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Abstract

This paper describes LISN’s submissions to
two shared tasks at WMT’21. For the
biomedical translation task, we have devel-
oped resource-heavy systems for the English-
French language pair, using both out-of-
domain and in-domain corpora. The target
genre for this task (scientific abstracts) corre-
sponds to texts that often have a standardized
structure. Our systems attempt to take this
structure into account using a hierarchical sys-
tem of sentence-level tags. Translation sys-
tems were also prepared for the News task for
the French-German language pair. The chal-
lenge was to perform unsupervised adaptation
to the target domain (financial news). For this,
we explored the potential of retrieval-based
strategies, where sentences that are similar to
test instances are used to prime the decoder.

1 Introduction

This paper describes LISN’s1 submissions to the
translation shared tasks at WMT’21, where we took
part in two shared tasks. For the biomedical transla-
tion tasks, we have developed resource-heavy sys-
tems for the English-French language pair, using a
diversity of out-of-domain and in-domain corpora,
thus continuing the efforts reported in (Abdul Rauf
et al., 2020). Like for previous years shared task,
the target genre (scientific abstract) corresponds
to texts that often have a standardized structure
comprising typical subsections of one to five lines.
Standard subsections report the OBJECTIVE, the
METHOD, or the RESULTs of the study. Our sys-
tems for this year attempt to take this structure into
account using sentence-level tags, with the hope
to capture some of the document structure and the
phraseology of the domain into account. These
systems are documented in Section 2.

1LISN [Laboratoire Inderdisciplinaire des Sciences du
Numérique] is the new name of the laboratory formerly known
as LIMSI.

Translation systems were also prepared for the
News task for the French-German language pair.
The challenge this year was to perform unsuper-
vised adaptation to the target domain (financial
news), with no further detail regarding the test data.
In particular, the organizers did not release any de-
velopment data to tune systems. In this setting, we
explored the potential of using a retrieval-based
strategy, where sentences that are similar to the test
instances are used to help the decoding. In this
approach, introduced in (Bulte and Tezcan, 2019)
and further explored in (Xu et al., 2020; Pham
et al., 2020), translation is a two-step process: a
retrieval phase, which identifies sentences that re-
semble the source test sentence in parallel corpora.
These sentences and their translation are then used
to prime the decoder: inserting relevant translations
examples in the decoder’s context should help to
select the right translations, especially for words
and terms from the test domain. These systems are
described in Section 3.

2 MT for biomedical texts

In this section, we describe our participation to the
biomedical task for WMT’21, in which we par-
ticipated in both English to French and French to
English directions. English-French is a reasonably
resourced language pair with respect to biomedical
parallel corpora, allowing us to train our Neural Ma-
chine Translation (NMT) systems (Vaswani et al.,
2017) with in-domain corpora as well as large out-
of-domain data that exists for this language pair.
Like for last year (Abdul Rauf et al., 2020), our first
goal is to make the best of all the available data,
including supplementary in-domain monolingual
data. Our corpora are described in Section 2.1.

For this year’s participation, we also attempt to
take the internal structure of biomedical abstracts
into account. Many of these abstracts follow what
is often refered to as the “IMRAD format”, com-
prising the following subparts: INTRODUCTION,
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Parallel
Corpus Wrds (M) Sents.

English French

Ufal 89.5 100.3 2.72 M
Edp 0.04 0.04 2.44 K
Medline titles 5.97 6.43 0.63 M
Medline abstracts 1.23 1.44 0.06 M
Scielo 0.17 0.21 7.84 K

Cochrane-Reference 2.23 2.74 0.12 M
Cochrane-PE 0.43 0.53 20.5 K
Cochrane-GooglePE 0.63 0.77 30.3 K
Taus 20.1 23.2 0.88 M
Mlia 19.0 23.0 1.0M

IR Retrieved 13.2 14.7 3.6M

Development

Medline 18 5.7K 6.9K 265
Medline 19 9.8K 12.4K 537
Test

Medline 20 12.7K 16.2K 699

Monolingual

Corpus English French Sent.

Lissa_Fr 8.79 7.70 0.33 M
Med_Fr 16.3 16.2 0.06 M
IsTex_Fr 6.92 7.84 0.42M

Med_En 3.40 4.02 0.22M

Out Domain

Corpus English French Sent.

