Tencent Translation System for the WMT21 News Translation Task

Longyue Wang* Mu Li Fangxu Liu Shuming Shi Zhaopeng Tu
Xing Wang Shuangzhi Wu Jiali Zeng Wen Zhang
Tencent Al Lab & Cloud Xiaowei
Abstract We hypothesized that different models have their

This paper describes Tencent Translation sys-
tems for the WMT21 shared task. We par-
ticipate in the news translation task on three
language pairs: Chinese=English, English=
Chinese and German=-English. Our systems
are built on various Transformer models with
novel techniques adapted from our recent re-
search work. First, we combine different
data augmentation methods including back-
translation, forward-translation and right-to-
left training to enlarge the training data. We
also apply language coverage bias, data reju-
venation and uncertainty-based sampling ap-
proaches to select content-relevant and high-
quality data from large parallel and mono-
lingual corpora. Expect for in-domain fine-
tuning, we also propose a fine-grained “one
model one domain” approach to model char-
acteristics of different news genres at fine-
tuning and decoding stages. Besides, we
use greed-based ensemble algorithm and trans-
ductive ensemble method to further boost
our systems. Based on our success in the
last WMT, we continuously employed ad-
vanced techniques such as large batch train-
ing, data selection and data filtering. Fi-
nally, our constrained Chinese=-English sys-
tem achieves 33.4 case-sensitive BLEU score,
which is the highest among all submissions.
The German=-English system is ranked at sec-
ond place accordingly.

1 Introduction

In this year’s news translation task, our trans-
lation team at Tencent Al Lab & Cloud Xi-
aowei participated in three shared tasks, in-
cluding Chinese=-English, English=-Chinese and
German=-English. We used the same data strate-
gies, model architectures and corresponding tech-
niques for all tasks.

* Corresponding author: vinnylywang @tencent.com. The
other authors are in alphabetical order of last name.
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own strengths and characteristics, and they can
complement each other. Thus, we built various ad-
vanced NMT models which mainly differ in train-
ing data and model architectures. These models (i.e.
DEEP, LARGE and LARGE-FFN) are empirically
designed based on Transformer-Deep which has
proven more effective than the Transformer-Big
models (Li et al., 2019). In addition to the orig-
inal multi-head self-attention, we also proposed
a mixed attention strategy by combining relative
position with the original one, which extends the
self-attention to efficiently consider representations
of the relative positions. We use a variation of rel-
ative position, the random attention (RAN) (Zeng
et al., 2021). As a results, we combined these mod-
els at transductive fine-tuning stage.

In terms of data augmentation, we adapt back-
translation (BT) (Sennrich et al., 2016a), forward-
translation (FT) (Zhang and Zong, 2016) and right-
to-left (R2L) (Zhang et al., 2019) techniques to
generate large-scale synthetic training data. Dif-
ferent from the standard back-translation, we add
noise to the synthetic source sentence in order to
take advantage of large-scale monolingual text. In
addition, we used tagged BT mechanism (i.e. add
a special token to the synthetic source sentence) to
help the model better distinguish the originality of
data. All the parallel data and a large amount of
monolingual data are used in corresponding data
augmentation methods, and finally we combine
them together to build strong baseline models.

To enhance the domain-specific knowledge, we
introduced approaches at both data and model lev-
els. First, we employed a hybrid data selection
method (Wang et al.) to produce different fine-
tuning datasets. More specifically, we apply lan-
guage coverage bias (Wang et al., 2021a), data
rejuvenation (Jiao et al., 2020) and uncertainty-
based sampling (Jiao et al., 2021) to select content-
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relevant and high-quality data from parallel and
monolingual corpora. The news texts contain a
number of sub-genres such as COVID-19 and gov-
ernment report. Thus, we fine-tuned a domain-
specific model translate each sub-genre of text in
the test set (i.e. “one domain one model”).

