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Abstract

We describe our neural machine translation
systems for the 2021 shared task on Unsuper-
vised and Very Low Resource Supervised MT,
translating between Upper Sorbian and Ger-
man (low-resource) and between Lower Sor-
bian and German (unsupervised). The sys-
tems incorporated data filtering, backtransla-
tion, BPE-dropout, ensembling, and transfer
learning from high(er)-resource languages. As
measured by automatic metrics, our systems
showed strong performance, consistently plac-
ing first or tied for first across most metrics and
translation directions.

1 Introduction

This work describes our machine translation (MT)
systems for translating between Upper Sorbian–
German and Lower Sorbian–German (all transla-
tion directions). We focused primarily on the su-
pervised task of Upper Sorbian–German, and then
applied those systems to the task of building simple
Lower Sorbian–German systems.1

Upper Sorbian and Lower Sorbian are Slavic mi-
nority languages spoken in eastern Germany, along-
side German. The shared task data was provided
to the organizers through collaborations with the
Sorbian Institute2 and the Witaj Language Cen-
tre,3 as described in Fraser (2020), to which we
direct interested readers for additional information
on the languages and data. Following the 2020
shared task, the Witaj Language Centre released
a publicly-available Sorbian–German MT system
sotra (Witaj Language Centre, 2021) based on
Moses (Koehn et al., 2007) and OpenNMT (Klein
et al., 2017).4

∗Both authors contributed equally to this work.
1We abbreviate language names as follows: cs (Czech), de

(German), dsb (Lower Sorbian), and hsb (Upper Sorbian).
2https://www.serbski-institut.de/en/

Institute/
3https://www.witaj-sprachzentrum.de/
4https://sotra.app

We provide an overview of the data, preprocess-
ing, and model architectures in Sections 2, 3, and
4. We then discuss baselines, systems, experiments
in monolingual filtering, and backtranslation (all
focused on Upper Sorbian–German) in Sections 5,
6, 7, and 8. In Section 9, we discuss how we ap-
plied and finetuned our existing Upper Sorbian MT
systems for the task of translating Lower Sorbian.
Section 10 discusses additional experiments with
negative results. Finally, Sections 11 and 12 sum-
marize the final systems and our conclusions.

2 Data

We used all provided parallel German–Upper Sor-
bian data and all monolingual Upper Sorbian data
(after filtering), along with German–Czech parallel
data from Open Subtitles (Lison and Tiedemann,
2016),5 DGT (Tiedemann, 2012; Steinberger et al.,
2012), JW300 (Agić and Vulić, 2019), Europarl
v10 (Koehn, 2005), News-Commentary v15, and
WMT-News.6 We also used the monolingual Upper
Sorbian Web, Witaj and Sorbian Institute datasets
as well as the Lower Sorbian monolingual data (the
latter for Lower Sorbian tasks only).7 We used
the provided devel sets for development, and
the devel_test systems for measuring progress
and choosing which systems to submit.

3 Preprocessing and Postprocessing

As preprocessing, we first clean all of the
available training data (but not development or
test data) using clean-utf8-text.pl
with the -no-phrase-sep flag from
PortageTextProcessing.8 For parallel
training data, we use clean-corpus-n.perl

