2018) scores between
AAN and Transformer are lower than the scores
between the Transformer with different configura-
tions.

2.4 Weighted Attention Transformer

We further explore three weighting strategies to im-
prove the modeling of history information from pre-
vious positions in AAN. Compared to the average
weight across all positions, we try three methods
including decreasing weights with position increas-
ing, learnable weights and exponential weights. In
our experiments, We observe exponential weights
perform best among all these strategies. The expo-
nential weights context representation g; is calcu-
lated as follows:

ci=(l—-a)yi+a-c (2)

where « is a tuned parameter. In our previous
experiments, we test different alpha, including 0.3,
0.5, and 0.7, on the valid set and we set the alpha
to 0.7 in all subsequent experiments as it slightly
outperform the others.
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Figure 1: Mixed-AAN Transformers.

2.5 Mixed-AAN Transformers

Our preliminary experiments show that the decoder
structure is strongly related to the model diversity
in the Transformer. Therefore, we propose to stack
different types of decoder layers to derive differ-
ent Transformer variants. As shown in Figure 1,
we mainly adopt three Mixed-AAN Transformer
architectures: a) Alternately mixing the standard
self-attention layer and the average attention layer,
b) Continuously stacking several average attention
layers on the bottom layers and then stacking self-
attention layers for the rest layers. c) Stacking both
the self-attention layer and average attention layer
at each layer and using their average sum to form
the final hidden states (named as ‘dual attention
layer’).

In the experiments, Mixed-AAN not only per-
forms better but also shows strong diversity com-
pared to the vanilla Transformer. With four Mixed-
AAN models, we reach a better ensemble result
than the result with ten models which consist of
deeper and wider standard Transformer. We will
further analyze the effects of different architectures
from performance, diversity, and model ensemble
in Sec. 5.1

2.6 Talking-Heads Attention

In Multi-Head Attention, the different attention
heads perform separate computations, which are
then summed at the end. Talking-Heads Attention
(Shazeer et al., 2020) is a new variation that inserts
two additional learned linear projection weights,
Wi and W, to transform the attention-logits and
the attention scores respectively, moving informa-
tion across attention heads. The calculation for-
mula is as follows:

Attention(Q, K, V) = softmaz(95=

LLWYWLV  (4)

We adopt this method in both encoders and de-
coders to improve information interaction between
attention heads. This approach shows the most re-
markable diversity among all the above variants
with only a slight performance loss.

3 System Overview

In this section, we describe our system used in
the WMT 2021 news shared task. We depicts the
overview of our NMT system in Figure 2, which
can be divided into four parts, namely data filtering,
large-scale synthetic data generation, in-domain
finetuning, and ensemble. The synthetic data gener-
ation part further includes the generation of general
domain and in-domain data. Next, we proceed to
illustrate these four parts.

3.1 Data Filtering

We filter the bilingual training corpus with the fol-
lowing rules for most language pairs:

* Normalize punctuation with Moses scripts ex-
cept Japanese data.

* Filter out the sentences longer than 100 words
or exceed 40 characters in a single word.

* Filter out the duplicated sentence pairs.

* The word ratio between the source and the
target words must not exceed 1:4 or 4:1.

e Filter out the sentences where the fast-text
result does not match the origin language.

« Filter out the sentences that have invalid Uni-
code characters.

Besides these rules, we filter out sentence pairs
in which Chinese sentence has English characters
in En-Zh parallel data. The monolingual corpus
is also filtered with the n-gram language model
trained by the bilingual training data for each lan-
guage. All the above rules are applied to synthetic
parallel data.

3.2 General Domain Synthetic Data
Generation

In this section, we describe our techniques for
constructing general domain synthetic data. The
general domain synthetic data is generated via
large-scale back-translation, forward-translation
and knowledge distillation to enhance the mod-
els’ performance for all domains. Then, we exploit
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Figure 2: Architecture of our NMT system.

the iterative in-domain knowledge transfer (Meng
et al., 2020) in Sec 3.3, which transfers in-domain
knowledge to the vast source-side monolingual cor-
pus, and builds our in-domain synthetic data. In
the following sections, we elaborate the above tech-
niques in detail.