We take advantage of the combination meth-
ods to further improve the translation quality. The
“greedy search ensemble algorithm” (Li et al., 2019)
is used to select the best combinations from single
models. Furthermore, we propose an multi-model
& multi-iteration transductive ensemble (m>TE)
method based on the translation results of the en-
semble models. First, we divided models into two
parts. Second, each part produced syntactic parallel
testsets which is used to fine-tune another part of
models. We repeated this procedure for NV times.

This paper is structured as follows: Section 2 de-
scribes our advanced model architectures. We then
present the data statistics and processing methods
in Section 3. The methods and ablation study are
detailed in Section 4 followed by final experimen-
tal results in Section 5. Finally, we conclude our
work in Section 6.

2 Model Architecture

In this section, we mainly introduced three model
architectures, which are empirically adapted from
Transformer (Vaswani et al., 2017).

2.1 General Configurations

All models are implemented on top of the open-
source toolkit Fairseq (Ott et al., 2019). Each single
model is carried out on 8~16 NVIDIA V100 GPUs
each of which have 32 GB memory. We use the
Adam optimizer with 81 = 0.9 and 85 = 0.98. The
gradient accumulation is used due to the high GPU
memory consumption. We also employed large
batching (Ott et al., 2018), which has significantly
outperformed models with regular batch training.
To speed up the training process, we conduct train-
ing with half precision floating point (FP16). We
set max learning rate to 0.0007 and warmup-steps
to 16000. All the dropout probabilities are set to
0.3. The detailed hyper-parameters of each model
are summarized in Table 1.

2.2 Deep Model

Deep transformer has shown more effective perfor-
mance than the TRANSFORMER-BIG models (Dou
et al., 2018; Wang et al., 2019). We mainly modi-

Module DEEP LARGE LARGE-FFN
Encoder Layer 40 24 20
Attention Heads 8 16 16
Embedding Size 512 1024 1024
FFN Size 2048 4096 8192
Model Size 232M  514M 652M

Table 1: Hyper-parameters and model sizes of different
models used in our systems.

fied the TRANSFORMER-BASE model by using a
40-layer encoder. To stabilize the training of deep
model, we use the Pre-Norm strategy (Li et al.,
2019), which is applied to the input of every sub-
layer. The layer normalization was applied to the
input of every sub-layer which the computation se-
quence could be expressed as: normalize — Trans-
form — dropout — residual-add. The batch size
is 5120 with 16 GPUs and “update-freq” is 1. We
totally train models with 400K updates.

2.3 Large Model

The large model is empirically designed based on
TRANSFORMER-BIG models (Vaswani et al., 2017,
Yang et al., 2020) with 24 encoder layers. More
specifically, the batch size is 4096 with 8 GPUs
and the “update-freq” is 4. We totally train models
with 400K updates.

2.4 Large-FFN Model

We train Larger Transformers, the inner FFN di-
mension of which is twice as big as that of large
Transformer. Specifically, in this setting, the FFN
dimension is set to 8192. The number of encoder
and decoder layers are 20 and 6 respectively. The
number of head is 16. In addition to the original
multi-head self-attention, we use a mixed atten-
tion strategy, where the random attention (Zeng
et al., 2021) is combined with the original atten-
tion. In this way, the self-attention mechanism can
efficiently consider representations of the relative
positions, or distances between sequence elements.
In training Large-FFN models, we set the batch
size to 8192 toknes per GPU and the “update-freq”
parameter is set to 8. The models are trained on 8
GPUs for about 3 days.

3 Data and Processing

3.1 Overview

Table 2 lists statistics of parallel and monolingual
data we used in training our systems. The details
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Parallel Data Monolingual Data

D. L.
# Sent. # Word # Sent. # Word

 En 1282M 6413M  13.1B
Sozn ™ lieom 184m a66.0M
- En 6138M  18B  355B
S zn ™M ss0am 1B 284B
En 1B 6413M  13.1B
Epe M B 3sism 708
< Bn Ly T8OM18BT 355B
S De 744M 417.0M 158

Table 2: Data statistics of parallel and monolingual
data. We combine sub-corpora according to in-domain
(In.) and out-of-domain (Out.).

are as follows.