5http://www.opensubtitles.com
6http://www.statmt.org/wmt20/

translation-task.html
7http://www.statmt.org/wmt21/unsup_

and_very_low_res.html
8https://github.com/nrc-cnrc/

PortageTextProcessing

https://www.serbski-institut.de/en/Institute/
https://www.serbski-institut.de/en/Institute/
https://www.witaj-sprachzentrum.de/
https://sotra.app
http://www.opensubtitles.com
http://www.statmt.org/wmt20/translation-task.html
http://www.statmt.org/wmt20/translation-task.html
http://www.statmt.org/wmt21/unsup_and_very_low_res.html
http://www.statmt.org/wmt21/unsup_and_very_low_res.html
https://github.com/nrc-cnrc/PortageTextProcessing
https://github.com/nrc-cnrc/PortageTextProcessing
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Data Lines BPE Voc. CS-DE Parent Multi. Multi. ML-0
train.hsb-de.de 60,000 Y Y 21 × 36 ×
train.hsb-de.hsb 60,000 Y × 2 Y 21 × 36 ×
train2021.hsb-de.de 87,521 Y Y 21 × 36 ×
train2021.hsb-de.hsb 87,521 Y × 2 Y 21 × 36 ×
sorbian_institute_monolingual.hsb 337,730 Y × 2 Y 6 × <BT>
web_monolingual.hsb 105,484 6 × <BT>
witaj_monolingual.hsb 219,177 Y × 2 Y 6 × <BT>
OpenSubtitles.cs-de.{de,cs} 11,073,440 Y +10× BPE-dr
DGT.cs-de.{de,cs} 3,653,397 Y +10× BPE-dr
JW300.{de,cs} 1,037,533 Y +10× BPE-dr
Europarl.cs-de.{de,cs} 558,693 Y Y Y +10× BPE-dr 3 × <CS> 3 × <CS>
News-Commentary.cs-de.{de,cs} 180,053 Y Y Y +10× BPE-dr 3 × <CS> 3 × <CS>
WMT-News.cs-de.{de,cs} 19,892 Y Y Y +10× BPE-dr 3 × <CS> 3 × <CS>
news.2019.de.shuffled.deduped.de 31,650,966
news-commentary-v15.dedup.de 226,820 Y Y
news.2019.de.shuffled.deduped.ml_t00 5,071,268 1 x <BT>

Table 1: Data and how it was used, whether for BPE training and vocabulary extraction, parent model training,
or child model training. All numbers of lines reflect data after initial cleaning and filtering by known characters.
Special tags (for language or backtranslation) are shown where they are used, upsampling is shown with ×, and
BPE-dropout is shown.

from Moses (Koehn et al., 2007) with ratio 15,
and for monolingual data we remove empty
lines. We normalize punctuation with Moses’s
normalize-punctuation.perl and
remove the non-breaking space \xa0. We
perform additional sentence splitting to improve
tokenization,9 then tokenize with Moses’s
tokenizer.perl -a -l $LNG (where
$LNG is cs, de, or hsb), then re-merge the
sentences that were split into single lines. For all
German-Czech parallel data and all monolingual
German or Czech data, we removed any lines that
contained characters that had not been observed in
DE-HSB training data, WMT-News, or Europarl.
This helps clean data of unusual encoding issues,
as well as removing text that is clearly in other
languages (i.e., written in other scripts).

We build BPE vocabularies of size 10k, 15k, 20k,
and 25k merges using subword-nmt10 (Sennrich
et al., 2016). We also add all Moses and Sockeye
special tags (ampersand, <unk>, etc.) and a num-
ber of additional reserved tags (for backtranslation,
languages, etc.) to a glossary file used for applying
BPE, which prevents them from being segmented.
For building the BPE models, we used all HSB-
DE data, the Sorbian Institute and Witaj monolin-
gual HSB data, CS-DE data, and news-commentary
(DE) data; the HSB data was upscaled twice (see
Table 1 for full details). The same datasets were

9Using utokenize.pl with -p -ss
-notok -paraline -lang=en from
PortageTextProcessing.

10https://github.com/rsennrich/
subword-nmt

used for extracting the joint vocabulary, which was
then used for source and target.

In standard postprocessing, we de-BPE and deto-
kenize (using the Moses detokenizer.perl
-a -l $LNG).