3.2.1 Large-scale Back-Translation

Back-translation is the most commonly used data
augmentation technique to incorporate the target
side monolingual data into NMT (Hoang et al.,
2018). Previous work (Edunov et al., 2018) has
shown that different methods of generating pseudo
corpus has a different influence on translation qual-
ity. Following these works, we attempt several
generating strategies as follows:

* Beam Search: Generate target translation by
beam search with beam size 5.

* Sampling Top-K: Select a word randomly
from top-K (K is set to 10) words at each
decoding step.

* Dynamic Sampling Top-p: Selected a word
at each decoding step from the smallest set
whose cumulative probability mass exceeds p
and the p is dynamically changing from 0.9 to
0.95 during data generation.

Note that we also use Tagged Back-Translation
(Caswell et al., 2019) in En—De and Right-to-Left
(R2L) back-translation in En<+Ja, as we achieve a
better BLEU score after using these methods.

3.2.2 Knowledge Distillation

Knowledge Distillation (KD) has proven to be
a powerful technique for NMT (Kim and Rush,
2016; Wang et al., 2021) to transfer knowledge
from the teacher model to student models. In par-
ticular, we first use the teacher models to gener-
ate synthetic corpus in the forward direction (i.e.,
En—Zh). Then, we use the generated corpus to
train our student models.

Notably, Right-to-Left (R2L) knowledge distil-
lation is a good complement to the Left-to-Right
(L2R) way and can further improve model perfor-
mance.
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3.2.3 Forward-Translation

Using monolingual data from the source language
to further enhance the performance and robustness
of the model is also an effective approach. We
use the ensemble model to generate high quality
forward-translation data and obtain a stable im-
provement in En—Zh and En—De directions.

3.3 Iterative In-domain Knowledge Transfer

Since in-domain knowledge transfer (Meng et al.,
2020) delivered a massive performance boost last
year, we still use this technique in En<+Ja and
En—De this year. It is not applied to En—Zh be-
cause no significant improvement is observed. We
guess the reason is that the in-domain finetuning
in the En—Zh direction does not bring a signifi-
cant improvement compared to the other directions.
And in-domain knowledge transfer is aiming at en-
hancing the effect of finetuning, so this does not
have a noticeable effect in the English-Chinese di-
rection.

We first use normal finetuning in Sec. 3.5 to
equip our models with in-domain knowledge. Then,
we ensemble these models to translate the source
monolingual data into the target language. We use
4 models with different architectures and training
data as our ensemble model. Next, we combine
the source language sentences with the generated
in-domain target language sentences as pseudo-
parallel corpus. Afterwards, we retrain our models
with both in-domain pseudo-parallel data and gen-
eral domain synthetic data.

3.4 Data Augmentation

Once the pseudo-data is constructed, we further
obtain diverse data by adding different noise. Com-
pared to previous years’ WMT competitions, we
implement a multi-level static noise approach for
our pseudo corpus:

» Token-level: Noise on every single subword
after byte pair encoding.

* Word-level: Noise on every single word be-
fore byte pair encoding.

* Span-level: Noise on a continuous sequence
of tokens before byte pair encoding.

The different granularities of noise make the data
more diverse. The noise types are random replace-
ment, random deletion and random permutation.
We apply the three noise types in a parallel way for

each sentence. The probability of enabling each of
the three operations is 0.2.

Furthermore, an on-the-fly noise approach is ap-
plied to the synthetic data. By using on-the-fly
noise, the model is trained with different noises
in every epoch rather than all the same along this
training stage.

3.5 In-domain Finetuning

A domain mismatch exists between the obtained
system trained with large-scale general domain
data and the target test set. To alleviate this mis-
match, we finetune these convergent models on
small scale in-domain data, which is widely used
for domain adaption (Luong and Manning, 2015;
Li et al., 2019). We take the previous test sets
as in-domain data and extract documents that are
originally created in the source language for each
translation direction (Sun et al., 2019). We also
explore several advanced finetuning approaches to
strengthen the effects of domain adaption and ease
the exposure bias issue, which is more serious un-
der domain shift.