Chinese < English The bilingual data include
all the available corpora provided by WMT2021:
CCMT Corpus, News Commentary v16, ParaCrawl
v7.1, Wiki Titles v3, UN Parallel Corpus V1.0 and
WikiMatrix (except for Back-translated news). The
monolingual English data consist of News crawl,
News discussions, Common Crawl. The Chinese
data consist of News crawl, News Commentary,
Common Crawl and Extended Common Crawl.

English = German The bilingual data includes
News Commentary v16, Europarl v10, ParaCrawl
v7.1, Common Crawl, Wiki Titles v3, Tilde Rapid
and WikiMatrix. For monolingual German data, we
used News Crawl, News Commentary, Common
Crawl and Extended Common Crawl. The mono-
lingual English data are same as Chinese<>English.

3.2 Pre-Processing

To process raw data, we applied a series of open-
source/in-house scripts (Wang et al., 2014; Lu et al.,
2014), including non-character filter, punctuation
normalization, and tokenization/segmentation. The
English and German languages are tokenized by
Moses toolkit,! while the Chinese sentences are
segmented by Jieba.” Furthermore, we generated
subwords via BPE (Sennrich et al., 2016b) with
35K merge operations. The BPE models are trained
on all the data in corresponding parallel and mono-
lingual corpora instead of only parallel data. The

'"https://github.com/moses—-smt/
mosesdecoder/tree/master/scripts/
tokenizer/tokenizer.perl.

https://github.com/fxsjy/jieba.
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vocabulary sizes of Chinese<English are 59100
and 48772, respectively. The vocabulary sizes of
English=-German are 41812 and 40948.

3.3 Filtering

To improve the quality of data, we filtered noisy
sentences (pairs) according to their characteristics
in terms of language identification, duplication,
length, invalid string and traditional-simplified Chi-
nese conversation. First, we filtered sentences
whose language identification is invalid especially
for English=-German. Second, we removed similar
sentences by comparing MDS5 values of skelectons
(i.e. removing stop words from sentences). About
length, we filter out the sentences with length
longer than 150 words. For more noisy corpora
(e.g. ParaCrawl), we added hard filtering rules on
special symbol, digital number, word length, punc-
tuation number, HTML tags. Regarding bingling
data, we further considered source-target ratio. For
instance, the word ratio between the source and the
target must not exceed 1:1.3 or 1.3:1. According
to our observations, our method can significantly
reduce noise issues including misalignment, trans-
lation error, illegal characters, over-translation and
under-translation.

After filtering noisy training data, we used sev-
eral data manipulation approaches to further im-
prove the quality of the training data. We first
followed Wang et al. (2021a) to identify the origi-
nal languages of the bilingual sentence pairs, and
explicitly distinguished between the source- and
target-original training data using the bias-tagging
strategy. We also identified the inactive training
examples which contribute less to the model perfor-
mance, rejuvenated them with self-training (Jiao
et al., 2020). For the data augmentation with back-
translation and forward-translation, we selected the
most informative monolingual sentences by com-
puting the uncertainty of monolingual sentences
using the bilingual dictionary extracted from the
parallel data (Jiao et al., 2021).

3.4 Evaluation

We regarded the WMT?2019 test set as the valida-
tion set, and WMT2020 test set as the test set for
all experiments. We ranked checkpoints accord-
ing to either loss or BLEU on validation set. We
used sacreBLEU score® as our evaluation metrics
which is officially recommended. We also con-

Shttps://github.com/mjpost/sacrebleu.
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WMT20 Data WMT21 Data
# Method
Data WMTI9 WMT20  Data WMT19 WMT20