4 Models

We built Transformer models (Vaswani et al., 2017)
using Sockeye (Hieber et al., 2018) version 2.3.14
and cuda-10.1. We used the default value of 6 en-
coder/decoder layers, 8 attention heads, the Adam
(Kingma and Ba, 2015) optimizer, label smooth-
ing of 0.1, a cross-entropy-without-softmax-output
loss, and a model size of 512 units with a FFN
size of 2048. We performed early stopping after
32 checkpoints without improvement. We chose
custom checkpoint intervals of 4000 updates when
the train corpus was deemed big enough and 500
updates when the train corpus was small. We op-
timized for BLEU (Papineni et al., 2002)11 and
used the whole validation set during validation.
The batch size was set to 8192 tokens, and the
maximum sequence length for both source and tar-
get was set to 200 tokens. We used weight tying
and vocabulary sharing, but we set gradient clip-
ping to absolute and kept the initial learning rate
of 0.0002. We used a beam size of 5 in all submit-

11All BLEU scores were computed using
sacreBLEU (Post, 2018) with the signature
BLEU+case.mixed+numrefs.1+smooth.exp+
tok.13a+version.1.4.14. The chrF scores (Popović,
2015) were generated in the submission interface.

https://github.com/rsennrich/subword-nmt
https://github.com/rsennrich/subword-nmt


1001

ted systems.12 When systems deviate from these
(i.e., different learning rates or label smoothing),
we make note of it in our descriptions.

5 Baselines

We build several types of baselines against which
to measure our improvements. They are shown in
Table 2 and discussed in the following sections.

System DE-HSB HSB-DE
Translation Memory 16.3 15.5
2020 Bitext Baseline 47.0 (10k) 45.7 (10k)
Bitext Baseline 53.2 (10k) 51.9 (15k)
2020 Final Submission 59.4 (20k) 58.9 (10k)

Table 2: BLEU scores for baseline systems measured
on devel_test data (vocabulary size in parentheses).

5.1 Translation Memory
We build translation memory baselines, following
Simard and Fujita (2012). For each source sentence
in devel_test, we find the most similar (as measured
by sentence-level BLEU) source sentence in the
full training set and return its translation as our
hypothesis. The relatively high scores obtained
demonstrate the high levels of similarity between
the devel_test and train domains (though we note
that very few sentences are exact matches for ones
in the training data).

5.2 Bitext Baselines
We build baselines using the available DE-HSB
bitext, first with only the bitext available for the
2020 iteration of the task, and then with the 2020
and 2021 training data combined. As we see in
the middle rows of Figure 2, the increase in data
from 60,000 to 147,521 lines resulted BLEU score
increases of +6.2 in both translation directions.

5.3 2020 Final Systems
As a last “baseline”, we consider our final sub-
missions to the 2020 shared task. In the DE-HSB
direction, this was a four system ensemble, all of
which were child systems incorporating backtrans-
lation and built on top of parent systems trained on
either DE-CS or DE-“pseudo-HSB”, with a mix of
types of BPE-dropout. The HSB-DE direction was
an ensemble of 5 child systems using backtransla-
tion on top of a similar set of parent systems. These
are described in detail in Knowles et al. (2020).

12In paraphrasing experiments where we generated 10-best
lists, we used a beam size of 10, but these did not contribute
to our final systems.

6 Systems

Here we describe the general types of systems that
we have built, including parent DE-CS systems,
multilingual systems, and the child (and grand-
child) systems we built on top of those.

6.1 Parent Systems

We first built DE-CS and CS-DE parent systems, us-
ing OpenSubtitles, DGT, JW300, Europarl, News-
Commentary, and WMT-News as training data.
The training data is used once in its original form,
and concatenated with 10 different versions each
generated by an iteration of BPE-dropout (both
source and target)13 with a dropout rate of 0.1.
We use newstest2019-csde as the development
set. This results in DE-CS and CS-DE systems
with BLEU scores between 22 and 25 on the
newstest2019-csde development set. We use these
parent systems for transfer learning.