Target Denoising (Meng et al., 2020). In the
training stage, the model never sees its own er-
rors. Thus the model trained with teacher-forcing
is prune to accumulated errors in testing (Ranzato
et al., 2016). To mitigate this training-generation
discrepancy, we add noisy perturbations into de-
coder inputs when finetuning. Thus the model be-
comes more robust to prediction errors by target
denoising. Specifically, the finetuning data gener-
ator chooses 30% of sentence pairs to add noise,
and keeps the remaining 70% of sentence pairs un-
changed. For a chosen pair, we keep the source
sentence unchanged, and replace the i-th token of
the target sentence with (1) a random token of the
current target sentence 15% of the time (2) the
unchanged i-th token 85% of the time.

Graduated Label-smoothing (Wang et al.,
2020). Finetuning on a small scale in-domain
data can easily lead to the over-fitting phenomenon
which is harmful to the model ensemble. It gen-
erally appears as the model over confidently out-
putting similar words. To further preventing over-
fitting of in-domain finetuning, we apply the Grad-
uated Label-smoothing approach, which assigns a
higher smoothing penalty for high-confidence pre-
dictions, during in-domain finetuning. Concretely,
following the paper’s setting, we set the smoothing
penalty to 0.3 for tokens with confidence above 0.7,
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zero for tokens with confidence below 0.3, and 0.1
for the remaining tokens.

Confidence-Aware  Scheduled
Vanilla scheduled sampling (Zhang et al., 2019)
simulates the inference scene by randomly
replacing golden target input tokens with predicted
ones during training. However, its critical schedule
strategies are only based on training steps, ignoring
the real-time model competence. To address this
issue, we propose confidence-aware scheduled
sampling (Liu et al., 2021a), which quantifies
real-time model competence by the confidence of
model predictions. At the t-th target token position,
we calculate the model confidence conf(t) as
follow:

conf(t) = P(yly<t, X, 0) (5)

Next, we design fine-grained schedule strategies
based on the model competence. The fine-grained
schedule strategy is conducted at all decoding steps
simultaneously:

Yt—1
Yt—1 = § .
{ytl

where tg014en 18 a threshold to measure whether
conf(t) is high enough (e.g., 0.9) to sample the
predicted token g 1.

We further sample more noisy tokens at high-
confidence token positions, which prevents sched-
uled sampling from degenerating into the teacher
forcing mode.

Zf Conf(t) S tgolden
else

(6)

Yt—1 Zf COTLf(t) < tgolden
Y1 = D=1 if tgoiden < conf(t) < trand
Yrand 1f conf(t) > trand

(7
where t,,,4 18 a threshold to measure whether
con f(t) is high enough (e.g., 0.95) to sample the
random target token ¥;q.4-

Scheduled Sampling Based on Decoding Steps.
We propose scheduled sampling methods based on
decoding steps from the perspective of simulating
the distribution of real translation errors (Liu et al.,
2021b). Namely, we gradually increase the selec-
tion probability of predicted tokens with the growth
of the index of decoded tokens. At the ¢-th decod-
ing step, the probability of sampling golden tokens
g(t) is calculated as follow:

Sampling.

Algorithm 1 Boosted Self-BLEU based Ensemble

Input:
List of candidate models M = {my, ..., m, }
Valid set BLEU for each model B = {b,, ..., b, }
Average Self-BLEU for each model S = {s;, ...,
Sn}
The number of models n
The number of ensemble models ¢

Output: Model combinations C

1: fori < 1tondo
2:  score; = (bj—min(B)) -weight+ (maz(S)—s;)

_ (maz(S)—min(S))
(max(B)—min(B))

weight

: end for

5: Add the highest score model to candidates list
C={ Mtop }

6: while |C| < c do

7: index = arg min ﬁ >
i ieM=C,jec

s

BLEU (i, j)

Add m;y,de to candidate list C
9: end while
10: return C

e Linear Decay: g(t) = max(e, kt + b), where
€ is the minimum value, and £ < 0 and b is
respectively the slope and offset of the decay.

* Exponential Decay: g(t) = k', where k < 1
is the radix to adjust the decay.