1 TRANSFORMER-DEEP 12.4M 30.1 30.2 31.5M 32.3 32.3
2 + Forward-Translation 22.8M 33.1 31.8 49.9M 34.5 33.2
3 + Back-Translation 32.4M 29.6 28.4 61.5M 324 32.5
4 + Right-to-Left Training 24.8M 332 31.6 81.4M 344 33.1
5 +2+4 45.6M 33.9 32.2 99.8M 353 34.0
6 +2+3+4 58.0M 33.6 32.3 129.8M 35.5 34.3

Table 3: Effects of data augmentation methods on Chinese=-English translation task. We used generally the same
amount of monolingual data with the bilingual corpus. We used the DEEP model trained on the original bilingual
data to construct the synthetic data, which is used together with the bilingual data to train the NMT models.

ducted post-processing such as detokenizer.perl on
system output before sacreBLEU.

4 Method and Ablation Study

In this section, we conducted a comprehensive ab-
lation study of the techniques used in this competi-
tion. We reported results on the Chinese=-English
task using the constrained data.

4.1 Data Augmentation

In this evaluation, we used three commonly-
used data augmentation methods, namely back-
translation (BT), forward-translation (FT) and
right-to-left training (R2L), to exploit the useful
monolingual data. All the synthetic parallel data is
used together with the original parallel data to train
NMT models.

Back-Translation This method first trains an in-
termediate target-to-source NMT system, which
is used to translate monolingual target sentences
into source language. Then the synthetic parallel
corpus is used to train models together the bilin-
gual data. In this work, we apply the noise back-
translations method as introduced in Lample et al.
(2018). When translating monolingual data we use
an ensemble of two models to get better source
translations. We follow Edunov et al. (2018) to add
noise to the synthetic source data. Furthermore,
we use a tag at the head of each synthetic source
sentence as Caswell et al. (2019) does. To filter the
pseudo corpus, we translate the synthetic source
into target and calculate a Round-Trip BLEU score,
the synthetic pairs are dropped if the BLEU score
is lower than 30.

Forward-Translation This method is similar to
BT but performs in a reverse manner. Recent stud-

ies showed that back-translation harms the trans-
lation performance, while forward-translation im-
proves the performance (Edunov et al., 2020; Marie
et al., 2020). Our preliminary experiments recon-
firm their findings. Accordingly, we use forward-
translation to construct the synthetic parallel data
by translating the monolingual source sentences by
the source-to-target NMT model, which is trained
on the original bilingual data.

Right-to-Left Training The approach is pro-
posed to address the error propagation problem in
autoregressive generation task (Zhang et al., 2019).
The main idea is to improve the agreement between
translations generated by Right-to-Left (R2L) mod-
els and Left-to-Right (L2R) models. Following
this work, we translate the source-side sentences in
both parallel and monolingual corpora with both
a R2L model and a L2R model, and use the trans-
lated pseudo corpus to improve the L2R model. For
the right-to-left training, we trained another DEEP
model on the bilingual data, whose target side is
reversed. We drop the pseudo parallel data if the
BLEU score lower than 15.

Experimental Results As shown in Table 3,
we systematically investigated effects of 1)
WMT20/WMT?21 training data and 2) individ-
ual/combined data augmentation methods on
Chinese=English translation task. For a com-
parison between the different training corpora of
WMT20 and WMT21, we also reported results
on the WMT?20 training data (“WMT20 Data”)
used in last year (Wu et al., 2020b), and it con-
sists of 12.4M sentence pairs after filtering. As
seen, WMT21 extended around 19M sentence
pairs, which improves the baseline model by +2.1
BLEU points. About data augmentation methods,
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Source Description # Sent.
17-, 18-, 19-Dev/Test 7,466
Source-Original 3,963

WMT Data Selection 1,000
Data Augmentation 10,000
08-, 09-, 11-Test 19,658

CWMT Source-Original 8,036

Table 4: Statistics of data used for fine-tuning. “Source-
Original” (SO) and “Data Selection” (DS) means
respectively selecting source-original and domain-
relevant examples from the whole WMT test sets.
“Data Augmentation” indicates selecting data from the
whole training corpus as extended data.