6.2 Multilingual Systems

When we build CS-DE and DE-CS parent systems
and then use them for transfer learning by finetun-
ing on HSB-DE or DE-HSB data, they undergo
“catastrophic forgetting” (Thompson et al., 2019;
Gu and Feng, 2020) and lose the ability to trans-
late Czech while gaining the ability to translate
Upper Sorbian, as measured on their respective de-
velopment sets. While we don’t necessarily need to
maintain the ability to translate Czech, we explored
whether multilingual systems might improve per-
formance on our task of interest. To this end, we
build multilingual systems, which incorporate CS-
DE data, upsampled HSB-DE data, and backtrans-
lated data (DE in the case of HSB-DE systems,
HSB in the case of DE-HSB systems). In these
systems we performed upsampling with the aim
of having approximately 1 part CS-DE to 4 parts
HSB-DE data (reflective of our priority to translate
HSB-DE). We did not experiment with additional
ratios; we leave this to future work.

For DE-HSB multilingual systems, we used
monolingual HSB data (backtranslated and upsam-
pled 6 times) tagged with <BT> tags, DE-CS data
(Europarl, News-Commentary, WMT-News; up-
sampled 3 times) tagged with <CS>, and the par-
allel DE-HSB training data (upsampled 21 times
and untagged). For HSB-DE multilingual systems,

13Note that we only apply BPE-dropout to training data,
never to development or test data.
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we used a sample14 of the news 2019 DE data back-
translated and tagged with <BT>, the same three
CS-DE corpora tagged with <CS> and upsampled,
and the HSB-DE training data upsampled (the up-
sampling of these latter corpora depended on the
size of the backtranslated data).

6.3 Child Systems

Child systems are initialized with the parameters of
some given system and are then finetuned on a new
set of data with continued training. This is how we
perform transfer learning, taking a parent system
trained on CS-DE (or DE-CS) data and converting
it to an HSB-DE (or DE-HSB) system by starting
from the parent system parameters and training on
the appropriate language data, as in Kocmi and
Bojar (2018). In some cases, we repeat this process
multiple times with different sets of data, building
“grandchild” systems on top of child systems.

7 Monolingual Data Filtering

Given the tight coupling between the domain of the
development/development-test data and the train-
ing data, the large quantity of monolingual data
available for backtranslation from German, and in-
spired by the filtering used in the high-performing
2020 submission by Scherrer et al. (2020) we exam-
ined whether we should subsample data for back-
translation.15 We used the 2020 final systems de-
scribed in Knowles et al. (2020) to backtranslate all
available News 2019 DE. This enabled us to train
child systems with a random sample of 1.5 million
lines of text, the full available backtranslated data,
and several approaches to sampling the data.

We first describe HSB-DE experiments with the
fixed data size of 1.5 million lines of backtranslated
DE monolingual data. We use a random sample
as a baseline. We compare to it two approaches
to using pretrained Sentence-Transformer embed-
dings16 (Reimers and Gurevych, 2019) and cosine
similarity for domain filtering: ranking sentences
in the monolingual data based on their similarity
to the average embedding of the full DE side of

14As described in Section 7, Moore-Lewis filter.
15Data subsampling or filtering or of one sort or another

was also used by several other submissions in 2020, including:
Dutta et al. (2020), Edman et al. (2020), and Knowles et al.
(2020).

16From https://github.com/UKPLab/
sentence-transformers, with model paraphrase-
xlm-r-multilingual-v1, a multilingual version of paraphrase-
distilroberta-base-v1, trained on parallel data for 50+
languages (Reimers and Gurevych, 2020).

Filter Both Src. None
Random 57.5 57.1 57.3
Average 57.5 57.4 57.1
Individual 57.7 56.9 57.1
Moore-Lewis 57.7 57.2 57.3
M-L thresh.: 0 57.7 58.1 57.9

Table 3: BLEU scores of HSB-DE child systems
trained on authentic HSB-DE parallel text (upsampled)
and 1.5 million lines of backtranslated (iteration 1)
News 2019 data, sampled using different approaches.
Results shown are for 15k vocabulary. Columns in-
dicate type of BPE-dropout (both source and target,
source only, and neither). The last line shows thresh-
olded Moore-Lewis, with 5,071,268 lines selected.

the DE-HSB training data and selecting the 1.5
million most similar,17 and selecting the 1.5 mil-
lion sentences most similar to any individual sen-
tence in the DE side of the DE-HSB training data.18

We also apply Moore-Lewis filtering (Moore and
Lewis, 2010), again treating the DE side of the
DE-HSB training data as the “in-domain” data.
Moore-Lewis (M-L) uses language models19 to
compare out-of-domain data to in-domain data on
the basis of cross-entropy, enabling the sampling
of in-domain-like text from the out-of-domain set.