Out-of-domain 1139 1292 35M

Table 1: Data sources for the biomedical task

METHODS, RESULTS, and DISCUSSION (Sol-
laci and Pereira, 2004). This structure can be ex-
plicit in documents through dedicated headings or
remain implicit. Our experiments aim to explore
how to use this information in NMT and to measure
the correlated impact. We notably expect that by
informing the system with sub-document informa-
tion, it will learn the typical style and phraseology
of sentences occurring in each part.

For this purpose, we identified in our data all the
abstracts that were conforming to this basic struc-
ture and worked to make this structure as explicit
and standardized as possible. This notably implied
to normalize the mains headings, as some variation
was observed: for instance, ANALYSIS may be re-
placed with DISCUSSION, and additional subparts

(OBJECTIVES, CONCLUSION) are also be ob-
served. To incorporate the standard IMRaD format
we mapped each subheading to the corresponding
IMRaD subpart using a system of tags. Details
regarding this process are given in Section 2.2.

All systems are based on the Transformer ar-
chitecture of Vaswani et al. (2017). We were
able to achieve appreciable gains both from back-
translation and document structure processing. The
results are discussed in Section 2.4.

2.1 Corpus and preprocessing

We trained our baseline systems on a collection
of in domain biomedical texts as well as out-of-
domain parallel corpus. Table 1 details the corpora
used in training.

2.1.1 Parallel corpora
We gathered parallel and monolingual corpora
available for English-French in the biomedical do-
main. The former included the biomedical texts
provided by the WMT’20 organizers: Edp, Med-
line abstracts and titles (Jimeno Yepes et al., 2017),
Scielo (Neves et al., 2016) and the Ufal Medical
corpus2 consisting of Cesta, Ecdc, Emea (OpenSub-
titles), PatTR Medical and Subtitles. In addition,
we used the Cochrane bilingual parallel corpus (Ive
et al., 2016)3, the Taus Corona Crisis corpus4 and
the Mlia Covid corpus.5 We finally experimented
with additional in-domain data selected using Infor-
mation Retrieval (IR) techniques from general do-
main corpora including News-Commentary, Books
and Wikipedia corpus obtained from the Open
Parallel Corpus (OPUS) (Lison and Tiedemann,
2016). These were selected using the data selection
scheme described in (Abdul-Rauf and Schwenk,
2009). Medline titles were used as queries to find
relevant sentences. We used the 2-best sentences
returned from the IR pipeline as additional corpus.

Our out-of-domain corpora include the paral-
lel data provided by the WMT14 campaign for
French-English: Gigafr-en, Common Crawl, Eu-
roparl, News Commentary and the UN corpora.

For development purposes, we used Medline test
sets of WMT’18 and 19, while Medline 20 was
used as internal test data.6

2https://ufal.mff.cuni.cz/ufal_
medical_corpus

3https://github.com/fyvo/
CochraneTranslations/

4https://md.taus.net/corona
5http://eval.covid19-mlia.eu/task3/
6These testsets were sentence-aligned with in-house

https://ufal.mff.cuni.cz/ufal_medical_corpus
https://ufal.mff.cuni.cz/ufal_medical_corpus
https://github.com/fyvo/CochraneTranslations/
https://github.com/fyvo/CochraneTranslations/
https://md.taus.net/corona
http://eval.covid19-mlia.eu/task3/


234

2.1.2 Monolingual sources
The back-translation of monolingual sources has of-
ten been effectively used to cater for parallel corpus
shortage in the Biomedical domain in (Stojanovski
et al., 2019; Peng et al., 2019). We also adopt this
approach here.

Supplementary French data from three monolin-
gual sources were collected from public archives:
abstracts of medical papers published by Elsevier
from the Lissa portal7 and from the national IS-
TEX archive8; a collection of research articles col-
lected from various sources9 henceforth referred
to as Med_Fr (Maniez, 2009). These documents
were automatically translated into English with an
NMT system trained on biomedical corpora, with
a BLEU score of 33.6 on Medline20 testset.

The English side of Medline German and Span-
ish corpora is used as supplementary English data
for back translation. Duplicate documents were
removed based on the document id. For these, the
internal structure of documents is often available
and has been tagged as for the parallel data. These
texts were then split into sentences10 and translated
into French using a NMT system trained on all
Biomedical corpora with a BLEU score of 36.4
on Medline20 testset. All back-translated data is
tagged using the proposal of Caswell et al. (2019).