we selected domain-relevant and high-quality sen-
tences from all available monolingual data as listed
in Table 2. To construct the new training data (i.e.
combining authentic and synthetic data), we se-
lected the same amount of monolingual data with
the bilingual corpus. As seen, individually using
FT and R2L can significantly improve the base-
line model by around +1 BLEU point. About BT,
we fount that it failed to outperform baseline in
“WMT?20 Data” while performs slightly better than
baseline in “WMT21 Data”. Finally, we trained
the NMT models on the WMT21 training data aug-
mented with the synthetic data generated by dif-
ferent data augmentation methods (up to 99.8M
sentence pairs in total). We can further improve the
performance by combining them together, demon-
strating complementarity of different methods.

4.2 Fine-Tuning

We use in-domain finetune to further improve the
model performance, which has proven effective on
the WMT19~20 news translation tasks (Sun et al.,
2019; Meng et al., 2020; Li et al., 2020; Wu et al.,
2020b). We construct different types of finetune
data with the following approaches. Table 4 lists
the statistics of data used for fine-tuning.

Previous Test Sets We follow the common prac-
tices to use WMT test sets in previous years as
the finetune data. Specifically, we use WMT2017
development set, WMT2017 test set, WMT2018
and WMT 19 test set.* Previous studies have shown
that current NMT models suffer from the language
coverage bias problem, which indicates the content-

“In our final submission, we include WMT2019 and
WMT?2020 test sets in the fine-tune data.

Finetune W19 W20
None 353 34.0
WMT 443 355
+ CWMT 423 349
WMT (SO) 434 35.7
+ CWMT (SO) 433 35.1
+ DS 449 354
+ DA 425 358
+ ODOM n/a  36.1

Table 5: Finetune results on the corresponding datasets.

dependent differences between sentence pairs orig-
inating from the source and target languages, be-
cause the target-original data® can not improve
translation performance (Wang et al., 2021a). Ac-
cordingly, we select the source-original examples
(SO) from the test sets as the finetune data. Besides
the WMT test sets, we also use the test sets from
the CWMT competitions, which are available in
the released data of WMT21 competition. In the
CWMT testsets, each source sentence has four ref-
erences, therefore we construct four sentence pair
for each instance in the CWMT test sets.

In-Domain Training Data We employed data
selection and data augmentation methods to se-
lect in-domain data from WMT/CWMT test sets
and training corpus, respectively. More specifi-
cally, we employed BM25 algorithm to select rel-
evant sentence pairs by regarding source-side of
WMT?20 test set as queries. As shown in Table 4,
the “Data Selection” is a subset of WMT test sets.
On the other hand, we extend the finetuning set
by selecting in-domain data from the tranining cor-
pus. We further use the RT and R2L approaches
in Section 4.1 to augment the finetune data with
the TRANSFORMER-DEEP model. Since the data
augmentation approaches only require source-side
sentences, we also construct the synthetic data for
the WMT19 and WMT?20 test sets.® We finetune
the NMT model on the mixture of the additional
synthetic corpus and the selected previous test sets.

One Domain One Model Li et al. (2020) argued
that low-frequency words contain more domain in-
formation than high-frequency words, since low-

>Target-original data are sentence pairs that are translated
from the target language into the source language.
®In the final submission, we augment the WMT21 test set.
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frequency words are mostly domain-specific nouns,
etc., which may indicate the topic directly. There-
fore, they adapt the TF-IDF algorithm to search
and filter on the whole training set and then use
them to train domain-specific models. We automat-
ically to assigned domain labels to each source-side
document in the test set. First, we used K-means
clustering to obtain keywords of each document.
Then, we proposed a rule-based method to clas-
sify each document in three categories: COVID-19,
government report and other. In this experiment,
we only focused on two specific domains and thus
we trained two domain-specific models to translate
COVID-19 and government report documents, re-
spectively. The other documents are still dealt with
a general-domain model.