We find that the Moore-Lewis approach outper-
forms or matches the random baseline across three
variations of BPE-dropout. Table 3 shows results
for 15k BPE, but we found the same across 10k,
15k, 20k, and 25k vocabularies. With both source
and target BPE-dropout, the Moore-Lewis sample
was always best or tied for best, with source side
or no dropout it was always best or second best.

We also built systems with no BPE dropout, us-
ing full backtranslated News 2019 data; for larger
BPE sizes, the Moore-Lewis samples outperformed
the full data (despite being much smaller and thus
more efficient), while for the smaller BPE sizes,
Moore-Lewis came in second behind the full data.

With 1.5 million as a relatively arbitrary size, we
proceeded with using a threshold for Moore-Lewis
filtering. A threshold of 0 resulted in 5,071,268
lines sampled from News 2019. With upsampling

17Similar to the domain-cosine approach in Aharoni and
Goldberg (2020).

18We note that this uses external pretrained models, and
we have done this only for the purpose of experimenting with
backtranslation; none of our final submissions are built using
these approaches, so they remain constrained.

194-gram language models built with MITLM (https:
//github.com/mitlm/mitlm).

https://github.com/UKPLab/sentence-transformers
https://github.com/UKPLab/sentence-transformers
https://github.com/mitlm/mitlm
https://github.com/mitlm/mitlm
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HSB-DE data to match it in size, we found that
the Moore-Lewis threshold child models outper-
formed the 1.5 million size and also outperformed
or matched the full data size systems.

We also tested Moore-Lewis filtering on the Up-
per Sorbian monolingual data, but found it to be
less useful in that case, likely due to the much
smaller size of available data, and potentially to
closer matches (due to the shared origins of the
training data and some of the monolingual data).

8 Backtranslation

8.1 BT1

For our first iteration of backtranslation, BT1, we
use our final submitted systems from last year’s
task, as described in Section 5.3.

8.2 BT2

Our second iteration of backtranslation was per-
formed using ensembles of (at the time) best-
performing systems at the midpoint of the shared
task. Keeping in mind that ensembles typically
outperform single systems, and that we found that
diverse ensembles seemed to outperform less di-
verse ensembles, we chose our best-performing
systems and then two variants of each to ensemble
for the second round of backtranslation. For DE-
HSB, the child systems ensembled were the both,
src, and none BPE-dropout variants trained on
the true DE-HSB data (upsampled 3 times) and
BT1 backtranslated HSB data, with a 25k vocab-
ulary. For HSB-DE, the child systems ensembled
were also both, src, and none BPE-dropout
variants trained on the the true DE-HSB data (up-
sampled 35 times) and BT1 News 2019 DE data
filtered using Moore-Lewis and a threshold of 0,
with a 15k vocabulary.

8.3 Analysis of Backtranslation

We compared BT1 and BT2 outputs and found
them to be quite similar, sometimes even identical.
This brought us to a closer examination of the back-
translation systems and the training data itself. As
part of our analysis and experiments, we performed
backtranslation of the full DE-HSB training data.

Doing so, we observed that significant portions
of the training data had been memorized by many
of our systems, and where differences existed, they
tended to be quite small. As evidence of this, for
both BT1 and BT2, in both translation directions,
the BLEU scores for backtranslated training data

were 98.2 or higher. Nevertheless, the high auto-
matic metric scores on held-out data suggest that
these systems are still able to generalize (that is,
they have not only memorized data), though it
does raise questions about how general the models
are: would they perform nearly as well on out-of-
domain data?