Parallel and monolingual data are further pro-
cessed using SentencePiece (Kudo and Richardson,
2018) tokenisation and detokenisation scheme to
segment texts into subword units using a vocabu-
lary of 32K subwords. These units were learned on
all the in-domain corpora.

2.2 Sentence tagging: a three-level scheme

2.2.1 Tagging domains and corpora
As explained above, our training data is diverse,
comprising in-domain parallel, out-of-domain par-
allel, and in-domain monolingual that is automat-
ically back-translated. Some are made of lists of
isolated sentences, while others retain the docu-
ment information. Even within the in-domain data,
some texts precisely match the genre of the testset
(scientific abstracts) - this is the case for instance

tools and are shared at https://github.com/fyvo/
WMT-Biomed-Test.

7https://www.lissa.fr/dc/#env=lissa
8https://www.istex.fr/
9https://crtt.univ-lyon2.fr/

les-corpus-medicaux-du-crtt-613310.kjsp
10https://pypi.org/project/

sentence-splitter/

of Medline and to a lesser extent, Cochrane; while
others are more remote (eg. the Ufal collection, or
the Mlia corpus). In order to reflect this diversity,
we designed a three-level sentence tagging scheme
that is used for the experiments in Section 2.4.2.
These tags appear as prefix of each source sentence.

The first level of tags distinguishes between out-
of-domain data (<G>), and in-domain data (tagged
<M>). The second level of tag aims to distinguish
between data sources, hence the use of one dedi-
cated tag for each corpus, except for the monolin-
gual data, which is simply tagged with <BT>.

2.2.2 Tagging sections within documents
The third level of annotation is indented to enhance
the translation context with information regarding
the position of a sentence within the abstract. The
structure of scientific abstracts in the medical do-
main often obey the IMRAD structure, and the third
tag aims to include this structural information as an
additional document-level context. Document level
information is necessary to model long-range de-
pendencies between words, phrases, or sentences,
or document parts. For a translation system, the
ability to model the context may notably improve
certain translation decisions, e.g. a better or most
consistent lexical choice (Kuang et al., 2018) or
a better translation of anaphoric pronouns (Voita
et al., 2018; Bawden et al., 2019). A recent review
of these themes is in (Maruf et al., 2021).

For this purpose, we further pre-processed 6 cor-
pora containing scientific abstracts. These corpora
had different subheadings and structures as given
below, which were mapped to a restricted set of
section tags listed in Table 2:

1. Medline and Scielo: Abstracts and sub headings often
without title. We identified a total of 189 subheadings
including spelling variations. Examples include: Pre-
senting Concerns of the Patient, Sources of Information,
Novel finding, Study Selection etc.

2. Edp: Abstracts and sub headings mostly contain titles.
45 subheadings where found, such as: Case report, Ob-
servation, Subjects and Methods, Commentary, Peda-
gogical objectives etc.

3. Cochrane: only 10 different subheadings were found,
including: Abs selection criteria, abs search strategy,
abs data collection, summary title etc.

The identification and standardization of sub-
heading information was a tedious process, involv-
ing a lot of rule-based processed to take the vari-
ability of sub-headings into account. In order to
reconstruct fully parallel versions with subhead-
ings, we also had to reinsert explicit headings in

https://github.com/fyvo/WMT-Biomed-Test
https://github.com/fyvo/WMT-Biomed-Test
https://www.lissa.fr/dc/#env=lissa
https://www.istex.fr/
https://crtt.univ-lyon2.fr/les-corpus-medicaux-du-crtt-613310.kjsp
https://crtt.univ-lyon2.fr/les-corpus-medicaux-du-crtt-613310.kjsp
https://pypi.org/project/sentence-splitter/
https://pypi.org/project/sentence-splitter/
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Title <H1>
Introduction <INT>
Objectives <OBJ>
Material and Methods <MaM>
Results <RES>
Conclusion <CON>

Table 2: Standardized section heading tags

the source or the target files. Also note that this in-
formation was not available for all abstracts. After
preprocessing files for which the full subheading
information was available, we obtained the 6 fully-
tagged corpora (see statistics in Table 3). A similar
process was used for test sets (see Table 4).