Experimental Results As shown in Table 5, we
investigated effects of different fine-tuning meth-
ods on Chinese=-English translation task. As
seen, source-original data is more effective than
combining non-source-original one into finetun-
ing dataset (35.5 vs. 35.7 BLEU). However, the
CMWT dataset instead decrease the BLEU scores
(-0.6 BLEU). The data reduction (“+DS”) and ex-
pansion (“+DA”) methods can not further improve
the performance of baseline model (-0.3 and + 0.1
BLEU). Encouragingly, the “One Domain One
Model” method can significantly improve the base-
line model by +0.4 BLEU point.

4.3 Model Ensemble

Model ensemble is a widely used technique in pre-
vious WMT shared tasks, which can boost the per-
formance by combining the predictions of several
models at each decoding step (Li et al., 2019; Sun
et al., 2019; Wang et al., 2018). In our work, we
use two kinds of ensemble methods and finally the
two are combined for further improvements.

Checkpoint Average For one model (same ar-
chitecture and training data), we stored checkpoints
according to their BLEU scores (instead of PPL or
training time) on validation set. Then we combined
top-L checkpoints (generate a final checkpoint) by
averaging their weights to avoid stochasticity. To
combine different models, we further ensembled
the averaged checkpoint of each model. In our em-
pirical experiments (Wang et al., 2020a), we find
that this hybrid combination method outperforms
solely combining checkpoints or models in terms
of robustness and effectiveness.

221

Algorithm 1: Multi-Model & Multi-
Iteration Transductive Ensemble
Input: Single Model M,,,
In-domain Seed D={D;, D;},
Ensemble N models E.
Output: New Model MT;
1t:=0
while not convergence do
2 Translate D, with Ey and get DtE N
3 Train M,, on D U D®~ and get MT/L,
then M,, = M;l
4 t:=t+1

5 end

Greedy Based Ensemble This method is pro-
posed by Li et al. (2019), which adopts an easy
operable greedy-base strategy to search for a better
single model combinations on the development set.
For more detail, please refer to the original paper.
We also train single models with different hyper
parameters to ensure the diversity. We refer to this
method as Ensemble in the following.

Multi-Model & Multi-Iteration Transductive
Ensemble Transductive ensemble (TE) is pro-
posed by Wang et al. (2020b). The key idea is
that source input sentences from the validation
and test sets (in-domain seed) are firstly translated
to the target language space with multiple differ-
ent well-trained NMT models, which results in a
pre-translated synthetic dataset. Then individual
models are finetuned on the generated synthetic
dataset. We propose an variation of TE, namely
Multi-Model & Multi-Iteration TE (m?TE) which
is shown in Algorithm 1. The main difference from
Iterative Transductive Ensemble (Wu et al., 2020b)
is that E'y can be different groups of ensembled
models (Deep, Large and Large-FFN models).

5 Final Results

In this section, we combined all the presented meth-
ods and techniques (detailed in Section 4) together
and showed the final results in Table 6.

5.1 Chinese<English Translation Tasks

We train multiple single models in each settings.
We found that the R2L method can significantly
improve the baseline by about 1 BLEU score. It
is surprising to find a gain of 2 BLEU improve-
ment when combining all data augmentation meth-



System Method Zh=-En En=-Zh De=En
wi9 W20 W19 W20 WI9 W20
WMT2020 Competition Systems
Meng etal. KD+Fine.+Ens. 399 369 - - - -
Lietal. XLM+Doc+Ens.+Fine.+Rerank - - 40.5 49.1 - -
Wu et al. KD+iteBT+Ens. - - - - 43.8 435
Shi et al. KD+Ens.+Fine.+Rerank - - - - 42.2 -
o ;Vfufe;aflf - FT+R2L 315 - 391 - - o
FT+R2L+Fine.+Ens. 39.0 36.8 423 48.0 - -
Our System BT+FT+R2L+Fine.+Ens.+Domain 40.3 37.2 429 48.8 435 432

Table 6: Translation quality when combining all methods and techniques together.

ods. After we boost the in-domain corpus, we
can further achieve 1~2 more BLEU points on the
different models, illustrating the effectiveness of
fine-tuning. Specifically, we used corresponding
development and test datasets and selected paral-
lel data as in-domain corpus D. After training an
NMT model M with the above methods, we fine-
tune W on D with the same hyper parameters of
training M. When testing on the WMT2020 test
set, we achieve about 1.5 BLEU improvement. As
the in-domain corpus is very limited, we propose a
boosted finetune method by using the R2L training
method to boost the finetune process. In our final
submission, we add the WMT2020 test set to D,
the batch size is set to 2048, the finetune finished
after 3K training steps.