« Inverse Sigmoid Decay: g(t) = —~+, where
k+ek

e is the mathematical constant, and k > 1 is a
hyperparameter to adjust the decay.

Following our preliminary conclusions (Liu et al.,
2021b), we choose the exponential decay and set k
to 0.99 by default.

3.6 Boosted Self-BLEU based Ensemble
(BSBE)

After we get numerous finetuned models, we need
to search for the best combination for ensemble
model. Ordinary random or greedy search is over-
simplified to search for a good model combination
and enumerate over all combinations of candidate
models is inefficient. The Self-BLEU based prun-
ing strategy (Meng et al., 2020) we proposed in last
year’s competition achieve definite improvements
over the ordinary ensemble.

However, diversity is not the only feature we
need to consider but the performance in the valid
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set is also an important metric. Therefore, we com-
bine Self-BLEU and valid set BLEU together to de-
rive a Boosted Self-BLEU-based Ensemble (BSBE)
algorithm. Then, we apply a greedy search strat-
egy in the top N ranked models to find the best
ensemble models.

See algorithm 1 for the pseudo-code. The algo-
rithm takes as input a list of n strong single models
M, BLEU scores on valid set for each model B,
average Self-BLEU scores for each model S, the
number of models n and the number of ensemble
models c. The algorithm return a list C consists
of selected models. We calculate the weighted
score for each model as line 2 in the pseudo-code.
The weight calculated in line 3 is a factor to bal-
ance the scale of Self-BLUE and valid set BLEU.
Then the list C initially contains the model m;,,
has a highest weighted score. Next, we iteratively
re-compute the average Self-BLEU between the
remaining models in |M — C| and selected mod-
els in C, based on which we select the model has
minimum Self-BLEU score into C.

In our experiments, we save around 95% search-
ing time by using this novel method to achieve
the same BLEU score of the Brute Force search.
We will further analyze the effect of Boosted Self-
BLEU based Ensemble in section 5.2.

4 Experiments And Results
4.1 Settings

The implementation of our models is based on
Fairseq' for En—Zh and EN—De, and OpenNMT?
for En«+Ja. All the single models are carried out
on 8 NVIDIA V100 GPUs, each of which has 32
GB memory. We use the Adam optimizer with (31
= 0.9, B2 = 0.998. The gradient accumulation is
used due to the high GPU memory consumption.
The batch size is set to 8192 tokens per GPU and
we set the “update-freq” parameter in Fairseq to 2.
The learning rate is set to 0.0005 for Fairseq and
2.0 for OpenNMT. We use warmup step = 4000.
We calculate sacreBLEU? score for all experiments
which is officially recommended.

4.2 Dataset

The statistics of all training data is shown in Table
1. For each language pair, the bilingual data is
the combination of all parallel data released by

"https://github.com/pytorch/fairseq
“https://github.com/OpenNMT/OpenNMT-py
3https://github.com/mjpost/sacrebleu

En—Z7h | En—De | En<Ja
Bilingual Data 30.7M | 74.8M 12.3M
Source Mono Data | 200.5M | 332.8M | 210.8M
Target Mono Data | 405.2M | 237.9M | 354.7M

Table 1: Statistics of all training data.

WMT?21. For monolingual data, we select data
from News Crawl, Common Crawl and Extended
Common Crawl, it is then divided into several parts,
each containing S0M sentences.

For general domain synthetic data, we use all
the target monolingual data to generate back-
translation data and a part of source monolingual
data (about 80 to 100 million for different lan-
guages) to get forward translation data. For the
in-domain pseudo-parallel data, we use the entire
source monolingual data and bilingual data. All the
test and valid data from previous years are used as
in-domain data.

We use the methods described in Sec. 3.1 to filter
bilingual and monolingual data.

4.3 Pre-processing and Post-processing

English and German sentences are segmented by
Moses*, while Japanese use Mecab® for segmen-
tation. We segment the Chinese sentences with
an in-house word segmentation tool. We apply
punctuation normalization in English, German and
Chinese data. Truecasing is applied to English<>
Japanese and English—German. We use byte pair
encoding BPE (Sennrich et al., 2016b) with 32K
operations for all the languages.