Corpus Lines En words Fr words

Medline 34836 742891 920811
Edp 1682 34167 37508
Scielo (wmt16) 7088 163275 199829
Cochrane-Reference 123598 2741426 3308485
Cochrane-GooglePE 30866 685490 828436
Cochrane-PE 20693 468691 568262

Table 3: Document-aligned training corpora

Testset en-fr fr-en

medline20 735 580
medline18 321 347
medline19 493 469

Table 4: Number of test sentences after alignment

Finally, we also introduced a third tag in all other
documents as follows: sentences within an abstract
where tagged as <ABS>, while all remaining sen-
tences from other corpora where simply tagged as
“unspecified subheading” (<US>).

2.3 Translation framework

Our translation systems mostly used the basic
Transformer models, while a few contrastive sys-
tems used the large version (Vaswani et al., 2017).
They all rely on Facebook’s seq-2-seq library
(fairseq) (Ott et al., 2019) with parameters settings
borrowed from transformer_wmt_de_en.11.
The ReLU activation function was used in all en-
coder and decoder layers. We optimize with Adam

11https://fairseq.readthedocs.io/en/
latest/models.html

(Kingma and Ba, 2015), set up with a maximum
learning rate of 0.0005 and an inverse square root
decay schedule, as well as 4000 warmup updates.
We share the decoder input and output embedding
matrices. Models are trained with mixed preci-
sion and a batch size of 4096 tokens on 4 V100
GPUs for 300k updates. Systems were trained un-
til convergence based on the BLEU score on the
development sets. Evaluation was performed using
SacreBleu (Post, 2018). Scores are chosen based
on the best score on the development set (Med-
line 18, 19) and the corresponding scores for that
checkpoint are reported on Medline 20 test set.

For fine-tuned systems, the process starts with
models trained to convergence, based on BLEU
score on dev sets. Training then resumes using a se-
lected portion of the training corpus using the same
parameters and criterion as for the base systems.
In our results corresponding systems are post-fixed
with *-ft.

2.4 Results

We present our results for the two directions in two
tables, Table 5 and 6, differentiating the normal
versus the tag-based systems. Base systems are
given on the left, (⇒) identifies the derived (fine-
tuned) systems.

2.4.1 Regular MT systems
Results for the untagged systems are reported in
Table 5 and are denoted by X*, with E* and F*
representing the English to French and French to
English systems respectively.

We first built baseline systems. X0 denotes the
systems built using only the in-domain data pro-
vided by the organizers. X1 are our baseline sys-
tems built using all in-domain parallel data. We
see good improvement in both directions amount-
ing to 4.2 and 4.8 BLEU points, which is ob-
tained by adding around 1M sentences of addi-
tional Cochrane and Taus corpora to the already
available 3.4M sentences from WMT’20. This
hints at the relevance of the additional in-domain
parallel corpora used.

We used the X1 systems as strong in domain
baselines to study the effect of adding back-
translated in domain data. These appear as X2
and X3 in Table 5. Adding around 0.8M French to
English and around 0.2M English to French back
translated sentences did not help as much as we
were expecting. We saw similar results last year
and increased the amount of back translations this

https://fairseq.readthedocs.io/en/latest/models.html
https://fairseq.readthedocs.io/en/latest/models.html
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ID Train ID Sentences Medline 20 ID Sentences Medline 20

EN-FR FR-EN

X0 WMT biomed data E0 3.4M 31.6 F0 3.4M 28.8
X1 All biomed E1 4.5M 35.8 F0 4.5M 33.6

Back translations of monolingual data

X2 X1 + BT E2 5.3M 34.8 E2 4.7M 33.5
X3 X1 + BT-tag E3 5.3M 36.6 F3 4.7M 32.4
Out of domain fine-tuned with in domain

X4 outdomain⇒biomed E4 40.5M 32.3 F43 41M 35.8

Table 5: Results for systems using in-domain and out-of-domain corpora. Superscripts ∗n denote runs submitted

ID Train Sentences Medline 20
<SUBHEAD> <ABS> <US>

EN-FR

TE1 Out+In 41.7M 36.2 36.3 36.3
TE21 TE1⇒ftbiomedplusbt 47.2M 38.7 38.5 38.6
TE3 TE2⇒ftCocMed 48.0M 38.2 38.4 38.3

Transformer Large

TE4 Out+In 41.7M 36.1 36.2 36.3

TE52 TE4⇒ftbiomedplusbt 47.2M 38.4 38.5 38.2

FR-EN

TF1 Out+In 40.9M 32.1 32.0 32.1

Mixed baseline finetuned with in-domain

TF21 TF1⇒ftbiomedplusbt 46.4M 35.7 35.2 35.2

TF32 TF2⇒ftCocMed 48.8M 35.3 34.9 34.8

Table 6: Results for systems with sentences tagged with our 3 level tagging scheme. Test sets are decoded 3 times,
where the third tag is varied from the more specific (<SUBHEAD>) to the more generic (<US>). Superscripts ∗n

denote the runs submitted.

year. X3 denote systems built using the tagging
scheme proposed by Caswell et al. (2019), where
back translations are prefixed with the <BT> tag
on the source side.