9 Lower Sorbian

The data provided for Lower Sorbian consists of
145,196 lines of monolingual data and the small
(approx. 600 line) parallel devel and devel_test sets.
In order to build systems, we relied on the related-
ness of Lower Sorbian and Upper Sorbian. Since
we primarily focused on Upper Sorbian, our BPE
vocabularies were not learned using Lower Sor-
bian; we leave an exploration of that to future work.
Here we describe our process of building Lower
Sorbian systems from Upper Sorbian systems.

9.1 Initial Round

Without any parallel data, we first tried simply
translating with our existing HSB-DE and DE-HSB
systems and ensembles. In the DE-DSB direction,
the resulting devel_test DSB scores were between
7.7 and 8.1 BLEU, while in the DSB-DE direction,
the scores were naturally a bit higher (since the sys-
tem has trained on the output language of German),
between 17 and 19 BLEU.

From there, we translated the full DSB mono-
lingual data using one of our best HSB-DE single
systems: 25k vocabulary, standard parent CS-DE
(BPE-dropout both), finetuned child system using
BT2 M-L threshold 0 news data and the original
HSB-DE training data with BPE-dropout (both)
and label smoothing of 0.15. The relatively high
BLEU scores that we observed when translating
DSB devel and devel_test data with HSB-DE sys-
tems allowed us to assume that the output might
be more than just noise, and ideally at least good
enough for use as the source side.

For backtranslation of DE into DSB, we used
an ensemble of two 25k vocabulary DE-DSB sys-
tems. The first started from a default parent DE-
CS system with BPE-dropout (both) and was then
finetuned as a multilingual system using BT2 back-
translated HSB monolingual data and DE-CS data
(as described in Section 6.2) with BPE-dropout
(both). Then it was finetuned with the initial
round backtranslated DSB monolingual data just
described, again with BPE-dropout (both). The
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second also started from the default DE-CS BPE-
dropout (both) system and was finetuned with BT2
backtranslated HSB monolingual data with BPE-
dropout (both) and learning rate of 0.0001. This
was then also finetuned with initial round backtrans-
lated DSB monolingual data, with BPE-dropout
(both) and a learning rate of 0.0001.

9.2 Next Round

We also built another DSB-DE system for perform-
ing next round backtranslation. It began with a 20k
vocabulary standard parent CS-DE (BPE-dropout
both), as with previous systems, finetuned child sys-
tem using BT2 M-L threshold 0 news data and the
original HSB-DE training data with BPE-dropout
(both) and label smoothing of 0.15. We then fine-
tuned this with the DE side of the full HSB-DE
training data, backtranslated to DSB using the ini-
tial round DE-DSB system.

10 Inconclusive and Negative Results

We now discuss negative results, i.e., experiments
that we performed that were unsuccessful. All of
these were performed on Upper Sorbian-German.

10.1 Fuzzy Matching

We performed brief and ultimately unsuccessful
experiments with using similar translations from
the training data to guide translation, as in Xu et al.
(2020). In this approach, for each source sentence
(train, development, or test), we first extract its best
“fuzzy match” from a translation memory (we use
the parallel HSB-DE data for this, and select the
best non-exact fuzzy match) if any is available. The
system input then consists of the source sentence,
followed by a special token, followed by the tar-
get language sentence corresponding to the closest
source fuzzy match from the translation memory
(called FM# in Xu et al. (2020)). We also tried
an approach like their FM* approach, where target
language tokens are masked with a special token
if they do not align20 to a source language word
that is contained in the source sentence to be trans-
lated. In either case, if no fuzzy match is returned, a
special null token replaces the target language text
in the input. Both approaches performed almost
identically to the baseline, so we did not proceed
with additional experiments (including those ap-
proaches that used factors). We experimented with
a range of thresholds for fuzzy matches (0.0, 0.35,

20We used fast_align (Dyer et al., 2013).

0.5), all using FuzzyMatch-cli21 but all per-
formed comparably. We believe this remains an
open area for exploration: did the systems fail to
outperform the baseline because the baseline had
already attained high quality? Did the small size of
the translation memory hurt performance?