For the post-processing, we apply de-truecaseing
and de-tokenizing on the English and German trans-
lations with the scripts provided in Moses. For the
Chinese translations, we transpose the punctuations
to the Chinese format.

4.4 English— Chinese

The results of En—Zh on newstest2020 are shown
in Table 2. For the En—Zh task, filtering out part
of sentence pairs containing English characters in
Chinese sentences shows a significant improve-
ment in the valid set. After applying large-scale
Back-Translation, we obtain +2.0 BLEU score on
the baseline. We further gain +0.62 BLEU score
after applying knowledge distillation and +0.24
BLEU from Forward-Translation. Surprisingly, we
observe that adding more BT data from different

*http://www.statmt.org/moses/
Shttps://github.com/taku910/mecab
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SYSTEM En—Zh En—Ja Ja—En En—De
Baseline 44.53 35.78 19.71 33.28
+ Back Translation 46.52 36.12 20.82 35.28
+ Knowledge Distillation 47.14 36.66 21.63 36.38
+ Forward Translation 47.38 - - 36.78
+ Mix BT 48.17 37.22 22.11 -

+ Finetune 49.81 42.54 2591 39.21

+ Advanced Finetune 50.20 - - 39.56
+ Ist In-domain Knowledge Transfer - 40.32 24.49 39.23

+ Finetune - 43.66 26.24 -

+ Advanced Finetune - - - 39.87
+ 2nd In-domain Knowledge Transfer - 43.69 25.89 -

+ Finetune - 44.23 26.27 -

+ Advanced Finetune - 44.42 26.38 -
+ Normal Ensemble 50.57 45.11 28.01 40.42
+ BSBE 50.94 * 45.35 x 28.24 * 40.59
+ Post-Process - - - 41.88 x

Table 2: Case-sensitive BLEU scores (%) on the four directions newstest2020, where ‘x’ denotes the submitted
system. Mix BT means we use multiple parts of Back Translation data with different generation strategies. The
Advanced Finetune methods outperform the normal Finetune and we report the best results in single model. BSBE

outperforms Normal Ensemble in all four directions.

shards with different generation strategy can further
boost the model performance to 48.17. The fine-
tuned model achieves a 49.81 BLEU score, which
demonstrates that the domain of the training corpus
is apart from the test set domain. The advanced
finetuning further brings about 0.41 BLEU score
gains compared to normal finetune. Our best single
model achieves a 50.22 BLEU score.

In preliminary experiments, we select the best
performing models as our ensemble combinations
obtaining +0.4 BLEU score. On top of that,
even after searching hundreds of models, no bet-
ter results are obtained. With BSBE strategies in
Sec. 3.6, a better model combination with less
number of models are quickly searched, and we
finally achieve 50.94 BLEU score. Our WMT2021
English—Chinese submission achieves a Sacre-
BLEU score of 36.9, which is the highest among
all submissions and chrF score of 0.337.

4.5 English— Japanese

The results of En—Ja on newstest2020 are shown
in Table 2. For the En—Ja task, we filter out the
sentence pairs containing Japanese characters in the
English side and vice versa. The Back-Translation
and Knowledge Distillation improve the baseline
from 35.78 to 36.66. Adding more BT data fur-
ther brings in 0.56 improvements. The improve-
ment by finetuning is much larger than other di-
rections, which is 5.32 BLEU. We speculate that

this is because there is less bilingual data for En-
glish and Japanese than for other languages, and
the test results for Japanese are char level BLEU so
this direction is more influenced by the in-domain
finetuning. Two In-domain knowledge transfers
improve BLEU score from 37.22 to 43.69. Nor-
mal finetune still provides 0.54 improvements after
in-domain knowledge transfer. Then, we apply
advanced finetuning methods to further get 0.19
BLEU improvements. Our final ensemble result
outperforms baseline 9.57 BLEU.