Indicating that a training sentence is back-
translated allows the model to separate the help-
ful and harmful signal. This proved particularly
true for English into French where adding tag to
back translations improved the BLEU score by 0.8
points; but it was not helpful in the reverse direc-
tion where the amount of back translated data was
may be too small (0.2M lines). back-translations
as compared to the baseline corpora.

Finally, systems were built by initialising the

parameters from huge out-of-domain corpora and
later fine tuned on in-domain corpora (X4), where
in-domain sub words learned from all the Biomedi-
cal data are used to segment the out-of-domain data.
The initial systems were trained for 4 epochs on
general domain WMT14 EN-FR corpora. The FR-
EN system (F4) is the best system in this direction,
reaching a BLEU score of 35.8.

2.4.2 Tagged Systems

As our 3-level tagging scheme, described in Sec-
tion 2.2, is adding information about the domain
of each sentence, we specifically focused on larger
systems by using all the available in- and out-of-
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domain corpora.
Results are summarized in Table 6 with TE* rep-

resenting the Tagged English to French systems and
TF* representing the French to English systems.
TE1 is the baseline system for EN-FR built with all
the available in domain and out-domain data. TE4
is the corresponding baseline using a Large Trans-
former12. We then fine-tune these systems with all
the in-domain data including the back translations,
these are represented by TE2 and TE5 respectively.
This gives an appreciable gain of 2.5 and 2.3 BLEU
points for Transformer and Transformer large sys-
tems. As we saw no major difference in scores
for Transformer versus Transformer large, so we
continue the rest of experiments with the simple
Transformer architecture. Fine-tuning further with
just abstracts from Cochrane and Medline did not
yield any further improvement.

French to English results display similar trends.
The baseline (TF1) using all available (in domain +
out-of-domain) data tagged with our 3 level scheme
yielded a BLEU score of 32.1. Fine-tuning it fur-
ther with all in-domain data (TF2) gives an im-
provement of 3.6 BLEU points which does not
improve further when fine-tuning continues with
just Cochrane and Medline abstracts (TF3).

To measure whether the model learned docu-
ment domain and/or sentence origin information,
we tested by tagging the test set with three different
tags in the third position, using either the exact sub-
heading, or abstract or UnSpecified for sentences
for which the sub-section is unknown. Table 6 re-
ports the scores for the three cases. Though the
difference in scores for the three cases is minute,
in-domain systems{TE2, TE3, TE5} and {TF2,
TF3} achieve their best results when the test set is
tagged with the subheading or the abstract tag, typ-
ical feature of the biomedical corpora. Conversely,
for out-of-domain systems {TE1, TE4, TF1}, the
best scores are always for the test set tagged with
<US>. This strongly hints that the system is using
the extra-information provided by the tag. These
observations need to be confirmed using other met-
rics, as BLEU may not properly reflect these differ-
ences.

For English to French direction we got bet-
ter scores with the tagged systems, with the
best system (TE2 = 38.7) achieving 2.1 BLEU
points more than the best un-tagged system (E3 =

12hidden size of 1024 and a feed forward size of 4096. Rest
of the parameters same as for other systems.

EN-FR

E2 base+bt 34.8
E3 base+bt-tag 36.6

<SUBHEAD> <ABS> <US>

TE Indomain+bt 37.3 37.0 37.0

FR-EN
F2 base+bt 33.5
F3 base+bt-tag 32.4

<SUBHEAD> <ABS> <US>

TF Indomain+bt 34.4 34.4 34.4

Table 7: Comparison of our 3 level tagged systems
with the corresponding untagged systems. Systems
{E2,F2} are built by adding back-translated data to
the baseline. In systems {E3,E3}, the added back-
translated data start with <BT> tag. Systems {TE,
TF} use our 3-level tagging scheme for all sentences.

36.6). This was however not the case for French-
English where both tagged and un-tagged systems
had more or less similar scores.