10.2 Backtranslation as Paraphrasers

Inspired by work like Khayrallah et al. (2020), we
also experimented with whether we could treat
our high-quality backtranslation systems as para-
phrasers to generate more diverse data by translat-
ing the HSB-DE parallel data (in each direction)
with sampling rather than using one-best output of
beam search. We tried building children with this
data (both with only authentic target side data and
with full combinations of sampled datasets), but
did not find that it improved over comparable sys-
tems. One issue is that the HSB-DE training data is
nearly memorized, as discussed in Section 8.3, so
even in the sampled data, many of the differences
between translations are quite small.

10.3 Backtranslation-Only Systems

Following Abdulmumin et al. (2021), we experi-
mented with finetuning our parent systems using
only backtranslated data, followed by then finetun-
ing on the authentic parallel data. We had mixed
results with this approach – one of them was high-
performing enough to include in our HSB-DE final
ensemble, but there was not enough evidence for
this language pair to conclude that the approach is
broadly useful (beyond providing additional diver-
sity to ensembles).

11 Final Systems

According to preliminary automatic metric results
from the shared task organizers, our systems per-
formed quite well. The metrics considered were
BLEU, chrF, and – in the case of translation into
German – BERT Score. Each translation direc-
tion saw five systems submitted, with the exception
of DSB-DE, which only had four. Our HSB-DE
had the best BERT score (0.981), the second-best
BLEU score (67.3, 0.4 BLEU behind NoahNMT),
and the best chrF score; it was significantly better
than all four other systems in terms of BERT score,
while in terms of BLEU and chrF it was better
than three other systems (tying with NoahNMT).

21https://github.com/SYSTRAN/
fuzzy-match

https://github.com/SYSTRAN/fuzzy-match
https://github.com/SYSTRAN/fuzzy-match
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Test devel_test
System BLEU chrF BLEU BLEU (sing.)
HSB-DE 67.3 (-0.4) 0.836 (+0.002) 60.0 58.5
DE-HSB 66.3 (+0.4) 0.837 (+0.004) 59.9 58.1
DSB-DE 33.5 (+0.2) 0.638 (+0.016) 34.9 34.5
DE-DSB 29.9 (+2.4) 0.599 (+0.020) 31.0 30.1

Table 4: Final submission scores on test sets. In parentheses, we show the difference between our system and the
best performing system by another task participant (positive indicates our system scored highest, negative indicates
that the other team’s score was higher). The last two columns show scores on devel_test, first for the ensemble and
then for the single best component systems in the ensemble (sing.).

Our DSB-DE system had the best BLEU and chrF
scores and was tied for the best BERT score (0.953)
with CL_RUG; in terms of BLEU and chrF it was
significantly better than one other system (along-
side CL_RUG and LMU) and in terms of BERT
score it was significantly better than two other sys-
tems (alongside CL_RUG). Both of our systems
translating out of German had the highest BLEU
and chrF scores. Our DE-HSB system was, along-
side NoahNMT, significantly better than three other
systems in both automatic metrics. Our DE-DSB
system was, alongside LMU, significantly better
than three other systems in both automatic metrics.

11.1 HSB-DE

Our Upper Sorbian-German submission is an en-
semble of eight systems with 25k vocabulary,
which scored 67.3 BLEU (0.836 chrF) on the test
set. The first six systems in the ensemble are chil-
dren and grandchildren of a CS-DE system (with
both source and target BPE-dropout). The final
two were multilingual systems trained on a mix
of CS-DE and HSB-DE data. Their details are as
follows:

1. HSB-DE data, BT2 news (M-L threshold 0),
BPE-dropout (both), and label smoothing set
to 0.15 (best single system)

2. HSB-DE data, BT2 news (M-L threshold 0),
BPE-dropout (both), and transformer dropout
at 0.20

3. Child of system 1, finetuned on only HSB-DE
(with BPE-dropout, both)

4. Multilingual (mix of CS-DE language-tagged,
BT1 news M-L top 1.5M tagged as BT, and
HSB-DE upscaled)

5. HSB-DE data, BT1 and BT2 (M-L threshold
0, each), BPE-dropout (both)

6. Child of a backtranslation-only, BT1 and BT2
(M-L threshold 0, each), BPE-dropout (both)

system; finetuned on only HSB-DE (with
BPE-dropout, both)