4.6 Japanese— English

The Ja—En task follows the same training proce-
dure as En—Ja. From Table 2, we can observe
that Back-Translation can provide 1.11 BLEU im-
provements from baseline. Knowledge Distillation
and more BT data can improve the BLEU score
from 20.82 to 22.11. The finetuning improvement
is 3.8 which is slightly less than the En—Ja direc-
tion but still larger than En—Z7h and En—De. We
also apply two-turn in-domain knowledge transfer
and further boost the BLEU score to 25.89. Af-
ter normal finetuning, the BLEU score achieves
26.27. The advanced finetuning methods provide
a slight improvement on Ja—En. After ensemble,
we achieve 28.24 BLEU in newstest2020.
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MODEL EN-ZH | EN-JA | JA-EN | EN-DE
Transformer 49.92 44.27 26.12 39.76
Transformer with Post-Norm 49.97 - -
Average Attention Transformer 4991 44.38 26.31 39.62
Weighted Attention Transformer | 49.99 - 39.74
Average First Transformer * 50.14 44.42 | 26.37 39.87
Average Bottom Transformer * 50.10 4436 | 26.38 39.77
Dual Attention Transformer * 50.20 - 39.87
Talking-Heads Attention 49.89 - 39.70

Table 3: Case-sensitive BLEU scores (%) on the four translation directions newstest2020 for different architecture.
The model with ‘%’ is the Mixed-AAN variants. The bolded scores correspond to the best single model scores in

Table 2.

MODEL Transformer | Post-Norm | AAN | Weighted | Avg-First | Self-First | Dual | TH

Transformer 100 78.12 76.02 75.08 74.47 74.02 73.51 | 72.63
Post-Norm 78.12 100 76.12 75.10 74.33 74.05 73.45 | 72.59
AAN 76.02 76.12 100 79.24 74.81 74.97 73.43 | 72.13
Weighted 75.08 75.10 79.24 100 74.72 74.93 73.55 | 72.21
Avg-First * 74.46 74.33 74.81 74.72 100 75.25 74.28 | 72.25
Avg-Bot x* 74.02 74.05 74.97 74.93 75.25 100 74.21 | 72.33
Dual * 73.51 73.45 73.43 73.55 74.28 74.21 100 | 72.23
TH 72.63 72.59 72.13 72.21 72.25 72.33 72.23 | 100

Table 4: Self-BLEU scores (%) between different architectures. For simplicity, we refer to these models as Trans-
former (Pre-Norm Transformer), Post-Norm (Post-Norm Transformer), AAN (Average Attention Transformer),
Weighted (Weighted Attention Transformer), Avg-First (Average First Transfromer), Avg-Bot (Average Bottom
Transformer), Dual (Dual Attention Transformer), TH (Talking-Heads Attention). The model with ‘%’ is the Mix-

AAN variants.

4.7 English—German

The results of En—De on newstest2020 are shown
in Table 2. After adding back-translation, we im-
prove the BLEU score from 33.28 to 35.28. Knowl-
edge Distillation further boosts the BLEU score to
36.58. The finetuning further brings in 2.63 im-
provements. After injecting the in-domain knowl-
edge into the monolingual corpus, we get another
0.31 BLEU gain. We apply a post-processing pro-
cedure on En—De. Specifically, we normalize the
English quotations to German ones in German hy-
potheses, which brings in 1.3 BLEU improvements.

5 Analysis

To verify the effectiveness of our approach, we
conduct analytical experiments on model variants,
finetune methods, and ensemble strategies in this
section.

5.1 Effects of Model Architecture

We conduct several experiments to validate the ef-
fectiveness of Transformer (Vaswani et al., 2017)
variants we used and list results in Table 3. We also

investigate the diversity of different variants and
the impacts on the model ensemble. The results is
listed in Table 4 and Table 5. Here we take En—Zh
models as examples to conduct the diversity and en-
semble experiments. The results in other directions
show similar trends.

Performance. As shown in Table 3, AAN per-
forms slightly worse than other variants in En—Zh
but Mixed-AAN variants outperform normal Trans-
former. Weighted Attention Transformer provides
noticeable improvement compare to AAN and
sometimes better than vanilla Transformer.