In our experiments, the ensemble models con-
sists of 5 single models: 1 DEEP, 2 LARGE, 2
LARGER-FNN models. The simple ensembled
model can outperform the best single model by
0.5~2.0 BLEU scores. We then apply transductive
ensemble to each group of models and the perfor-
mance achieves 36.8 BLEU on Chinese=-English
task. Finally, we employed two fine-grained
domain-specific models to translate COVID-19 and
government report texts, respectively. This can fur-
ther improve the model by +0.5 BLEU point. We
also find that the single models that applied TE can-
not bring further improvement to ensemble results.
We do not apply re-ranking to this task, as we find
that the improvement is insignificant.

5.2 German<English Translation Tasks

The baseline model are trained on bilingual data
and R2L data. This boosts the BLEU score from
41.6 to 42.1. After adding BT and FT, we further
improve the BLEU score by 1.3 BLEU scores.
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For finetuning English=-German models, we se-
lect the document whose source side is originally
in German from all previous development and test
dataset as in-domain corpus D. Single models are
trained with the above methods are then fine-tune
on D for one epoch with a fixed learning rate of le-
4. In our final submission, the WMT2020 test set
is added to D for better performance improvement.
The fine-tuning can further achieve 0.93 BLEU
improvement on the DEEP model.

In this task, the ensemble models consists of 3
single models: 1 DEEP, 1 LARGE, 1 LARGER-FNN
models. The ensemble models outperform the best
single model by 1.5 BLEU scores. Furthermorem
we apply a rule-based post-processing procedure
on punctuation and this can improve the BLEU
score on development set by 0.5 point.

5.3 Official Results

The official automatic results (in terms of sacre-
BLEU) of our submissions for WMT 2021 are
presented in Table 7. Among participated teams,
our primary systems achieve the first and the
second BLEU scores on Chinese<English and
German<English, respectively. The experimental
results demonstrates that our models can achieve
the state-of-the-art performance.

In the future, we will integrate these useful tech-
niques in the Tencent TranSmart (Huang et al.,
2021), Mr. Translator (https://fanyi.qq.com),
and Tencent Simultaneous Translation systems.

6 Conclusion

This paper presents the Tencent Translation sys-
tems for WMT2021 news translation tasks. We in-
vestigate various deep architectures to build strong
baseline models. Then popular data augmentation


https://fanyi.qq.com

System Zh-En En-Zh De-En
Best Official 334 36.9 35.0
Our System 334 36.5 34.9

Table 7: Official sacreBLEU scores of our submissions
for WMT21 news task. The “Best Official” denotes the
best performance among all participant teams.

methods such as BT, FT and R2L are combined
to improve their performances. We demonstrate
that in-domain fine-tuning and fine-grained do-
main modelling are effective to further improve
domain-specific quality. Besides, our proposed
greed-based ensemble algorithm and transductive
ensemble method play key roles in our systems.
Among participated teams, our primary systems
achieve the first and the second BLEU scores on
Zh=-En and De=-En, respectively. In the future,
we will adopt useful methods to our advanced
non-autoregressive translation models (Ding et al.,
2021b,a) and investigate the effects of pre-training
on NMT (Liu et al., 2021a,b).

It is worth mentioning that most advanced tech-
nologies reported in this paper are also adapted to
our systems for biomedical translation task (Wang
et al., 2021b), which achieve three 1st ranks in
German/French/Spanish=-English tasks.
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