7. Multilingual (not a child) mix of CS-DE and
HSB-DE data, BT2 (M-L threshold 0), BPE-
dropout (both)

8. Multilingual (not a child) mix of CS-DE and
HSB-DE data, BT1 (M-L top 1.5M), BPE-
dropout (both)

11.2 DE-HSB

Our German-Upper Sorbian system is an ensemble
of seven systems with 25k vocabulary, of which the
first five are children or grandchildren of a DE-CS
parent system (with both source and target dropout).
The final two are multilingual systems. In all cases,
any backtranslation listed (BT1 or BT2) is back-
translation of the monolingual HSB data. For
this language direction, our primary submission
does not use additional postprocessing. While the
additional postprocessing improved all other lan-
guage directions/pairs, it decreased BLEU by 0.1 in
this pair (chrF remained unchanged). The system
scored 66.3 BLEU (0.837 chrF) on test.

1. Multilingual system with BT2 and BPE-
dropout (both)

2. Child of system 1, finetuned on DE-HSB with
BPE-dropout (both)

3. DE-HSB data, BT2, BPE-dropout (both), la-
bel smoothing set to 0.15

4. Same as system 3, with transformer dropout
set to 0.15

5. DE-HSB data, BT1, BPE-dropout, both
6. Multilingual (not child), BT2, BPE-dr. (both)
7. Multilingual (not child), BT1, BPE-dr. (both)

11.3 DSB-DE

Our Lower Sorbian-German system is an ensemble
of two systems with 20k vocabulary, scoring 33.5
BLEU (0.6388 chrF) on test. Both systems are
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children of the 20k vocabulary equivalent of the
first component of the HSB-DE ensemble: taking a
CS-DE parent, then training on HSB-DE data and
BT2 news (M-L threshold 0), with BPE-dropout
(both), and label smoothing set to 0.15.

They train on authentic DE data that is paired
with DSB backtranslations, generated by the ini-
tial round DE-DSB ensemble (described in Sec-
tion 9.1).

1. Child trained on backtranslation paired with
DE side of the DE-HSB training data, BPE-
dropout (both), learning rate 0.0001.

2. Same as the first system, with the addition of
backtranslated news 2019 (M-L threshold 0).

11.4 DE-DSB
Our German-Lower Sorbian system is an ensem-
ble of four 20k BPE systems, and scored 29.9
BLEU (0.599 chrF) on test. All four systems are
based on a default DE-CS parent with BPE-dropout
(both). The first three are then finetuned with BT2
backtranslated HSB data and BPE-dropout (both).
The last was finetuned with a multilingual system
(again with BT2 backtranslated HSB and BPE-
dropout both). We now describe how those sys-
tems were finetuned to the DE-DSB task (all used
BPE-dropout both):

1. Finetuned with DSB monolingual data (initial
round backtranslated).

2. Finetuned with DSB monolingual data (next
round backtranslated).

3. Same as system 2 with learning rate 0.0001.
4. Same as system 3 (different parent).

12 Conclusions

As with last year’s task, we found that our best
systems consisted of ensembles, with more diverse
ensembles performing better than less diverse ones.
The very high automatic metric scores along with
our experiments in backtranslation led us to exam-
ine the state of memorization of the training data,
which we found to be quite high. We also found
that the close relationship between Upper Sorbian
and Lower Sorbian enabled us to bootstrap seem-
ingly strong Lower Sorbian systems through itera-
tive backtranslation. We believe that the true test
of these systems will be through human evaluation,
as well as an analysis of how well they perform in
a real-life setting (i.e., with more out-of-domain
test data), as the current set seems potentially quite
constrained in domain.
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