Systems in Tables 5 and 6 have different base-
lines, thus to establish a fair comparison we report
numbers for comparable systems in Table 7. Sys-
tems {E2,E3,F2,E3} are copied from Table 5,
whereas {TE and TF} are the corresponding sys-
tems using our tagging scheme on the sole biomed-
ical data. We see here a clear gain for French-
English when we use a 3-level tagging scheme (TF)
compared to just adding the <BT> tag (F3); results
for the reverse direction are more even and having
one or three tags does not make a difference.

2.5 Conclusion

In this section, we have presented our work for the
biomedical task. We notably have tried to incorpo-
rate document origin and structure information and
improve strong baseline systems that were using
a wealth of in-domain and out-of-domain data. .
Overall, our systems for this year are significantly
better than last year’s, even though the benefits
of adding document structures as tags need to be
confirmed by more experiments and analyses.

3 News translation task: De↔ Fr

In the 2021 News translation task, we focused on
the German-French language pair in which the par-
ticipants are asked to build MT systems for News
in the financial domain. In this section, we discuss
details of our approach and the rationale behind it.
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3.1 Unsupervised adaptation

As the training and development data do not con-
tain domain information, the supervised domain
adaptation paradigm is not suitable here. However,
non-parametric adaptation (Bapna and Firat, 2019),
example-based guided machine translation (Zhang
et al., 2018), unsupervised domain adaptation (Fara-
jian et al., 2017) or priming NMT (Xu et al., 2020;
Pham et al., 2020) have showed promising results
for this problem. These approaches retrieve trans-
lation examples that are similar to the input source
sentence, and use them to guide the inference and
to reproduce existing translations or to locally adapt
the pre-trained NMT system to the input sentence.

Even though all of the approaches mentioned
above have merits of their own, we decided to fo-
cus on computationally cheaper methods such as
(Bulte and Tezcan, 2019; Xu et al., 2020) where the
retrieved instances provide an extra conditioning
context for the decoder. Pham et al. (2020) further
improved these techniques by proposing to simul-
taneously prime the source and the target side of
the retrieved examples (see Section 3.4.1) and has
been our main source of inspiration.

3.2 Data and preprocessing

We use all available parallel data for De ↔ Fr,
with the exception of the ParaCrawl data, for train-
ing. We also use monolingual data to improve
translation quality. For both languages, we choose
Newscrawl 2020. We additionally use Newscrawl
2018 and 2019 French data at inference time to
explore the ability of our priming model to make
use of extra data. Details are in Section 3.4.2. We
use newstest2019 as development set and test our
models on newstest2020.

We filter out sentence pairs with invalid language
tag using fasttext language id model13 (Bo-
janowski et al., 2017). We use Moses tools to nor-
malize punctuation, to remove non-printing charac-
ters and to tokenize into words. The final parallel
data contains 5.6M sentences.14 We use a shared
source-target vocabulary built with 40K Byte Pair
Encoding (BPE) units using the subword-nmt
implementation (Sennrich et al., 2016b).15

13https://dl.fbaipublicfiles.com/
fasttext/supervised-models/lid.176.bin

14https://github.com/moses-smt/
mosesdecoder

15https://github.com/rsennrich/
subword-nmt

3.3 Baseline systems

We build our Transformer-based (Vaswani et al.,
2017) systems using fairseq 16 (Ott et al., 2019).
Our baseline system is a large Transformer with
a hidden size of 1024 and a feedforward size of
4096. We optimize with Adam (Kingma and Ba,
2015), set up with a maximum learning rate of
0.0007 and an inverse square root decay schedule,
as well as 4000 warmup updates. We tie the en-
coder and decoder input embedding matrices with
the decoder output embedding matrix and we apply
layer normalization before each block. Models are
trained with mixed precision and a batch size of
4096 tokens on 4 V100 GPUs for 300k updates.

3.4 Submitted systems

3.4.1 Boosting NMT by similar translations

Our approach comprises 2 steps: similar translation
retrieval and inference where the priming example
is processed in forced-decoding mode.

The retrieval of relevant examples for a given
source sentence is based on their distance in some
high-dimensional numerical representation space.
These representations are computed using the en-
coder of the baseline system (see Section3.3) so as
to keep our systems in the "constrained" track, as
the use of large pre-trained models such as BERT
(Devlin et al., 2019), XLM (Conneau and Lample,
2019), etc., was only allowed in unconstrained sub-
missions. More precisely, for each sentence, we av-
erage the contextualized embeddings output at the
last layer of the encoder. From the training dataset,
we create a datastore of pairs (K,V ) in which the
key K is the sentence embedding of some source
sentence f and the value is the sentence pair (f , e)
whose source sentence is f . For each query, we
retrieve k keys (k = 10 in all experiments).