Diversity. The Self-BLEU scores in Table 4
demonstrate the difference between two models,
more different models generally have lower scores.
As we can see, AAN and all the variants with AAN
have an absolutely lower Self-BLEU score with the
Transformer. The Talking-Heads Attention has the
minimum scores among all the variants.

Ensemble. In our preliminary experiments, we
observe that more diverse models can significantly
help the model ensemble. The results are listed
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MODELS newstest2020
Deeper & Wider Transformer 50.31
Weighted & Mixed-AAN 50.44
Ensemble with all models above 50.62

Table 5: Ensemble results with different architectures.
The first row is the ensemble results with 10 deeper and
wider models searched from dozens of ones. The sec-
ond row is the ensemble results with only 4 Weighted
Attention Transformer and Mixed-AAN models.

in Table 5. We get a more robust ensemble model
with only four models using our novel variants than
searching from dozens of Deeper and Wider Trans-
former models. Even these four models are trained
with the same training data. After we combine the
four models with Deeper and Wider Transformer,
we can further get a significant improvement.

Take En—Zh as an examble, our final submis-
sion consist of 1 Average First Transformer, 1 Av-
erage Bottom Transformer, 1 Dual Attention Trans-
former, 1 Weighted Attention Transformer and 1
Transformer with Post-Norm.

5.2 Effects of Boosted Self-BLEU based
Ensemble

To verify the superiority of our Boosted Self-BLEU
based Ensemble (BSBE) method, we randomly se-
lect 10 models with different architecture and train-
ing data. For our submitted system, we search
from over 500 models. We use a greedy search
algorithm (Deng et al., 2018) as our baseline. The
greedy search greedily selects the best performance
model into candidate ensemble models. If the se-
lected model provides a positive improvement, we
keep it in the candidates. Otherwise, it is added to
a temporary model list and still has a weak chance
to be reused in the future. One model from the
temporary list can be reused once, after which it
is withdrawn definitely. We compare the results of
greedy search, BSBE and Brute Force and list the
ensemble model BLEU and the number of searches
in Table 6. Note that n is the number of models,
which is 10 here. For BSBE, we need to get the
translation result of every model to calculate the
Self-BLEU. After that, we only need to perform
the inference process once.

5.3 Effects of Advanced Finetuning

In this section, we describe our experiments on
advanced finetuning in the four translation direc-
tions. As shown in Table 7, all the advanced fine-

ALGORITHM | BLEU | Number of Searches
Greedy 50.19 2n

Brute Force 50.44 >, cl
BSBE 50.44 n+1

Table 6: Results of different search algorithm. n is
the total number of models used for the search. The
number of searches is number that the methods need
to translate the valid set. Our BSBE achieves compara-
ble BLEU score as Brute Force search and significantly
reduces the searching time.

tuning methods outperform normal finetuning. For
En—Zh, Scheldule Sampling Based on Decod-
ing Steps with Graduated Label Smoothing im-
proves the model performance from 49.81 to 50.20.
For En<+Ja, Target Denoising with Graduated La-
bel Smoothing provides the highest BLEU gain,
which are 0.19 and 0.11. For the En—De direc-
tion, Confidence-Aware Scheldule Sampling with
Graduated Label Smoothing performs the best, im-
proving from 39.21 to 39.42. These findings are
in line with the conclusion of Wang and Sennrich
(2020) that links exposure bias with domain shift.

6 Conclusion

We investigate various novel Transformer based
architectures to build robust systems. Our systems
are also built on several popular data augmentation
methods such as back-translation, knowledge dis-
tillation and iterative in-domain knowledge trans-
fer. We enhance our system with advanced fine-
tuning approaches, i.e., target denoising, graduated
label smoothing and confidence-aware scheduled
sampling. A boosted Self-BLEU based model en-
semble is also employed which plays a key role
in our systems. Our constrained systems achieve
36.9, 46.9, 27.8 and 31.3 case-sensitive BLEU
scores on English—Chinese, English—Japanese,
Japanese—English and English—German, respec-
tively. The BLEU scores of English—Chinese,
English—Japanese and Japanese—English are
the highest among all submissions, and that of
English—German is the highest among all con-
strained submissions.
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