The similarity between two sentences is the co-
sine similarity and the retrieval of the nearest neigh-
bor(s) is performed using FAISS (Johnson et al.,
2017). In order to search through a large datas-
tore, we divide it into shards containing at most
500K data points; we conduct the k nearest neigh-
bor search on each shard, gather all the retrieved
keys from all shards into a list and reduce it to the
k nearest keys. Given an input sentence and the list
of its k nearest neighbours, we append m (m ≤ k)
retrieved source sentences to the input sentence and
initialize the target side by the concatenation of the

16https://github.com/pytorch/fairseq

https://dl.fbaipublicfiles.com/fasttext/supervised-models/lid.176.bin
https://dl.fbaipublicfiles.com/fasttext/supervised-models/lid.176.bin
https://github.com/moses-smt/mosesdecoder
https://github.com/moses-smt/mosesdecoder
https://github.com/rsennrich/subword-nmt
https://github.com/rsennrich/subword-nmt
https://github.com/pytorch/fairseq
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m corresponding target sentences. We use a special
token to separate sentences.

During training, we train the NMT model with
two types of examples (with and without retrieval):
this means that each training sample will occur
twice, once with and once without priming. The
former examples have the following format:

f1 ∗ · · · ∗ fm||f

e1 ∗ · · · ∗ em||e

while the latter is presented as the original data.
During inference, we use the same format as

for the source-side, while we initialize the decoder
with the prefix e1 ∗ · · · ∗ em||. We therefore call
this initialization "force-decoding". The special to-
kens, which serve as joiners between the retrieved
sentences and the source/target sentence, are care-
fully chosen so that they never occur in the real
text to avoid ambiguity. As discussed in Pham et al.
(2020), it is possible to concatenate several similar
sentences i.e. use m > 1; we however only report
results with m = 1, since our preliminary experi-
ments did not show superior results with m > 1.

3.4.2 Monolingual retrieval
Pham et al. (2020) suggested that monolingual texts
in the target language can also be helpful to in-
form the inference. To make use of monolingual
data, we create pseudo translation pairs with back-
translation to generate the missing source language
side. For this step, we leverage the baseline NMT
system in Section 3.3 for one direction to back-
translate the monolingual target text in the inverse
direction. We use Newscrawl 2020 as monolin-
gual resource for both directions. The monolingual
French data contains approximately 10M sentences
while the German data is much larger. We ran-
domly extract 10M sentences from the German
monolingual data as the pseudo corpus. The back-
translated corpora are added to the real parallel
corpora to create a larger datastore for retrieval.

3.5 Evaluation
3.5.1 Priming and Back-translation
We mainly evaluate our method on the De→Fr di-
rection. Results on both Newstest2019 and 2020
are in Table 8. Our priming model is able to im-
prove for 0.4 BLEU on newstest2019. However,
the same improvement is not observed for new-
stest2020. As indicated in Pham et al. (2020),
monolingual back-translated data could be directly

applied during inference without any additional
training. We thus search similar sentences on both
original and synthetic data for the test sets. As
shown in Table 8 (+ bt inference), searching on
synthetic data directly improves our results by 0.6
BLEU point on newstest2019.

Model newstest2019 newstest2020
baseline 35.7 32.8

+ bt 37.5 33.7
+ tag 37.5 34.3

priming 34.6 33.2
+ bt inference 35.2 33.2

priming + bt 37.4 33.9
+ tag 36.9 34.1
+ min sim 0.85 37.5 34.3

Table 8: BLEU scores of models for De→Fr direction.
Our best submitted system obtained a BLEU score of
28.1 on newstest2021.

Even though priming model could benefit from
back-translated data at inference time, training with
synthetic data has proven to be effective in many
previous works (Sennrich et al., 2016a; Edunov
et al., 2018; Ng et al., 2019). Therefore, we also ex-
periment by adding back-translated data to the orig-
inal data and retrain a translation model. Results
(+ bt) demonstrate that training with synthetic data
clearly improves the performance on both test sets.
Caswell et al. (2019) reports that using explicit tags
to distinguish original from back-translated data
provides further gains; however in our experiments,
tagging BT data was not very helpful.

Our model using priming with synthetic data
was not able to surpass the baseline model trained
with additional back-translated data. One possible
reason is that similar sentences retrieved with low
similarity scores may be too noisy, and therefore
decrease the overall performance. Filtering out
noisy similar sentences (with a threshold of 0.85)17

help to further improve the performance and makes
it our best system (+ min sim 0.85). This setting
was used for our primary submission for both di-
rections.

We directly apply the best settings found for
De→Fr to the reverse direction (Fr→De) and report
the corresponding results in Table 9.

17Threstholding the minimum similarity score is the result
of a trade-off: using a high threshold selects good sentences
for priming, at the risk of leaving many examples without
any priming data, while a low threshold retrieves more ex-
amples, many of which are of poor quality. Our preliminary
experiments showed that that 0.85 was a reasonable value.
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Model newstest2019 newstest2020
baseline 27.7 27.2

+ bt 32.4 32.9
+ tag 30.9 31.0

priming + bt 29.8 29.3
+ tag 29.5 29.6
+ min sim 0.85 30.4 30.1

Table 9: BLEU scores of models for Fr→De. Our best
submitted system obtained a BLEU score of 37.2 on
newstest2021.

3.5.2 Priming and domain adaptation

In this section, we try to assess the relationship
between domain adaptation (DA) and priming, and
question our initial assumption that priming per-
forms some kind of unsupervised adaptation. Our
test set for this part contains 1000 lines extracted
from the European Central Bank (ECB) corpus,
also available from OPUS website.

As an alternative to priming, we first consider a
simple unsupervised domain adaptation technique,
where we retrieve k = 10 most similar sentences
for each test sample, yielding a corpus of 10×k sen-
tences that we use to fine-tune for two epochs the
baseline systems. Again, filtering based on a simi-
larity scores helps to accumulate a smaller number
of sentences that are closer to the test domain.

We then try to combine priming and fine-tuning
in the following manner: for each test sentence, we
use the k nearest examples (f1, e1) . . . (fk, ek) to
derive k domain-adaptation examples with priming
as follows: the first primes f2 with f1, the second
f3 with f2, and so on, until finally f1 is primed with
fk (the target part is built accordingly). This corpus
is used for fine-tuning, and decoding proceeds as
before (with f1 as prime).

These approaches (priming, unsupervised DA,
and priming+DA) are compared in Table 10. We
first see that using back-translated data is detrimen-
tal to the BLEU score of the baseline system, an
effect that might be due to the difference between
News texts and ECB domain. We also see that
unsupervised adaptation with highly similar sen-
tences yields a small gain. Priming alone achieves
the same result as the baseline, but can also benefit
somewhat from unsupervised DA. Our best results
are obtained when we mix the two strategies, only
keeping highly similar sentences.

Model ECB
baseline 26.7
baseline + bt + tag 25.9

+ FT min sim 0.7 26.3
+ FT min sim 0.8 26.1

priming + bt + tag 25.9
+ FT 25.6
+ FT min sim 0.7 26.3
+ FT min sim 0.8 26.0

priming + bt + tag + min sim 0.7 26.3
+ FT min sim 0.7 26.5

priming + bt + tag + min sim 0.8 26.3
+ FT min sim 0.8 26.3

Table 10: BLEU scores for De→Fr on ECB.

3.6 Conclusion
In this section, we have reported our attempt to per-
form domain adaptation through priming, a tech-
nique which uses sentences that are similar to the
test instances to provide additional context in train-
ing and decoding. In our experiments with the
translation of News between French and German,
we had little success with this technique, even when
using massive amounts of back-translated data to
search for relevant primes. This suggests that prim-
ing is not so useful for “open” domains such as
News (Pham et al., 2020), and should better be used
for standardized types of texts that occur in more
specialized domains. We also tried to compare un-
supervised DA and priming, showing that, in our
context, the former was yielding better results that
than the latter and also proposed a promising way
to combine these two complementary techniques.

4 Conclusion and outlook

In this paper, we have described the systems pre-
pared for this year’s participation to WMT shared
tasks. For the biomedical track, most of our ef-
forts have been invested in the development of high
resource systems, trying to take the structure of
medical abstracts into account. In the News task,
we have explored ways to perform unsupervised
domain adaptation using retrieval based techniques
and back-translated data.
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